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Pesquita, Whitwell, and Enns,

Psychon Bull Rev 25, 2018: “Predictive joint-
action model: A hierarchical predictive
approach to human cooperation”




JOINT ACTION

“a social interaction whereby two or more
Individuals coordinate their actions in space and
time to bring about change in the environment”



Representation of shared goal and individual
contributions to the shared goal.

Pesquita, Whitwell, and Enns, Psychon Bull Rev 25, 2018: “Predictive joint-action model:
A hierarchical predictive approach to human cooperation”
Vesper et al., Neural Networks 23, 2010: “A minimal architecture for joint action”



Representation of shared goal and individual
contributions to the shared goal.

Monitoring and prediction of partner actions.

Pesquita, Whitwell, and Enns, Psychon Bull Rev 25, 2018: “Predictive joint-action model:
A hierarchical predictive approach to human cooperation”
Vesper et al., Neural Networks 23, 2010: “A minimal architecture for joint action”



Representation of shared goal and individual
contributions to the shared goal.

Monitoring and prediction of partner actions.

Continual coordination via continual improvement of
predictions about a partner’s actions.

Pesquita, Whitwell, and Enns, Psychon Bull Rev 25, 2018: “Predictive joint-action model:
A hierarchical predictive approach to human cooperation”
Vesper et al., Neural Networks 23, 2010: “A minimal architecture for joint action”



PREDICTIONS

Momentary.
(e.g., classification decision)

S. Micera, J. Carpaneto, and S. Raspopovic,
“Control of hand prostheses using peripheral
information,” IEEE Rev. Biomed. Eng., 2010.



PREDICTIONS

Momentary. Temporally extended.
(e.g., classification decision) (e.g., expected return)

Sutton et al., “Horde: A Scalable Real-time Architecture for
S. Micera, J. Carpaneto, and S. Raspopovic, Learning Knowledge from Unsupervised Sensorimotor
“Control of hand prostheses using peripheral Interaction,” Proc. of 10th International Conference on
information,” IEEE Rev. Biomed. Eng., 2010. Autonomous Agents and Multiagent Systems (AAMAS), 2011.



PREDICTIONS

Momentary. Temporally extended.
(e.g., classification decision) (e.g., expected return)

Can be acquired or updated in batches or in real time.

Sutton et al., “Horde: A Scalable Real-time Architecture for
S. Micera, J. Carpaneto, and S. Raspopovic, Learning Knowledge from Unsupervised Sensorimotor
“Control of hand prostheses using peripheral Interaction,” Proc. of 10th International Conference on
information,” IEEE Rev. Biomed. Eng., 2010. Autonomous Agents and Multiagent Systems (AAMAS), 2011.



Wolpert et al., Trends Cog Sci 5(11), 2001: “Perspectives and problems in motor learning”
Flanagan et al., Current Biology 13(2), 2003: “Prediction precedes control in motor learning”
Desmurget et al., Science 324(5928), 2009: “Movement intention after parietal cortex stimulation in humans”
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Wolpert, Doya, and Kawato, Phil Trans Royal Soc London B, 358(1431), 2003: “[Motor control and social interaction]”
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Wolpert, Doya, and Kawato, Phil Trans Royal Soc London B, 358(1431), 2003: “[Motor control and social interaction]”



Predictive Joint-Action
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- Psychon Bull Rev 25, 2018: “Predictive joint-action model:
A hierarchical predictive approach to human cooperation”
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Goal representation

level

Action-planning

level

Sensory routing

level

Predictive Joint-Action
Model (PJAM)

Pesquita, Whitwell, and Enns,
Psychon Bull Rev 25, 2018: “Predictive joint-action model:
A hierarchical predictive approach to human cooperation”
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\t’? “Hey! Look! (It’s not just for human-human dyads)

The Legend of Zelda: Ocarina of Time (1998)



@ “Hey! Look! (It’s not just for human-human dyads)

The Legend of Zelda: Ocarina of Time (1998)

Helper’s screen

Tower

Display of Builder’s
button panel

Helper’s button panel

Helper

G. Pezzulo, H. Dindo, “What should | do
next? Using shared representations to
solve interaction problems,” Exp. Brain.
Res. 211, 613-630, 2011.



ﬁpf} “Hey! Look! (It’s not just for human-human dyads)

The Legend of Zelda: Ocarina of Time (1998)
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P. M. Pilarski, A. Butcher, M. Johanson, M. M. Botvinick, A. Bolt,
A. S. R. Parker, “Learned human-agent decision-making,
communication and joint action in a virtual reality environment,”
RLDM 2019 / arXiv:1905.02691 [cs.Al], 5 pages, 2019.

G. Pezzulo, H. Dindo, “What should | do
next? Using shared representations to
solve interaction problems,” Exp. Brain.
Res. 211, 613-630, 2011.



Predictions as Communicative Capital

DIRECTOR ASSISTANT
(a) making predictions ‘ } director and environment

maximum capacity for progressive improvement

acquired communicative capital -\

(b)  understandshowpredictions i:#:l improves pradictions
and signals impact control ‘ } about director’s control

realized capacity

(c) ~ Providesclearsignal C—D makes accurate predictions
to the assistant ‘ } about director and environment

realized capacity

P. M. Pilarski, R. S. Sutton, K. W. Mathewson, C. Sherstan, A. S. R. Parker, A. L. Edwards,
“Communicative Capital for Prosthetic Agents,” arXiv:1711.03676 [cs.Al] (arXiv): 33 pages, 2017.



Commercially Deployed
Pattern Recognition for Prostheses
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P.M. Pilarski, M.R. Dawson, T. Degris, J.P. Carey, K.M. Chan, J.S. Hebert, and R.S. Sutton,
“Adaptive Artificial Limbs: A Real-time Approach to Prediction and Anticipation,” IEEE
Robotics & Automation Magazine, Vol. 20(1): 53-64, March 2013.



. Switching Channel

Robot Limb

Human User
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A. S. R. Parker, A. L. Edwards, P. M. Pilarski, “Exploring the Impact of Machine-Learned
Predictions on Feedback from an Artificial Limb,” 2019 IEEE-RAS-EMBS International
Conference on Rehabilitation Robotics (ICORR), 24-28 June, 2019, Toronto, 8 pages.



UDE for Each Percept Bit
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Time Steps

J. Gunther, A. Kearney, M. R. Dawson, C. Sherstan, P. M. Pilarski, “Predictions,

Surprise, and Predictions of Surprise in General Value Function Architectures,” Proc.

AAAI 2018 Fall Symposium on Reasoning and Learning in Real-World Systems for
Long-Term Autonomy, Arlington, USA, October 18-20, 2018, pp. 22-29.



We have both the technology and
model systems to study human-
machine coordination as joint action.
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We have both the technology and
model systems to study human-
machine coordination as joint action.
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We have b¢ achnhology. and
model systems to study human-
machine coordination as joint action.
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GaMA

Lavoie et al., JOV, 2018
Valevicius et al.,
Gait & Posture, 2019




Both humans and machines
can now represent goals, make
and maintain predictions...




... can we gain utility by viewing
human-prosthesis action as
joint action?



... can we gain utility by viewing
human-prosthesis action as
joint action?
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