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BIONIC LIMBS FOR IMPROVED NATURAL CONTROL
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Joint Action

Pesquita, Whitwell, and Enns,

Psychon Bull Rev 25, 2018: “Predictive joint-
action model: A hierarchical predictive
approach to human cooperation”




JOINT ACTION

“a social interaction whereby two or more
Individuals coordinate their actions in space and
time to bring about change in the environment”



Representation of shared goal and individual
contributions to the shared goal.

Pesquita, Whitwell, and Enns, Psychon Bull Rev 25, 2018: “Predictive joint-action model:
A hierarchical predictive approach to human cooperation”
Vesper et al., Neural Networks 23, 2010: “A minimal architecture for joint action”



Representation of shared goal and individual
contributions to the shared goal.

Monitoring and prediction of partner actions.

Pesquita, Whitwell, and Enns, Psychon Bull Rev 25, 2018: “Predictive joint-action model:
A hierarchical predictive approach to human cooperation”
Vesper et al., Neural Networks 23, 2010: “A minimal architecture for joint action”



Representation of shared goal and individual
contributions to the shared goal.

Monitoring and prediction of partner actions.

Continuous coordination via continuous improvement
of predictions about a partner’s actions.

Pesquita, Whitwell, and Enns, Psychon Bull Rev 25, 2018: “Predictive joint-action model:
A hierarchical predictive approach to human cooperation”
Vesper et al., Neural Networks 23, 2010: “A minimal architecture for joint action”



PREDICTIONS

Momentary.
(e.g., classification decision)

S. Micera, J. Carpaneto, and S. Raspopovic,
“Control of hand prostheses using peripheral
information,” IEEE Rev. Biomed. Eng., 2010.



PREDICTIONS

Momentary. Temporally extended.
(e.g., classification decision) (e.g., expected return)

Sutton et al., “Horde: A Scalable Real-time Architecture for
S. Micera, J. Carpaneto, and S. Raspopovic, Learning Knowledge from Unsupervised Sensorimotor
“Control of hand prostheses using peripheral Interaction,” Proc. of 10th International Conference on
information,” IEEE Rev. Biomed. Eng., 2010. Autonomous Agents and Multiagent Systems (AAMAS), 2011.



PREDICTIONS

Momentary. Temporally extended.
(e.g., classification decision) (e.g., expected return)

Can be acquired or updated in batches or in real time.

Sutton et al., “Horde: A Scalable Real-time Architecture for
S. Micera, J. Carpaneto, and S. Raspopovic, Learning Knowledge from Unsupervised Sensorimotor
“Control of hand prostheses using peripheral Interaction,” Proc. of 10th International Conference on
information,” IEEE Rev. Biomed. Eng., 2010. Autonomous Agents and Multiagent Systems (AAMAS), 2011.



Wolpert et al., Trends Cog Sci 5(11), 2001: “Perspectives and problems in motor learning”
Flanagan et al., Current Biology 13(2), 2003: “Prediction precedes control in motor learning”
Desmurget et al., Science 324(5928), 2009: “Movement intention after parietal cortex stimulation in humans”
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level

Sensory routing

level

Predictive Joint-Action
Model (PJAM)
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The Legend of Zelda: Ocarina of Time (1998)



"Q- “Hey! Look! (It’s not just for human-human dyads)

The Legend of Zelda: Ocarina of Time (1998)
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Pezzulo, G., Dindo, H. (2011). What
should | do next? Using shared

representations to solve interaction
problems. Exp. Brain. Res. 211, 613-630.
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button panel

._ Helper’s button panel

Helper
Pezzulo, G., Dindo, H. (2011). What P. M. Pilarski, A. Butcher, M. Johanson, M. M. Botvinick, A. Bolt,
should | do next? Using shared A. S. R. Parker, “Learned human-agent decision-making,
representations to solve interaction communication and joint action in a virtual reality environment,”

problems. Exp. Brain. Res. 211, 613—-630. RLDM 2019 / arXiv:1905.02691 [cs.Al], 5 pages, 2019.



