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Tight Coupling
Licklider, 1960
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Internet of
Things
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(Internet of Bodies)
Neal, 2014

\ 4

: \ 2
N
f s U
L
|
€)

> P;;‘ " » A "
X Al ]
KX
= ‘

%

p
g

\.‘Q‘?‘ T
=Nt
-
_—

E——










Transition
model

\ :
N \Planmng

Reactive
~(percepion
\\ N

Machine _ ‘
Exocerebellum =]

bellum

S ———

pa———



ansition

!

\ =
\ \Plarmmg \
: R
' \

eaclive

Hachine S ‘
Exocerebellum ~ =
Cyberbonus:

+]1to action, +3 to perception,
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“The cerebellum is an area that is essential for
proper sensory and motor timing [...]

- I'he cerebellum integrates external stimuli

= along with internal body signals in a
feed-forward manner to correctly time events such
as antagonist muscle contractions, as well as
generating predictions of observed motor acts.

on the basis of this predictive error function, the
cerebellum is well suited for initiation,
termination and adjustment of events [...]"

=Lusk et al. Current Opinion in Behavioral
Sciences 2016, 8:186—192.
(C.I. Kehoe et al., Learn. Mem. 2013.)



Basal ganglia

Cerebellum

From: D'Angelo and Casali (2013), Front.
Neural Circuits 6:116. doi: 10.3389/fncir.




Microzones

From: D Angelo et al., Front. Cell. Neurosci., 2016.
10:1/76. doi: 10.3389/ftnhcel.2016.00176




Eeft: D'Angelo and Casali (2013),
Front. Neural Circuits 6:116. doi: 10.3389/fncir.
RIght: Ramon y Cajal (1899);neurons in pigeon cerebellum
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From: D Angelo and Casali (2013), Front. Neural
Circuits 6:116. doi: 10.3389/fncir.
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Ensemble policy

From: Harutyunyan et al., ALA-15 @ AAMAS, 2015.
C:f., Sutton et al., "Horde: A Scalable Real-time Architecture for Learning

Knowledge from Unsupervised Sensorimotor Interaction,” AAMAS, 2011.
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The Alberta Plan for AI Research

Richard S. Sutton, Michael Bowling, and Patrick M. Pilarski
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Alberta Machine Intelligence Institute
DeepMind Alberta

History suggests that the road to a firm research consensus is extraordinarily arduous.

— Thomas Kuhn, The Structure of Scientific Revolutions

Herein we describe our approach to artificial intelligence (AI) research, which we call the
Alberta Plan. The Alberta Plan is pursued within our research groups in Alberta and by
others who are like minded throughout the world. We welcome all who would join us in this
pursuit.

The Alberta Plan is a long-term plan oriented toward basic understanding of computational
intelligence. It is a plan for the next 5-10 years. It is not concerned with immediate applica-
tions of what we currently know how to do, but rather with filling in the gaps in our current
understanding. As computational intelligence comes to be understood it will undoubtedly

e




Distinguishing Features of the Alberta Plan

1. An emphasis on learning from ordinary experience;
2. Temporal uniformity: no special training periods;

3. Cognizance of computational considerations;

4. The environment includes other intelligent agents.

The Alberta Plan, arXiv:2208.11173v3 [ cs.Al ], 2023



Distinguishing Features of the Alberta Plan

4. The environment includes other intelligent agents.

Intelligence Amplification (IA): There are general principles by which one
agent may use what it learns to amplify and enhance the action, perception,
and cognition of another agent, and this amplification is an important part
of attaining the full potential of Al.

The Alberta Plan, arXiv:2208.11173v3 [ cs.Al ], 2023



Main Steps (mostly not the focus of this talk)

. Representation I: Continual supervised learning with given features.

. Representation II: Supervised feature finding.

. Prediction I: Continual Generalized Value Function (GVF') prediction learning.

. Control I: Continual actor-critic control.

. Prediction II: Average-reward GVF' learning.

. Control II: Continuing control problems.

. Planning I: Planning with average reward.

. Prototype-Al I: One-step model-based RL with continual function approximation.
. Planning II: Search control and exploration.

