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Machine Learning for 
Assistive Devices

• Real-time RL methods applied to:

- Rehabilitation robotics;

- Assistive biomedical devices;

- Human-machine (e.g. neural) interfaces.

• Direct human interaction with complex 
systems (without assumptions about H&M).
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Team
• RLAI / AICML: new methods for improved 

control, feedback, and online interaction.

• Mec. Eng.: new mechanical limbs and 
platforms for amputee training (MTT).

• Glenrose / Medicine:  new surgeries (TMR 
& TSR), patients, and clinical expertise.
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Multifunction 
Myoelectric Prostheses
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Three Known Barriers

“Three main problems were mentioned as 
reasons that amputees stop using their ME 
prostheses: nonintuitive control, lack of sufficient 
feedback, and insufficient functionality.”

— Peerdeman et al., JRRD, 2011.
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Conventional Control

• Conventional myoelectric controllers typically 
control a single degree of freedom with a single 
residual muscle pair.

• Unfortunately, as the amputation level increases, 
the number of muscle sites available for use as 
input signals to control schemes decreases.

• Growing disparity between the sensing/actuation 
capability and control system ability.

7



• Developing literature of machine learning work on classifying 
EMG patterns for use in limb control (e.g. Oskoei and Hu 
2008, Parker et al. 2006, Scheme 2011, Sensinger et al. 2009).

• Most contemporary learning approaches rely on external 
knowledge of their domain to guide learning, and function 
primarily in offline or batch learning scenarios.

• Robust online adaptation is an open problem (Sensinger et 
al. 2009, Scheme and Englehart 2011)

Learning Approaches
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Targeted Reinnervation
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Our Ongoing Projects

• Real-time control learning without a priori 
information about a user or device.

• Prediction and anticipation of signals during 
patient-device interaction.

• Collaborative algorithms for the online 
human improvement of limb controllers.
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the switching 
problem

for assistive biomedical devices
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Switching in Practice

• Most commerical multifunction prostheses use 
some form of function switching (1 site to 1 DoF).

• In order to increase the number of cotrollable 
DoFs, conventional controllers are often extended 
using a voluntary switch.

• It is challenging to form a link between the human 
and the robot that enables high levels of robot 
functionality while simultaneously providing an 
intuitive, learnable control scheme for the user. 
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One problem for human-machine 
interaction occurs when a machine’s 

controllable dimensions outnumber the 
control channels available to its human user
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One problem for human-machine 
interaction occurs when a machine’s 

controllable dimensions outnumber the 
control channels available to its human user
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One problem for human-machine 
interaction occurs when a machine’s 

controllable dimensions outnumber the 
control channels available to its human user

Fixed switch list 
or a priori paradigm
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predictions
dynamic (adaptive) switching order

 for improved control
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predictions
dynamic (adaptive) switching order

 for improved control
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P.M. Pilarski, M.R. Dawson, T. Degris, J.P. Carey, and R.S. Sutton, 
4th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), 

June 24-28, Roma, Italy, 7 pages, 2012.



Approach
• Learning system streamlines user switching.

• Intuition: switching order should refelct 
context, and adapt to changes in the task, 
changes in the user.

• Learn (and adapt) predictions about user 
control interactions in real-time.

• Dynamically reorder DoFs in the switching 
list (in an online, ongoing fashion).
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Experimental Domain
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Box and Blocks Task
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Example Sequence
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There are many ways to achieve this task.



Rich Data
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Interesting Questions

• Predictions regarding user control:

- Which function will the user select when 
they perform their next switching action?

- How much activity will be observed on a 
DoF over the next few seconds?

- Will the voluntary switch be activated in 
the next few timesteps?
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Online Nexting
• General Value Functions.

(Sutton et al., 2011, AAMAS)

• GVFs form questions; “what will happen 
next?” (Nexting; Modayil et al. 2012)

• In brief: instead of reward, learn anticipations 
(expectations of real-valued signals).

• Can learn many temporally extended 
predictions in parallel.
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Why GVFs?

• Thousands of accurate predictions can be 
made and learned in real time (i.e., 10hz)

• A single state representation be used to 
accurately predict many different sensors at 
many different time scales.

• A model-free algorithm that can learn fast 
enough to be useful.

Sutton et al., AAMAS, 2011.
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Multi-timescale Nexting in a Reinforcement Learning Robot, 
Modayil, White, and Sutton. ArXiv preprint 1112.1133, 2012.

http://arxiv.org/abs/1112.1133
http://arxiv.org/abs/1112.1133


Learning Algorithm
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Accurate Anticipations
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Switching Improvement
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Increase in the number of ideal 
switching suggestions (+23%)



Switching Improvement
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Improvement and Error
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Other Interesting Predictions
• Assuming we continue as usual (on-policy):

- What will the force sensor report over 
the next few seconds? (Slippage/gripping.)

- Where will the limb be in the next 30s? 
(Safety; fluid multi-joint motion.)

- How strong will each user EMG signal be 
in 250ms? (User intent; preemptive motion.)

* Address key issues, as per Scheme and Englehart, JRRD, 2011; Peerdeman et al., JRRD, 2011. 
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MyoHand VariPlus Speed
Otto Bock

Toward Complex Interfaces
Prostheses that approach 
and someday exceed the 
abilites of a biological limb.
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Modular Prosthetic Limb
Johns Hopkins University

Toward Complex Interfaces
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Prostheses that approach 
and someday exceed the 
abilites of a biological limb.

?



Toward Complex Interfaces

Huang et al., Ann. 
Biomed. Eng., 37:9 (2009).
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Modular Prosthetic Limb
Johns Hopkins University

?

Prostheses that approach 
and someday exceed the 
abilites of a biological limb.



Three Important Elements
• Real-time machine learning.

(Online, adaptive control algorithms; noted by 
Sensinger et al. ’09, Scheme & Englehart ‘11)

• Generalized interfaces.
(Blank-slate human-machine interaction & 
collaboration; e.g. Pilarski et al. 2011)

• Data-respecting biomedical pattern analysis.
(Complexity is good: interpreting myriad signals 
without reducing the sensorimotor space)
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Summary
• Real-time machine learning can help remove 

barriers to using assistive devices.

• Prediction and anticipation can be used to 
improve control of switchable artificial limbs.

• Results: on-policy nexting enables context-
sensitive, adaptive switching (time savings).

• Big picture: artifical limbs that learn/improve 
through ongoing collaboration with a user.
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Questions

... and thank you very much 
for your attention. 

pilarski@ualberta.ca

http://www.ualberta.ca/~pilarski/
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Discussion Session
• Human training of RL agents.

• Foucs: maintaing policies when rewards are 
sporadic / reducing the need for constant 
reinforcement by the human.


