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Abstract

Although state-of-the-art myoelectric prostheses offer persons with upper limb
amputation extensive movement capabilities, users have not been afforded a
reliable means to control common movements required in daily living. Many pro-
posed prosthesis controllers use pattern recognition, a method that learns and
recognizes patterns of electromyographic (EMG) signals produced by the user’s
residual limb muscles to predict and execute device movements. Such control
becomes unreliable in high limb positions—a problem known as the limb position
effect. Pattern recognition often uses a classification algorithm; simple to imple-
ment, but limits user-initiated control to only one device movement at a time, at
a single speed. To combat position-related control deficiencies and classification
controller constraints, we developed and tested two recurrent convolutional neural
network (RCNN) pattern recognition-based solutions: (1) an RCNN classification
controller that uses EMG plus positional inertial measurement unit (IMU) sig-
nals to offer one-speed, sequential movement control; and (2) an RCNN regression
controller that uses the same data capture technique to offer simultaneous control
of multiple movements and device movement velocity. We assessed both RCNN
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controllers by comparing them to a commonly used linear discriminant analysis
classification controller (LDA-Baseline). Participants without upper limb impair-
ment were recruited to perform multipositional tasks while wearing a simulated
prosthesis. Both RCNN classification and regression controllers showed improved
functional task performance over LDA-Baseline, in 11 and 38 out of 115 metrics,
respectively. This work contributes an RCNN regression-based controller that
provides accurate, simultaneous, and proportional movements to EMG-based
technologies including prostheses, exoskeletons, and even muscle-activated video
games.

Keywords: myoelectric prosthesis control, recurrent convolutional neural networks,
electromyography, limb position effect, classification, regression

1 Introduction

Despite the functional capabilities offered by state-of-the-art myoelectric prostheses
for use by those with transradial (below elbow) amputation, users report that these
modern devices are challenging to control and offer unnatural movement qualities [1, 2].
In response to user and clinical feedback, ongoing research aims to improve overall
device usability, with an emphasis on control reliability [3]. Pattern recognition is a
control method that has garnered much focus in upper limb prosthesis research [4].
With such control, electromyographic (EMG) signals generated in the residual limb
musculature of a user are captured by device socket electrodes, and then interpreted
by a controller to predict and execute the user’s intended movements. Simply stated,
a prosthetic limb moves in response to muscles deliberately contracted by its user, as
coordinated by a control algorithm.

Most advanced pattern recognition-based controllers tend to use a classification
algorithm [5], which predicts one device action (or class) at a time [4]. The result-
ing prosthetic limb movements, consequently, appear sequential (robot-like) and are
delivered at a pre-set speed—for instance, a device that offers wrist and hand capabil-
ities cannot inherently move these components simultaneously or with varied velocity.
Another control alternative uses a regression algorithm. This approach can predict
multiple device movements at once, each of which are proportional to muscle con-
traction intensity. The outcome from this approach is that users can control their
prosthetic wrist and hand more intuitively and in a smooth manner using varied
velocities throughout reaching and grasping actions [4].

Whether a classification or regression algorithm (known as a model) is used for
control, pattern recognition-based prosthesis movement predictions are contingent on
earlier-captured movement data. Prior to device use, a prosthesis user must perform
a series of predetermined muscle contractions using their residual limb—known as
a training routine [6]. Through training, patterns observed in the captured muscle
signals are associated with corresponding device actions. A training routine should
not take an excessive amount of time, particularly if it must be executed to recalibrate
control during prosthesis use. Indeed, user feedback surveys report that above all else

2

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 8, 2024. ; https://doi.org/10.1101/2024.02.05.578477doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.05.578477


(even above improved control), upper limb prosthesis users want quick-setup control
solutions [7, 8].

Classification control is often employed in prosthesis research for a number of rea-
sons: (1) it can reliably predict discrete hand and wrist classes, which reduces model
complexity [3]; (2) its simpler model form can yield fewer errors versus complex ones
[3, 9]; and (3) its model training routines only require execution of static muscle con-
tractions [10], making them straightforward to develop and quick to administer. Still,
predicted movement errors are known to occur with classification control, particularly
during transitions between hand and wrist classes [10]. Alternatively, regression con-
trol’s main advantage is that it offers the potential for fluid prosthetic wrist/hand
movements, even during transitions [3]. To achieve such fluidity, however, users must
execute complex training routines that require dynamic elicitation of EMG signals with
varying intensities. Choosing classification- over regression-based control evidently
comes with a trade-off: movement reliability and model simplicity, over movement
fluidity.