10. Prototype-Al II: The STOMP progression.
11. Prototype-Al III: Oak.

12. Prototype-IA: Intelligence amplification.

© 00 N O Ot i W N



The Focus of This Talk

We are making progress on Step 12 (Prototype Intelligence
Amplification) thanks to work on rehabilitation technologies

Step 12. Prototype-IA: Intelligence amplification. A demonstration of intelligence ap-
plification (IA), wherein a Prototype-Al I agent is shown to increase the speed and over-
all decision-making capacity of a second agent in non-trivial ways. We see a first version
of this IA agent as what might be best described as a computational ezxo-cerebellum (a
system built mainly on the prediction and continual feature construction elements of
Oak and the steps above).!® We then see a second version that might be best thought
of as a computational ezxo-cortexr that fully manifests the ability of an IA agent to form
policies and use planning to multiplicatively enhance the intelligence of another, part-
nered agent or part of a single agent. We see these two versions being studied in both
human-agent and agent-agent interaction settings.
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We will focus on predictions and feature construction

Value |
functions
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https://docs.google.com/file/d/1WwSokXs4HR8SmFDHHXxTDsrj7t0Z6UAC/preview
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the feedback pathway

(mechanical, auditory, visual, and more)
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Ensemble policy

From: Harutyunyan et al., ALA-15 @ AAMAS, 2015.
C:f., Sutton et al., "Horde: A Scalable Real-time Architecture for Learning

Knowledge from Unsupervised Sensorimotor Interaction,” AAMAS, 2011.
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EMG ACTUATOR
SIGNALS SIGNALS

Pilarski et al., 2013, Robotics Autom. Mag.
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Pilarski et al., 2013, Robotics Autom. Mag.




the “digital Purkinje cell”

approx(obs)

pt

state
vector

weights (W)

F

obs prediction (P)
f(c, P

c.f., General Value Functions: Sutton et al., AAMAS, 2011,
maintained through processes of temporal-difference learning.
S'anad apologies to Sutton, Kehoe, Modayil, White, Ludwig, and others.
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Eeft: D'Angelo and Casali (2013),
Front. Neural Circuits 6:116. doi: 10.3389/fncir.
RIght: Ramon y Cajal (1899);neurons in pigeon cerebellum




Can we implement and deploy
digital Purkinje cells (GVFs)

during tightly coupled
human-machine interaction?
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~ Force sensor

_——

~__Robotic gripper

P.M. Pilarski, M.R. Dawson, T. Degris, J.P. Carey, K.M. Chan, J.S. Hebert, and R.S. Sutton, “Adaptive
Artificial Limbs: A Real-time Approach to Prediction and Anticipation,” [EEE Robotics & Automation
Magazine, Vol. 20(1): 53-64, March 2013.



Continually Learned Forecasts of Future Control Outcomes
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Pilarski & Sherstan, BioRob, 2016.
Gunther et al., AAAI-FS, 2018.
Gunther et al., Frontiers in Robotics and Al 7:34, 2020.

Highly Scalable

tens of thousands of
forecasts learned and
made In real time
about position,
velocity, loads, EMG,
temperatures, and
maore



https://docs.google.com/file/d/1CpZFm2WUbcaIXf9Am0MbFQVjZQoxS5fO/preview

Can the outputs (predictions)
of digital Purkinje cells (GVFs)
be used during human-machine

interaction?
‘J




(And why would it matter?)

Prosthesis control and feedback can be

improved through real-time adaptation,

prediction, and sculpting to individuals,
their unique body and needs.

A “‘




Shehata, et al.,
Magazine, 2021
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Switching Channel

Robot Limb

Human User

Adaptive & Autonomous Switching

A. L. Edwards, et al. Prosthetics & Orthotics International, vol. 40, no. 5, 573-581, 2016.

A. L. Edwards, et al., 6th IEEE RAS/EMBS International Conference on Biomedical Robotics and
Biomechatronics (BioRob2016), June 26-29, 2016, Singapore, pp. 514-521

A. L. Edwards, MScRS Thesis, Faculty of Rehabilitation Medicine, University of Alberta, 2016.
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Adaptive SWitChiﬂg Edwards et al., MEC, 2014
Edwards et al., Prosthetics Orthotics Int., 2016


https://docs.google.com/file/d/1BnSyCZXyC9iJVwXuLuX1EQ8EsDKnR5Q5/preview

Faster and Less Switches on a Modified Box and Blocks Tasks
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Parker, et al
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Parker et al., CAPNet + in prep
(you literally saw this earlier today)



Predictions of machine intent to act mapped to vibratory feedback: coordination
smoothing. Edwards et al., "Machine Learning and Unlearning to Autonomously
Switch Between the Functions of a Myoelectric Arm”, BioRob 2016.



