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(Intelligence Amplification)
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... and, in short order ...



Here I am...
brain the size
of a planet...

Marvin the paranoid android from THHGTTG.



Whole point of this talk:

communicate one research design pattern
fThat can help you tackle
ambitious real-world problems






Never storm a castle through the front gates...
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Direct brain-computer interfaces: study participant Jan Scheuermann feeding herself with a
robotic limb (University of Pittsburgh); http://www.upmc.com/media/media-kit/bci/Pages/default.aspx



http://www.upmc.com/media/media-kit/bci/Pages/default.aspx
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Direct brain-computer interfaces: memory protheses from the Center tor Neural Engineering,
Viterbi School of Engineering. https://cne.usc.edu/neural-prosthesis-for-hippocampal-memory-
function/ and |EEE Trans Neural Syst Rehabil Eng. 2018, 26(2):272-280.



https://cne.usc.edu/neural-prosthesis-for-hippocampal-memory-function/
https://cne.usc.edu/neural-prosthesis-for-hippocampal-memory-function/
https://www.ncbi.nlm.nih.gov/pubmed/28113595#

Brain-body-machine interfaces: “Amputee Makes History with APL's Modular
Prosthetic Limb” (JHU Applied Physics Laboratory); https://youtu.be/ONOncx2]U0Q




Brain-body-machine interfaces: "APL's Modular Prosthetic Limb Reaches New Levels
of Operability” (JHU Applied Physics Laboratory); https://voutu.be/-0srXvOQIuO
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Mobile arm support

Brain-body-machine interfaces: “Restoration of reaching and grasping movements through brain-controlled

muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration™ Ajiboye, A Bolu et al., The
[Lancet, Volume 389 , Issue 10081, 1821-1830, 2017.



Re-wiring the Nerves

TSR: Targeted Sensory Reinnervation

' : \\\ Median n.

Rrcosto-
icNial cut n.

to Medial Biceps

Hebert |S, Olson JL, Morhart M|, Dawson MR, Marasco PD, Kuiken TA, Chan KM, “Novel Targeted Sensory

Reinnervation Technique To Restore Functional Hand Sensation After Transhumeral Amputation,” IEEE
Transactions on Neural Systems and Rehabilitation Engineering, Vol 22, No 4, pages 765-773,2014.



ebert et al. 2014, IEEE-TNSRE



Brain-body-machine interfaces: Baker et al., “Continuous Detection and Decoding of Dexterous
Finger Flexions With Implantable MyoElectric Sensors,” [EEE TNSRE 18(4):424-32, 2010.



Brain-body-machine interfaces: "Brain-Machine Interface @ EPFL- Wheelchair’
(Ecole polytechnigue fédérale de Lausanne); https://youtu.be/0-1sdtnugcE




Commercially Deployed
Pattern Recognition for Prostheses




Muse

Myo (Thalmic Labs)

Consumer-Available BCI and BMI
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http://BLINCdev.ca

These examples
all involve machine intelligence
or machine learning




Machine
Intelligence

Assistive
Machine

Human Body



Would you do frial-and-
error control learning on
all those I/O channels?




Whole point of this talk:

highlight prediction learning



Whole point of this talk:

highlight prediction learning
Qs a foundation
for more advanced control solutions



PREDICTIONS

Momentary.
(e.g., classification decision)

S. Micera, J. Carpaneto, and S. Raspopovic,
“Control of hand prostheses using peripheral
information,” IEEE Rev. Biomed. Eng., 2010.



PREDICTIONS

Momentary. Temporally extended.
(e.g., classification decision) (e.g., expected return)

Sutton et al., “Horde: A Scalable Real-time Architecture for
S. Micera, J. Carpaneto, and S. Raspopovic, Learning Knowledge from Unsupervised Sensorimotor
“Control of hand prostheses using peripheral Interaction,” Proc. of 10th International Conference on
information,” IEEE Rev. Biomed. Eng., 2010. Autonomous Agents and Multiagent Systems (AAMAS), 2011.



PREDICTIONS

Momentary. Temporally extended.
(e.g., classification decision) (e.g., expected return)

Can be acquired or updated in batches or in real time.

Sutton et al., “Horde: A Scalable Real-time Architecture for
S. Micera, J. Carpaneto, and S. Raspopovic, Learning Knowledge from Unsupervised Sensorimotor
“Control of hand prostheses using peripheral Interaction,” Proc. of 10th International Conference on
information,” IEEE Rev. Biomed. Eng., 2010. Autonomous Agents and Multiagent Systems (AAMAS), 2011.



