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Known Barriers

“Three main problems were mentioned as
reasons that amputees stop using their ME
prostheses: nonintuitive control, lack of sufficient
feedback, and insufficient functionality.”

Also: cost!



Adaptation & Scalability

“Supervised adaptation should be considered for
incorporation into any clinically viable pattern
recognition controller, and unsupervised
adaptation should receive renewed interest in
order to provide transparent adaptation.”

— Sensinger et al., 2009.

“Completely stable, unsupervised [adaptation] has
yet to be realized but is of great clinical interest.”

— Scheme and Englehart, 201 |.



Adaptive Prosthetics Project
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® Demonstrate clinical
impact in studies with
amputee participants.



Our Ongoing
Approaches

Real-time control learning without a priori
information about a user or device.

Prediction and anticipation of signals during
amputee-device interaction.

Collaborative algorithms for the online
human improvement of limb controllers.



KEY IDEA

Temporally Extended
Predictions are important for
improving and adapting control systemes.



Anticipating Human and Robot Dynamics
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Anticipating Human and Robot Dynamics
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Prediction Learning with
General Value Functions

® Thousands of accurate predictions can be
made and learned in real time (i.e.,|00Hz)

® A single stream of data be used to

accurately predict many different sensors at
many different time scales.

® Rapid learning that is hon-episodic and that
continue indefinitely (incremental learning).

Multi-timescale Nexting in a Reinforcement Learning Robot, Modayil,
White, and Sutton, 201 2.

Sutton et al., AAMAS, 2011.
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Example I:

Prediction to Enhance Conventional
Control Systems



Prediction-based Improvement
of a Switched Control Interface




Predicting what a user wants ...
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Predicting what a user wants ...
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..and when they want it.
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...and when they want it.
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Example 2:

Using Predictions as State Information
(Predictive Representations of State)




Coupled Prediction and
Control Learning
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Simultaneous, anticipatory myoelectric
control of multiple actuators. Pilarski, Dick, and Sutton, ICORR, 2013.



Coupled Prediction and
Control Learning
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Fig. 5. Comparison of target (grey line) and achieved (red line) wrist trajectories after (a-d) ~20min of online learning and (e~h) ~50min of offline
learning. Shown for (afe) Direct W-Predictive control. (b/f) Full-Reactive ACRL, (¢/g) W-Predictive ACRL, and (d/h) EH-Predictive ACRL.
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Example 3:

Detecting and Using Context
During Learning and Control
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Contextual Shifts
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Conclusions



Potential Utility for
Extended Predictions

Maintain consistency in controller or control interface
for the user

... yet adapt quickly to things that are impossible or
challenging for a user to learn about or model.

Recognize context or different use domains (situation
aware controllers and predictions).

Avenues discussed here: controller enhancement,
state enhancement, control learning, contextual learning.



Summary

® | earning and using temporally extended
predictions (sensorimotor knowledge) is a
promising area for enhancing assistive devices.

® Strong preliminary results to show
unsupervised adaptation, facilitation of
simultaneous multi-joint control, and
streamlining HMIs that use switching.

e Big picture: a move toward more advanced,
persistent machine intelligence in NiPNS-HMIs.

Also: general value functions with TD-learning are a practical way to build up and maintain a
diverse predictive model during the real-time operation of a system.
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QUESTIONS

pilarski@ualberta.ca

http://www.ualberta.ca/~pilarski/
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