Can we then make simple,
interesting (to Patrick?)
prototypes of an exocerebellum?
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The Frost Hollow
Experiments

Brenneis, et al., Adaptive and Learning
Agents (ALA) Workshop, AAMAS 2022.

Butcher, et al., Adaptive and Learning
Agents (ALA) Workshop, AAMAS 2022.

Pilarski et al., arXiv :2203.09498 [ cs.Al ]

(Also, but less much frosty and with
more fruit: Pilarski et al., 2019, RLDM)
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Brenneis, et al., Adaptive and Learning
Agents (ALA) Workshop, AAMAS 2022.

Butcher, et al., Adaptive and Learning
Agents (ALA) Workshop, AAMAS 2022.

Pilarski et al., arXiv :2203.09498 [ cs.Al ]
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The Frost Hollow
Experiments

A/V State Reward

Brenneis, et al., Adaptive and Learning
Agents (ALA) Workshop, AAMAS 2022.

Butcher, et al., Adaptive and Learning
Agents (ALA) Workshop, AAMAS 2022.

Pilarski et al., arXiv :2203.09498 [ cs.Al ]

Action

(Also, but less much frosty and with
more fruit: Pilarski et al., 2019, RLDM)

Paviovian Signalling Co-Agent




Or can Patrick at least make a
weird wrist-mounted robot

lobster and claimitis a
prototype exocerebellum?
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Wrystlebot v3.0, P. M. Pilarski & R. P. Pilarski
https://github.com/pilarski/Wrystlebot



: : ripper:
vibration _
< v pos, vel, load

human-delivered
button cues

Wrystlebot v3.0, P. M. Pilarski & R. P. Pilarski
https://github.com/pilarski/Wrystlebot



gripper:
pos, vel, load LED - IMU
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Wrystlebot v3.0, P. M. Pilarski & R. P. Pilarski
https://github.com/pilarski/Wrystlebot
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prosthesis state, EMG,

toqgqles,
hazards, gq
motion
Wieldle
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Cyberbonus: e.q.,
-20s task completion time
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Can we create an exocerebellum?

e \We can implement digital Purkinje
cells(GVFs)that can learnin real time

e \We can easily scale the # of GVFs

e \We can use GVF outputs to help
augment human sensorimotor
interactions (even some that matter).

e \Ve have to choose our ‘cells".

e We have to design(and not learn)the
way they are communicated
downstream.
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... and for pursuing the full
potential of modern and
future artificial
Intelligence.
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... and for pursuing the full
potential of modern and
future artificial
Intelligence.

The Alberta Plan,
arXiv:2208.11173v3
[cs.Al], 2023

E——




perception
" action
cognition

LN

; s U
g
€)

: P‘;l’ 3 .
? l0h
/ A T
| "'
\ LX
- )

\ 4

\l
2
p
g

A )

\ .
\.\\
)
-~
: iy =

e




Thank you and questions!

Jacqueline Hebert
Richard Sutton
Craig Chapman
Albert Vette

Vivian Mushahwar
Adam White
Joseph Modayil
Jason Carey
Mahdi Tavakoli
Kim Adams

Martin Ferguson-Pell
Simon Grange
Liping Qi

Matt Botvinick
Todd Murphey

K. Ming Chan

Erik Scheme
Michael Bowling
Kory Mathewson
Craig Sherstan
Elnaz Davoodi
Thomas Degris
Michael Johanson
Ahmed Shehata
Johannes Gunther
Florian Strub
lvana Kajic

Claudio Castellini
Jon Sensinger
Paul Marasco
Aida Valevicius
Hiroki Tanikawa

Michael Rory Dawson

Mayank Rehani
Glyn Murgatroyd
Dylan Brenneis
Andrew Butcher
L eslie Acker
Andrew Bolt
Adam Parker
Heather Williams
Ola Kalinowska
Alden Christianson
Ann Edwards
Alex Kearney
Nadia Ady

Laura Petrich
Annette Lau
Ewen Lavoie
Katherine Schoepp
Pouria Faridi
Travis Dick
Vivek Veeriah
Riley Dawson

Quinn Boser
Jaden Travnik
Gautham Vasan
Anna Koop

Kodi Cheng
Emma Durocher
Devin Bradburn
Helen Zhao
_iam Jack
Roshan Shariff
Nathan Wispinski w
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... and all the other members of c
and labs advising or contribu
the presented work.
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