Predictions as Communicative Capital

DIRECTOR ASSISTANT
(a) making predictions ‘ ’ director and environment

maximum capacity for progressive improvement

acquired communicative capital -\

(b) | understandshow predictions i:#:l improves predictians
and signals impact control ‘ } about director’s control
realized capacity

()  Providesclearsignal C—D makes accurate predictions
to the assistant ‘ } about director and environment

realized capacity

P. M. Pilarski, R. S. Sutton, K. W. Mathewson, C. Sherstan, A. S. R. Parker, A. L. Edwards,
“Communicative Capital for Prosthetic Agents,” arXiv:1711.03676 [cs.Al] (arXiv): 33 pages, 2017.



Commercially Deployed
Pattern Recognition for Prostheses
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P.M. Pilarski, M.R. Dawson, T. Degris, J.P. Carey, K.M. Chan, J.S. Hebert, and R.S. Sutton,
“Adaptive Artificial Limbs: A Real-time Approach to Prediction and Anticipation,” IEEE
Robotics & Automation Magazine, Vol. 20(1): 53-64, March 2013.



. Switching Channel

Robot Limb
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ARM
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FEEDBACK
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A. S. R. Parker, A. L. Edwards, P. M. Pilarski, “Exploring the Impact of Machine-Learned
Predictions on Feedback from an Artificial Limb,” 2019 IEEE-RAS-EMBS International
Conference on Rehabilitation Robotics (ICORR), 24-28 June, 2019, Toronto, 8 pages.



We have both the technology and
model systems to study human-
machine coordination as joint action.
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We have both the technology and
model systems to study human-
machine coordination as joint action.
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machine coordination as joint action.

e




We have betr ,
model systems to study human-
machine coordination as joint action.
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GaMA

Lavoie et al., JOV, 2018
Valevicius et al.,
Gait & Posture, 2019




Both humans and machines
can now represent goals, make
and maintain predictions...




... can we gain utility by viewing
human-prosthesis action as
joint action?



... can we gain utility by viewing
human-prosthesis action as
joint action?
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Direct brain-computer interfaces: study participant Jan Scheuermann feeding herself with a
robotic limb (University of Pittsburgh); http://www.upmc.com/media/media-kit/bci/Pages/default.aspx



http://www.upmc.com/media/media-kit/bci/Pages/default.aspx
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Direct brain-computer interfaces: memory protheses from the Center tor Neural Engineering,
Viterbi School of Engineering. https://cne.usc.edu/neural-prosthesis-for-hippocampal-memory-
function/ and |EEE Trans Neural Syst Rehabil Eng. 2018, 26(2):272-280.



https://cne.usc.edu/neural-prosthesis-for-hippocampal-memory-function/
https://cne.usc.edu/neural-prosthesis-for-hippocampal-memory-function/
https://www.ncbi.nlm.nih.gov/pubmed/28113595#

Brain-body-machine interfaces: “Amputee Makes History with APL's Modular
Prosthetic Limb” (JHU Applied Physics Laboratory); https://youtu.be/ONOncx2]U0Q




Brain-body-machine interfaces: "APL's Modular Prosthetic Limb Reaches New Levels
of Operability” (JHU Applied Physics Laboratory); https://voutu.be/-0srXvOQIuO
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Decoder
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Instrumented
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Mobile arm support

Brain-body-machine interfaces: “Restoration of reaching and grasping movements through brain-controlled

muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration™ Ajiboye, A Bolu et al., The
[Lancet, Volume 389 , Issue 10081, 1821-1830, 2017.



Brain-body-machine interfaces: Baker et al., “Continuous Detection and Decoding of Dexterous
Finger Flexions With Implantable MyoElectric Sensors,” [EEE TNSRE 18(4):424-32, 2010.



Brain-body-machine interfaces: "Brain-Machine Interface @ EPFL- Wheelchair’
(Ecole polytechnigue fédérale de Lausanne); https://youtu.be/0-1sdtnugcE
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University of Alberta: http://blinclab.ca


http://blinclab.ca

University of Alberta: http://blinclab.ca

, https://www.smartnetworkcentre.ca/
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https://www.smartnetworkcentre.ca/

-

And In case you were wondering what the robots are up to these days...
Atlas Robot (Boston Dynamics): https://youtu.be/fRj3404hN4|
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Exoskeletons: UC Berkeley spin-off suitX exoskeleton technology;
https://www.youtube.com/watch?v=I13roYI3CB2Y