Control reliability remains a research goal, particularly as a problem known as the
“limb position effect” critically impedes device reliability [11–14]. Here, surface EMG
signals change when a prosthesis or other wearable device is used in untrained limb
positions. It has been established that when the physical conditions for pre-training
and training are dissimilar, muscle coactivation patterns can be introduced during
limb movements and incorrect decoding of a user’s intent can result [11]. Muscle coac-
tivations are introduced even among those without amputation, normally evidenced
in high limb positions [9, 11]. The limb position reliability implications to prosthesis
control are well acknowledged, yet remain largely unsolved [15]. To definitively solve
it, a control model would have to be trained in every conceivable limb position, but
in doing so would require an excessively long training time. Instead, training routines
performed in selected low, midway, and high positions have been introduced to com-
bat the limb position effect problem, with their models yielding statistically significant
control improvements [12].

Researchers have also begun to add positional sensors (worn on users’ residual limbs
during model training and testing) to address the problem, and have found that inertial
measurement units (IMUs) can capture pertinent limb position data [12, 14, 16–18].
Our earlier work built upon this finding and successfully combined EMG and IMU
data to train deep learning pattern recognition-based controllers [9]. Specifically, we
developed a new type of recurrent convolutional neural network (RCNN), intended for
upper limb prosthesis control. RCNNs are a network architecture for deep learning,
capable of learning directly from data and handling large amounts of multimodal data
[19, 20]. This makes them well-suited for training with EMG and IMU data from
multiple limb positions, without requiring researchers to supply engineered features—
instead, features are learned [21–23]. RCNNs have also proven to be advantageous as
they can handle the intrinsic time-varying nature of muscle signals [24]. Our work
capitalized on these benefits and established that position-aware RCNN controllers
show promise towards mitigating the limb position effect [9]; as corroborated by our
research that focused on the movements of participants without limb difference [9, 25–
27].
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Our body of control research led us to consider whether a more advanced RCNN-
based classification and/or RCNN-based regression controller could offer improved
control and functionality over earlier pattern recognition-based approaches that
focused on reliability and ease-of-implementation at the expense of movement fluid-
ity. We aimed to recommend an RCNN-based controller that uses EMG and IMU
sources of movement/positional data to effectively mitigate the limb position effect.
Solving this prevalent EMG-based device control problem would make inroads towards
acceptance of future control solutions—by rehabilitation clinicians and users alike.

In the work presented herein, we investigate whether an RCNN classification con-
troller (RCNN-Class) and/or an RCNN regression controller (RCNN-Reg) might offer
enhanced myoelectric prosthesis control versus a conventional linear discriminant anal-
ysis (LDA) classification counterpart. The latter is commonly used to control upper
limb prostheses, and as such, is often adopted in research as a baseline for compar-
ison to other controllers [4, 9]. This work equipped non-disabled participants with a
simulated device, which has been shown to be a reasonable proxy for actual myo-
electric prosthesis use [28]. With the device donned, they trained and tested either
RCNN-Class or RCNN-Reg, along with an LDA baseline controller (LDA-Baseline).
Participants executed functional tasks across multiple limb positions during testing,
with EMG and IMU data collected. Task performance metrics analysis relied on motion
capture data, control characteristics analysis was based on the prosthesis’ motor data,
and participants’ control experiences were gauged from their responses to surveys.
Both RCNN-Class and RCNN-Reg showed improved functional task performance over
LDA-Baseline. RCNN-Reg, however, offers two fundamental control advantages to
users: (1) it mitigates the limb position effect, plus (2) it reliably provides smooth and
simultaneous device movements. Our RCNN regression-based findings contribute to
the body of myoelectric prosthesis control research by presenting a novel and advanced
control approach that provides fluid movements that more closely approximate those
of an intact wrist and hand. What follows are details about this work’s experimental
methods, results, and promising regression-based control outcomes.

