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One statement we likely all agree on:

Prosthetic control, feedback, interventions
and user training can be improved through
adaptation and sculpting to individuals,
their unique body and needs.
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One statement that may be controversial:

Prosthetic devices should continually adapt
and sculpt thelr control and feedback to
individuals and their needs during
post-clinical deployed use.
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Objectives

We have a set of shared terms
(e.g., constructivism and continual learning)

...and a minimal set of concrete examples
of what is now technologically possible ...

... such that we can discuss the
similarities, differences, and merits of
these pathways in meeting user needs.
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The Cairo Toe University of Basel, LHTT. Image: Matjaz Kaci¢nik

Nerlich, et al., Lancet, 356: 2176-79, 2000.


https://www.smithsonianmag.com/smart-news/study-reveals-secrets-ancient-cairo-toe-180963783/
https://www.theatlantic.com/technology/archive/2013/11/the-perfect-3-000-year-old-toe-a-brief-history-of-prosthetic-limbs/281653/
https://www.theatlantic.com/technology/archive/2013/11/the-perfect-3-000-year-old-toe-a-brief-history-of-prosthetic-limbs/281653/
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https://docs.google.com/file/d/1aK1ZRAzoEBpieZkWgQAO5W8fxYkq9K3_/preview
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the feedback pathway

(mechanical, auditory, visual, and more)
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Schofield, et al., Expert Reviews of

Medical Devices, 2014.



,.._ & _ﬂﬁ

a.mtﬁl ﬁﬁ

Parker, et al.,
ICORR , 2019

machine learned feedback




IONS

| intervent
for control & feedback

surgica

Kuiken, et al., JAMA, 20089
Hebert, et al., IEEE TNSRE, 2014

Marasco, et al., Science Robotics, 2021
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In these areas, we likely still agree:

Prostheses can be improved through
adaptation and sculpting to individuals,
their unique body and needs.
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Modern prosthetic technology has the
necessary preconditions to construct or
enhance many of these elements during
deployed interactions with users over
extended periods of time.
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Continual e Canlearn context-dependent things;

e L earns while doing(during experience);

learning e | earningistask agnostic;

e | earnsincrementally, no fixed training set;

... the constant and
incremental
development of e Retains previously learned abilities;
increasingly complex
knowledge and
behaviors.

e [ earning can be built upon later;

e Adapts efficiently to changes over time and
recovers quickly.

Khetarpal et al., 2020; Ring, 1997. https://arxiv.org/pdf/2012.13490.pdf



And what might a prosthesis control
system continually learn and use?

DATA GOALS
REPRESENTATIONS

PREDICTIONS (models)

ACTIONS (Control and feedback)

DECISIONS



And what might a prosthesis control
system continually learn and use?

DATA GOALS

/

PREDICTIONS (models)

DECISIONS



Reinforcement Learning (RL) techniques
are very well suited to
continual learning.
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Key Example

Adaptive &
Autonomous
Switching

(2011-2022)




~ Force sensor

_——

~__Robotic gripper

P.M. Pilarski, M.R. Dawson, T. Degris, J.P. Carey, K.M. Chan, J.S. Hebert, and R.S. Sutton, “Adaptive
Artificial Limbs: A Real-time Approach to Prediction and Anticipation,” [EEE Robotics & Automation
Magazine, Vol. 20(1): 53-64, March 2013.



Continually Learned Forecasts of Future Control Outcomes
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Pilarski & Sherstan, BioRob, 2016.
Gunther et al., AAAI-FS, 2018.
Gunther et al., Frontiers in Robotics and Al 7:34, 2020.

Highly Scalable

tens of thousands of
forecasts learned and
made In real time
about position,
velocity, loads, EMG,
temperatures, and
maore



https://docs.google.com/file/d/1CpZFm2WUbcaIXf9Am0MbFQVjZQoxS5fO/preview

Mappings from learned predictions to
fixed outcomes provide a natural gateway
to more complex adaptive interactions.

