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The Unlver5|ty of Alberta

® Opened in 1908

® 6,000 Graduate students

¢ 30,000 Undergraduate students

¢ | of the top 100 universities in the world
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Multifunction
Myoelectric Prostheses
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Otto Bock’s Dynamic Arm combined with myoelectric wrist rotator and prehensor.

(Image: Otto Bock; Schematic: Dawson, Ph.D.Thesis, 201 1.)



Three Known Barriers

“Three main problems were mentioned as
reasons that amputees stop using their ME
prostheses: nonintuitive control, lack of sufficient
feedback, and insufficient functionality.”

— Peerdeman et al,, JRRD, 201 |.



Intelligent Interfaces

(Prostheses that approach and someday exceed
the abilites of a biological limb.)
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Intelligent Interfaces

(Prostheses that approach and someday exceed
the abilites of a biological limb.)

DLR Hand Arm System
Image: German Aerospace Center (DLR) & IEEE Spectrum
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Intelligent Interfaces

(Prostheses that approach and someday exceed
the abilites of a biological limb.)

Huang et aI..:' ‘
Biomed. Eng., 379 (2

DLR Hand Arm System
Image: German Aerospace Center (DLR) & IEEE Spectrum
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Machine Learning

In the face of growing complexity, learn the correct
way to map numerous EMG signals to actuator
commands.

MACHINE
LEARNING
SYSTEM

DLR Hand Arm System
Image: German Aerospace Center (DLR) & IEEE Spectrum
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State of the Art

* Excellent examples of machine learning work in classifying
EMG patterns for use in limb control (e.g. Oskoei and Hu
‘08, Parker et al.’06, Sensinger et al.’09).

- However, most contemporary learning approaches rely on
external knowledge of their domain to guide learning, and
function primarily in offline or batch learning scenarios.

* This breaks down as the complexity and individuality of the
input and output space increases; very hard to determine

the “correct” thing to do.



Three Missing Elements

® Real-time machine learning.
(Online, adaptive algorithms; noted by
Sensinger et al. ’09, Scheme & Englehart I |)

® (Generalized interfaces.
(Blank-slate human-machine interaction &
collaboration; e.g. Pilarski et al. 201 1)

® Data-respecting biomedical pattern analysis.
(Complexity is good: interpreting myriad signals
without reducing the sensorimotor space)
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Ongoing Projects

Real-time control learning without a priori
information about a user or device.

Prediction and anticipation of signals during
patient-device interaction.

Collaborative algorithms for the online
human improvement of limb controllers.
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Team

e RLAI/AICML: new methods for improved
control, feedback, and online interaction.

® Mec. Eng.: new mechanical limbs and
platforms for amputee training (MTT).

® Glenrose / Medicine: new surgeries (TMR
& TSR), patients, and clinical expertise.
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TMR/TSR

Setting
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Useful Predictions

® Assuming we continue as usual (on-policy):

- What will the force sensor report over
the next few seconds!

= VWhere will the limb be in the next 30s?

- How strong will each user EMG signal be
in 250ms?

23
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Reinforcement
Learning

25

Richard S. Sutton and Andraw G.Barto
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Reinforcement Learning
is an approach to:

® Natural intelligence
Artificial intelligence
Optimal control

Operations research

Solving partially observable
Markov decision processes

(and the perspective that all of these are the same)

26 Slide content thanks to Rich Sutton



Main ldeas

Reinforcement learning involves an agent
and an environment.

The learning system (agent) perceives the state of the
environment via a set of observations and takes actions.

It then receives a new set of observations and a reward.

These observations and rewards are used to predict future
rewards, and to change the agent’s policy (how it selects
actions).

Key point: A single, scalar reward signal drives learning.

27



Reinforcement Learning

Intelligent World

REWARD

Agent (Environment)

l STATE
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28



Number RL Papers per Year
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Google scholar hits

for the phrase
“reinforcement
learning”
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RL Headlines

® RL is widely used in robotics

® RL algorithms have found the best known
approximate solutions to many games
(RL is part of the revolution in solving Go)

® RL algorithms are now the standard model
of reward processing in the brain

® RL breaks the curse of dimensionality

30 Slide content thanks to Rich Sutton



What is Special About RL?