2 Methods

2.1 Overview

In this work, we compared two RCNN-based pattern recognition controllers to an
LDA classification controller baseline, which applies probability theory to discover
patterns in EMG data and uses engineered features to inform control [4, 29]. We con-
sidered the control performance offered by: (1) RCNN-Class versus LDA-Baseline, and
(2) RCNN-Reg versus LDA-Baseline. For our investigation, three distinct controller
testing sessions were undertaken, as described below.
A) An RCNN-Class Session (outlined in Figure 1A) required participants to don a
gesture control armband equipped with both EMG and IMU sensors, plus a simulated
prosthesis. While wearing this equipment, participants performed a training routine
that involved static, isotonic forearm muscle contractions in four limb positions (in
doing so, they trained RCNN-Class’s model). After learning how to control the device
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through practice, participants performed functional tasks with motion capture data
recorded.
B) An RCNN-Reg Session (outlined in Figure 1B) required participants to don
the gesture control armband and simulated prosthesis, after which they performed a
training routine that involved dynamic, isotonic forearm muscle contractions in four
limb positions (in doing so, they trained RCNN-Reg’s model). After learning how
to control the device through practice, participants performed functional tasks with
motion capture data recorded.
C) An LDA-Baseline Session (outlined in Figure 1C) also required participants to
don the gesture control armband and simulated prosthesis, after which they performed
a training routine that involved static, isotonic forearm muscle contractions in only one
limb position (in doing so, they trained LDA-Baseline’s model). Notably, this training
routine did not involve muscle contractions in multiple limb positions as required by
the RCNN-based controllers’ models, for three reasons: (1) training in only one limb
position mimics standard prosthesis controller training [6]; (2) the goal of this research
was not to investigate a position-aware LDA-based controller, but rather to investigate
the effectiveness of RCNN-based controllers for mitigating the limb position effect;
and (3) we have previously found position-aware RCNN-based classification to better
mitigate the limb position effect versus position-aware LDA-based classification [16].

Fig. 1 Overview of controller testing sessions: (A) RCNN-Class Session, (B) RCNN-Reg Session, and
(C) LDA-Baseline Session. Note that for all training routine and testing execution, participants wore
a gesture control armband (equipped with EMG and IMU sensors), along with a simulated prosthesis.
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After learning how to control the device through practice, participants performed the
same functional tasks as used with the RCNN-based controller testing, with motion
capture data recorded.

2.2 Participants

A total of 16 participants were recruited for this study. All participants provided
written informed consent, as approved by the University of Alberta Health Research
Ethics Board (Pro00086557). Each participant completed two testing sessions, with an
RCNN-based controller tested in one session and LDA-Baseline tested in the other. A
washout period of at least seven days was included between the two sessions to ensure
that participants forgot details of their first session’s controller. The 16 participants
were split into two groups.

The first group compared RCNN-Class versus LDA-Baseline. Eight partici-
pants were recruited for this group. They had a median age of 25 (range: 22–29) and
median height of 173 cm (range: 167–181 cm), four were male, four were female, and
all were right-handed. One participant had minimal previous experience with EMG
pattern recognition control. Four participants in this group trained and tested RCNN-
Class in their first session, whereas the other four participants trained and tested
LDA-Baseline in their first session. Participants trained and tested the remaining con-
troller in their second session, with a median of 27 days between the first and second
sessions (range: 13–42 days).

The second group compared RCNN-Reg versus LDA-Baseline. Eight partici-
pants were recruited for this group. They had a median age of 24 (range: 19–27) and
median height of 176 cm (161–193 cm), five were male, three were female, seven were
right-handed and one was ambidextrous. No participants had previous experience with
EMG pattern recognition control. Four participants in this group trained and tested
RCNN-Reg in their first session, whereas the other four participants trained and tested
LDA-Baseline in their first session. Participants then trained and tested the remain-
ing controller in their second session, with a median of 17.5 days between the first and
second sessions (range: 7–25 days).

2.3 Muscle Signal Data Collection

2.3.1 Myo Gesture Control Armband

All participants wore a Myo gesture control armband (Thalmic Labs, Kitchener,
Canada – discontinued) over their largest forearm muscle bulk [12], to facilitate cap-
ture of muscle signal data during controller training and testing. The armband was
worn at approximately the upper third of participants’ right forearm, as shown in
Figure 2A (with the top of the armband at a median of 28% of the way down the
forearm from the medial epicondyle to the ulnar styloid process). The Myo armband
contained eight surface electrodes to collect EMG data at a sampling rate of 200 Hz.
It also contained one IMU to collect limb position data (three accelerometer, three
gyroscope, and four quaternion data streams) at 50 Hz. Note that from the IMU, only
the accelerometer data streams were used to ascertain limb position. Myo Connect
software was used to stream and record EMG and IMU data in Matlab.
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Fig. 2 (A) Myo armband on a participant’s forearm; (B) simulated prosthesis on a participant’s
forearm, with labels indicating the sleeve, two pieces of liner, hand brace, distal ring, cushions, wrist
motor, and hand motor; and (C) motion capture markers affixed to the simulated prosthesis, with the
eight motion capture markers that remained attached to the hand circled, and the three additional
individual markers for the ski pose calibration are labelled. Adapted from Williams et al. [27].