(e.g., predictions change an interface)
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Switching Channel

Robot Limb

Human User

Adaptive & Autonomous Switching

A. L. Edwards, et al. Prosthetics & Orthotics International, vol. 40, no. 5, 573-581, 2016.

A. L. Edwards, et al., 6th IEEE RAS/EMBS International Conference on Biomedical Robotics and
Biomechatronics (BioRob2016), June 26-29, 2016, Singapore, pp. 514-521

A. L. Edwards, MScRS Thesis, Faculty of Rehabilitation Medicine, University of Alberta, 2016.
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Adaptive SWitChiﬂg Edwards et al., MEC, 2014
Edwards et al., Prosthetics Orthotics Int., 2016


https://docs.google.com/file/d/1BnSyCZXyC9iJVwXuLuX1EQ8EsDKnR5Q5/preview
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Faster and Less Switches on a Modified Box and Blocks Tasks
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Adaptive
switching in
real-time
exoskeleton
control.

Faridi et al.,
ICORR, 2022.

Intraspinal
microstimulation
for walking.

Dalrymple et al., J.
Neural Eng., 2022.

Robot limb failure
and anomaly
detection.

Gunther et al.,
Front. Al., 2020.

Gunther et al.,
AAAI-FS, 2018.

Hazard prediction Coordinating

and machine upper-limb
learned feedback joint
In robot limbs and synergies.
VR decision
making. Sherstan, et
al., ICORR,
Parker et al., 2015.
[CORR, 2019.
Pilarski, et
Brenneis et al., al., ICORR,

ALA, 2022 2013.



https://docs.google.com/file/d/1TgcahQKvuttEGbhmjywXF2rcCuSxk-Zq/preview
https://docs.google.com/file/d/1TgcahQKvuttEGbhmjywXF2rcCuSxk-Zq/preview

IEEE International Conference on Rehabilitation Robotics, 2011

Online Human Training of a Myoelectric Prosthesis Controller via
Actor-Critic Reinforcement Learning

Patrick M. Pilarski, Michael R. Dawson, Thomas Degris, Farbod Fahimi, Jason P. Carey, and Richard S. Sutton

Abstract— As a contribution toward the goal of adaptable, P i ; sﬁénﬁi’u f;;l
intelligent artificial limbs, this work introduces a continuous B
actor-critic reinforcement learning method for optimizing the ARM%%STV; ___H

control of multi-function myoelectric devices. Using a simulated w4

upper-arm robotic prosthesis, we demonstrate how it is possible _~_.~._“_..__
to derive successful limb controllers from myoelectric data  \(\\..--.
using only a sparse human-delivered training signal, without
requiring detailed knowledge about the task domain. This
reinforcement-based machine learning framework is well suited
for use by both patients and clinical staff, and may be easily
adapted to different application domains and the needs of
individual amputees. To our knowledge, this is the first my-
oelectric control approach that facilitates the online learning of -
new amputee-specific motions based only on a one-dimensional
(scalar) feedback signal provided by the user of the prosthesis.
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Continual learning enables
constructivism, and is a cornerstone of
adaptation and sculpting to individuals.
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constructivism

The perspective that perception,
knowledge, understanding, and
abilities are constructed through
interaction and experience.

.. an inherently continual and Jean Piaget
additive process of learning. g +

(1896-1980)

https://piaget.org/about-piaget/



constructivism

The perspective that perception,
knowledge, understanding, and
abilities are constructed through
interaction and experience.

.. an inherently continual and
additive process of learning.




Continual learning and constructed

control and feedback is in essence putting

the person and their needs and goals
front and centre, and tasking the device
to try to change in safe and stable ways to

meet those needs and goals. ‘
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Solid evidence this is now computationally
& technologically possible with present
prosthetic hardware.
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What critical evidence do we need?

h “‘

Is now the right time?
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Ostensive-inferential Communication

Beyond Code Scott-Phillips, Speaking our Minds, 2014.
Channels

Joint Action

Expert-Designed
Channels

Emergent or
Fully Constructed
Interfaces



Continually learning

”"" :‘N‘

N tightly coupled
intelligent systems
) Licklider, 1960)
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