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Adaptive Prosthetics Project
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preliminary use by
amputee and non-
amputee subjects.

® Demonstrate clinical
impact in studies with
amputee participants.
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Known Barriers

“Three main problems were mentioned as
reasons that amputees stop using their ME
prostheses: nonintuitive control, lack of sufficient
feedback, and insufficient functionality.”

Also: cost!



Adaptation & Scalability

“Supervised adaptation should be considered for
incorporation into any clinically viable pattern
recognition controller, and unsupervised
adaptation should receive renewed interest in
order to provide transparent adaptation.”

— Sensinger et al., 2009.

“Completely stable, unsupervised [adaptation] has
yet to be realized but is of great clinical interest.”

— Scheme and Englehart, 201 |.



Our Ongoing
Approaches

Real-time control learning without a priori
information about a user or device.

Prediction and anticipation of signals during
amputee-device interaction.

Collaborative algorithms for the online
human improvement of limb controllers.



Prediction Learning
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Anticipating Human and Robot Dynamics
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Prediction-based Improvement
of a Control Interface

Pilarski et al., BioRob, 201 2.
Pilarski and Sutton, AAAI-FS, 2012.



Simultaneous Control of Multiple Joints
by using Predictions as Observations
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Free actuation of elbow and hand using conventional control.
Dependent wrist actuator, with desired targets (poses).
~2min online prelearning, ~2 1 min online learning.

Pilarski, Dick, and Sutton, ICORR, 201 3.



Wrist Joint Controllers

. e Direct W-Reactive Control: OW set to OW*

" | + Direct W-Predictive Control: W set to PW*

. e ACRL Reactive Control: S = {BE,0H,vE,vH,dEMGx2,W})
e ACRL EH-Predictive Control: S = {PE, PH, W})
e ACRL W-Predictive Control: S = {PW*, W})

. e Prediction Learner: S = {8E.68H vE vH.dEMG x 2})

Both ACRL and TD(lambda) use eligibility traces, and function approximation via tile coding.



WPredDirect FullReactACRL WPredACRL EHPredACRL
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Fig. 5. Comparison of target (grey line) and achieved (red line) wrist trajectories after (a-d) ~20min of online learning and (e~h) ~50min of offline
learning. Shown for (a/e) Direct W-Predictive control. (b/f) Full-Reactive ACRL, (¢/g) W-Predictive ACRL, and (d/h) EH-Predictive ACRL.
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Fig. 3. Comparison of predictive and reactive control learning approaches
(n=4) over the course of ~20min of online learning, following a 1.7min
pre-learning phase: (a) binned per-time-step reward over time, and (b)
quartile analysis of median values shown over the last 1.7min of learning,
as compared to 1.7min of the direct reactive policy during pre-learning.
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Fig. 4. Comparison of predictive and reactive control learning approaches
(n=16) over the course of ~S50min of offline learning (2.5 passes through
21min of logged online learming data, following 1.7min of pre-learning): (a)
binned per-time-step reward over time, and (b) quartile analysis of median
values shown over the last 1.7min of learning.

Pilarski, Dick, and Sutton, ICORR, 201 3.



Example of Direct Predictive
Actuator Control (0.25x Speed)

Direct Predictive
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Advanced Artificial Limbs

(NON-INVASIVE)

Rehab. Institute of Chicago: Kuiken et al.



Summary

When is it pragmatic to use learned, temporally
extended predictions in picking robot actions in
real-time (in effect,a model made of learned VFs)!?

Can we combine prediction learning with
continuous action ACRL in a useful way?
(compress, abstract)

Can this approach be grounded in an incremental,
sensorimotor approach to planning?

Results: Simultaneous actuation of extra joints
and demonstrated preemptive actuation.

Also: general value functions with TD-learning are a practical way to build up diverse predictive
model during the real-time operation of a system.
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