PREDICTION PRECEDES CONTROL

Wolpert et al., Trends Cog Sci 5(11), 2001: “Perspectives and problems in motor learning”
Flanagan et al., Current Biology 13(2), 2003: “Prediction precedes control in motor learning”
Desmurget et al., Science 324(5928), 2009: “Movement intention after parietal cortex stimulation in humans”



GOALS

DECISIONS

Hallmarks of Intelligence:
Artificial, Machine (and Human)



PERCEPTION

PREDICTION

ACTION

Hallmarks of Intelligence:
Artificial, Machine (and Human)



LASER WELDING SYSTEM
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control signal
sensor data

features
Process

Control

Representation

features

knowledge Process

INTELLIGENT Knowledge
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J. Gunther, P. M. Pilarski, G. Helfrich, H. Shen, K. Diepold, “Intelligent Laser Welding through Representation,
Prediction, and Control Learning: An Architecture with Deep Neural Networks and Reinforcement Learning,”
Mechatronics, vol. 34, pp. 1-11, March 2016.



CASE STUDY

human embodiment
of a robot body pari
IS really tricky...

P. M. Pilarski, R. S. Sutton, K. W. Mathewson, C. Sherstan, A. S. R. Parker, A. L. Edwards,
“Communicative Capital for Prosthetic Agents,” arXiv:1711.03676 [cs.Al]: 33 pages, 2017.


https://arxiv.org/abs/1711.03676

University of Alberta: http://blinclab.ca

, https://www.smartnetworkcentre.ca/
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University of Alberta: http://blinclab.ca


http://blinclab.ca

Planning and Meta-learning




Online Human Training of a Myoelectric Prosthesis Controller via
Actor-Critic Reinforcement Learning

Patrick M. Pilarski, Michael R. Dawson, Thomas Degris, Farbod Fahimi, Jason P. Carey, and Richard S. Sutton

Abstract— As a contribution toward the goal of adaptable, _----. . Sl §2, S3, 54|
: : g e e : : . ¢ . 4 EMG INPUTS
intelligent artificial limbs, this work introduces a continuous o
actor-critic reinforcement learning method for optimizing the ARM?;;EE -——w—h—

control of multi-function myoelectric devices. Using a simulated o di

upper-arm robotic prosthesis, we demonstrate how it is possible M+
to derive successful limb controllers from myoelectric data
using only a sparse human-delivered training signal, without
requiring detailed knowledge about the task domain. This
reinforcement-based machine learning framework is well suited
for use by both patients and clinical statf, and may be easily
adapted to different application domains and the needs of
individual amputees. To our knowledge, this is the first my-
oelectric control approach that facilitates the online learning of
new amputee-specific motions based only on a one-dimensional
(scalar) feedback signal provided by the user of the prosthesis.
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Planning and Meta-learning




Planning and Meta-learning




Planning and Meta-learning




EXAMPLE O

making predictions
(Nexting In real time)

J. Modayil, A. White, R. S. Sutton, “Multi-timescale Nexting in a Reinforcement Learning
Robot, Adaptive Behavior 22(2), April 2014. pages 146-160.
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P.M. Pilarski, M.R. Dawson, T. Degris, J.P. Carey, K.M. Chan, J.S. Hebert, and R.S. Sutton,
“Adaptive Artificial Limbs: A Real-time Approach to Prediction and Anticipation,” IEEE
Robotics & Automation Magazine, Vol. 20(1): 53-64, March 2013.
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P. M. Pilarski, C. Sherstan, “Steps Toward
Knowledgeable Neuroprostheses,”
Proceedings of the 6th IEEE RAS/EMBS
International Conference on Biomedical
Robotics and Biomechatronics (BioRob2016),
June 26-29, 2016, Singapore, pp. 220.

~18k predictions
about bits
learned and made
N real time


https://sites.ualberta.ca/~pilarski/docs/papers/Pilarski_2016_BioRob_preprint.pdf
https://sites.ualberta.ca/~pilarski/docs/papers/Pilarski_2016_BioRob_preprint.pdf
https://sites.ualberta.ca/~pilarski/docs/papers/Pilarski_2016_BioRob_preprint.pdf

=

m
:
'

"?_.'r—.i.



https://sites.ualberta.ca/~pilarski/docs/papers/Pilarski_2016_BioRob_preprint.pdf
https://sites.ualberta.ca/~pilarski/docs/papers/Pilarski_2016_BioRob_preprint.pdf
https://sites.ualberta.ca/~pilarski/docs/papers/Pilarski_2016_BioRob_preprint.pdf

Modular Prosthetic Limb
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J. Gunther, A. Kearney, M. R. Dawson, C. Sherstan, P. M. Pilarski, “Predictions,
Surprise, and Predictions of Surprise in General Value Function Architectures,” Proc.
AAAI 2018 Fall Symposium on Reasoning and Learning in Real-World Systems for
Long-Term Autonomy, Arlington, USA, October 18-20, 2018, pp. 22-29.
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J. Gunther, A. Kearney, N. M. Ady, M. R. Dawson, P. M. Pilarski,
“Meta-learning for Predictive Knowledge Architectures: A Case
Study Using TIDBD on a Sensor-rich Robotic Arm,” Proc. of the
18th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2019), Montreal, Canada, May 13-
17, 2019, pp. 1967-19609.