® Radical generality

® None of the signals are given any interpretation
... no reference signals or labels
... N0 human interpretation, no calibration

® Just data in the form of signals
... one of which is to be maximized (reward)

31 Slide content thanks to Rich Sutton
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Setting

33 Diagram thanks to K. Ming Chan



Useful Predictions

® Assuming we continue as usual (on-policy):

- What will the force sensor report over
the next few seconds!

= VWhere will the limb be in the next 30s?

- How strong will each user EMG signal be
in 250ms?
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Online Nexting

General Value Functions.
(Sutton et al., 201 |,AAMAS)

GVFs form questions; ‘what will happen
next?”’ (Nexting)

In brief: instead of reward, learn anticipations
(expectations of real-valued signals).

Can learn many temporally extended
predictions in parallel.
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General Value Functions

® Conventional value functions are predictions w.r.t. the rewards,
discount, and terminal values of the problem, for a given policy

Q" (s,a) = E[r1+v7“2+727“3+~-\Sozs,aoza,almww]

— E[r1+---—|—rk—|—zk‘SQ:S,Q():ayalszﬂ-akN/Y]

® General value functions are predictions w.r.t. to four given functions:

QT (s,a) = Er(sy) + -+ r(sk) +2(sk) | so=s,a0=a,arp~m k~7]

these four functions define the semantics of the prediction

Sutton et al, AAMAS, 201 1. 5,



General Value Functions

QW,T,W,Z(S’ CL) — E[T(Sl) + o4 T(Sk) —+ Z(Sk) ‘ So=S,a90=a, Q1. ~T, kN’Y]

\

these four functions define the semantics of the prediction
policy m: A xS —[0,1]
reward 7: S — R
termination 7:S — [0,1]

terminal value z: S — R

Sutton et al,AAMAS, 201 1. 5,



Why GVFs?

® Thousands of accurate predictions can be
made and learned in real time (i.e., |0hz)

® A single state representation be used to
accurately predict many different sensors at
many different time scales.

® A model-free algorithm that can learn fast
enough to be useful.

38 Sutton et al, AAMAS, 201 I.



Massively Parallel Prediction
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Predictions (Nexting)

® VWhere each prediction has its own
reward r; and discount rate +' €[0,1)

® |deal predictions are the convolution of the
reward with an exponential kernel
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Learning GVFs

® Temporal-Difference (TD) learning

® Linear TD(A) (Sutton, 1988)
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Able-Bodied Study

Eight runs at 5—10 min
(12k—25k timesteps).

Record EMG signals
and joint angles.

Recording and learning
at 40Hz.

GVF state = TileCoder(8,10) {C-EMG x 2,
elbow joint angle, wrist joint angle}.
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Angle (Radians)

Prediction Results

For joint angle signals after ten minutes of online learning (Y=0.97).
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EMG Signal

Prediction Results

For EMG signals after ten minutes of online learning (Y=0.97).
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Learning Curves

Over eight independent runs.
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Clinical Experiments

Approximately 20min of patient interaction
with the MTT system (~60k timesteps).

Recorded EMG signals, force signals, joint
angle, joint speed, joint temp., joint load.

Recording samples at 50Hz.

GVF state =TileCoder(8,10) { EMG x 2,
force, joint angle, joint speed}.
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Force (Volts)

Prediction Results

After three iterations through the training data.
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Results on Test Data

After three iterations through the training data.
Testing data previously unseen by the system; no learning during testing evaluation.
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Abs. Error (Steps)
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Learning Curves

Over ten iterations through the training data.
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Over ten iterations through the training data.
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Summary

Real-time machine learning can help alleviate
barriers to assistive rehabilitation robotics.

Recent work is on prediction and anticipation
for improving the control of artificial limbs.

Results: successful on-policy nexting for both
patient data and able-bodied subject data.

Big picture: artifical limbs that learn and
improve through on-going user interaction.
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Questions

... and thank you very much for your
hospitality and attention.

patrick.pilarski@ualberta.ca

http://www.ualberta.ca/~pilarski/
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