Time Steps

J. Gunther, A. Kearney, M. R. Dawson, C. Sherstan, P. M.
Pilarski, “Predictions, Surprise, and Predictions of
Surprise in General Value Function Architectures,” Proc.
AAAl 2018 Fall Symposium on Reasoning and Learning
in Real-World Systems for Long-Term Autonomy,
Arlington, USA, October 18-20, 2018, pp. 22-29.



Whole point of this talk:

say the phrase “Paviovian control”
enough times that you
remember It next week



Pavlovian conftrol involves @
fixed mapping between learned
predictions and confrol actions

J. Modayil and R. S. Sutton, “Prediction Driven Behavior: Learning Predictions
that Drive Fixed Responses,” AAAl Workshop on Al and Robotics, 2014.



EXAMPLE 1|

adaptive switching
(predictions change an intertace)



. Switching Channel

Robot Limb

Human User



il :ﬁ

Adaptive SWitChiﬂg Edwards et al., MEC, 2014
Edwards et al., Prosthetics Orthotics Int., 2015



Predicting the Future
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Pilarski et al., 201 2, BioRob
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Autonomous Switching Edwards et al.. BioRob, 2016



EXAMPLE 2

motor synergies
(predictions as actions)




Amputee

Inactive Joint Selectlon
Active *
Joints {a a
Inactive A
Active i i

Automation

C. Sherstan, J. Modayil, P.M. Pilarski, “A Collaborative Approach to the
Simultaneous Multi-joint Control of a Prosthetic Arm,” Proc. of the 14th
IEEE/RAS-EMBS International Conference on Rehabilitation Robotics
(ICORR), August 11-14, Singapore, 2015, pp. 13-18.

P.M. Pilarski, T.B. Dick, and R.S. Sutton, “Real-time Prediction Learning
for the Simultaneous Actuation of Multiple Prosthetic Joints,” Proc. of
the 2013 IEEE International Conference on Rehabilitation Robotics
(ICORR), Seattle, USA, June 24-26, 2013. 8 pages.

Direct Reactive

Direct Predictive



https://sites.ualberta.ca/~pilarski/docs/papers/Sherstan_2015_ICORR_postprint.pdf
https://sites.ualberta.ca/~pilarski/docs/papers/Sherstan_2015_ICORR_postprint.pdf
https://sites.ualberta.ca/~pilarski/docs/papers/Sherstan_2015_ICORR_postprint.pdf

EXAMPLE 3

communication
(predictions as feedback]
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A. S. R. Parker, A. L. Edwards, P. M. Pilarski,
“Exploring the Impact of Machine-Learned
Predictions on Feedback from an Artificial Limb,”
2019 IEEE-RAS-EMBS International Conference on
Rehabilitation Robotics (ICORR), 24-28 June, 2019,
Toronto, 8 pages.

P. M. Pilarski, A. Butcher, M. Johanson, M. M. Botvinick,
A. Bolt, A. S. R. Parker, “Learned human-agent decision-
making, communication and joint action in a virtual
reality environment,” RLDM 2019 / arXiv:1905.02691
[cs.Al], 5 pages, 2019.



G. Vasan, “Teaching a Powered Prosthetic Arm with an Intact Arm Using Reinforcement
Learning,” MSc Thesis, Dept. Computing Science, University of Alberta, 2017.



Machine
Intelligence

Assistive
Machine

Human Body



= Useiblics.

Exoskeletons: UC Berkeley spin-off suitX exoskeleton technology;
https://www.youtube.com/watch?v=I13roYI3CB2Y




Machine
Intelligence

Human Mind

Perception
Action
Cognition







#ConsitructivistAGl



Whole point of this talk:

was to keep you awake
with cool videos long enough
fo hear Rich’s talk




Whole point of this talk:

or think about Intelligence Amplification
as the grand challenge
for DL and RL



Whole point of this talk:

or maybe just that “prediction then control”
research pattern we talked about earlier.
either way, all good.



Start with prediction.
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