2.3.2 Simulated Prosthesis

The simulated prosthesis used in this study was the 3D-printed Modular-Adaptable
Prosthetic Platform (MAPP) [30] (shown in Figure 2B). It was fitted to each par-
ticipant’s right arm, to simulate transradial prosthesis use. The MAPP’s previously-
published design [30] was altered to improve wearer comfort in our study—the distal
ring was made to resemble the oval shape of a wrist and the hand brace was elon-
gated so that the distal ring would sit more proximally on the wearer’s wrist. A
non-proprietary 3D-printed robotic hand [31] was affixed to the MAPP beneath the
participant’s hand. Wrist rotation capabilities were also added to the device. Hand
and wrist movements (that is, with two degrees of freedom) were powered by two
Dynamixel MX Series motors (Robotis Inc., Seoul, South Korea).

After placement of the Myo gesture control armband, participants donned a thin,
protective sleeve. The MAPP was donned over the sleeve and affixed with Velcro
straps. Gel-coated pieces of fabric liner (that is, with thermoplastic elastomer) were
placed inside the MAPP’s distal ring and just above the participant’s elbow to ensure a
comfortable fit. In addition, 3D-printed cushions, made of Ninjaflex Cheetah filament
(Ninjatek, Inc.), were placed throughout the device socket (shown in Figure 2B). The
MAPP was checked for secureness, a visual inspection was performed to ensure that no
components were loose, and a final participant comfort check was conducted verbally.

2.3.3 EMG and Accelerometer Data Processing

The EMG data from the Myo armband were filtered using a high pass filter with a
cutoff frequency of 20 Hz (to remove movement artifacts), as well as a notch filter at
60 Hz (to remove electrical noise). The accelerometer data streams were upsampled
to 200 Hz (using previous neighbour interpolation) to align them with the corre-
sponding EMG data. Data were then segmented into windows (160-millisecond with
a 40-millisecond offset).

7

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 8, 2024. ; https://doi.org/10.1101/2024.02.05.578477doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.05.578477


2.4 Controller Descriptions: Model Architectures, Training
Routines, & Implementation

Each of the RCNN-based controllers and their LDA-Baseline counterpart are described
below. The two RCNN-based controller descriptions include details about its model’s
architecture, training routine, hyperparameters used, and number of weights. LDA-
Baseline’s description includes details about its statistical model implementation,
training routine, features used, and number of coefficients. For each of the RCNN-based
controllers presented, all hyperparameters were determined using Bayesian optimiza-
tion—this includes the number of convolution layers, number of filters, filter size,
pooling size, and early stopping criteria of the model. Each model’s optimization pro-
cess was performed in two steps. First, an initial broad range of values were used
to optimize each hyperparameter. Thereafter, values were refined using a narrower
range, centered at earlier optimized values. Given that each model’s hyperparameters
were optimized separately, their resulting architectures had a unique number of such
with different training durations to achieve their best possible accuracies—that is, the
models did not require the same number of weights nor training times to each achieve
this.

2.4.1 RCNN-Class Controller

Model Architecture—RCNN-Class’s model architecture consisted of 23 layers, as
illustrated in Figure 3A. In this model, a sequence input layer first received and normal-
ized the training data. Then, a sequence folding layer was used, allowing convolution
operations to be performed independently on each window of EMG and accelerometer
data. This was followed by a block of four layers: a 2D convolution, a batch normal-
ization, a rectified linear unit (ReLU), and an average pooling layer. This block of
layers was repeated twice more. Each of the three average pooling layers had a pooling
size of 1x4. A block of three layers followed: a 2D convolution, a batch normalization,
and a ReLU layer. The optimal number of filters in the convolution layers were deter-
mined to be 16, 32, 64, and 8, respectively, and each had a filter window size of 1x4.
The next layers included a sequence unfolding layer (to restore the sequence struc-
ture), a flatten layer, a long short-term memory (LSTM) layer, and a fully connected
layer. Finally, a softmax layer and classification layer yielded the final class predic-
tions. RCNN-Class’s model had a total of 76,482 weights. Note that to prevent model
overfitting, an early stopping patience hyperparameter (criteria) was set. In doing so,
model training would automatically stop when the validation loss (calculated every
50 iterations) increased four times. This overfitting mitigation method chosen for this
control model, is similar to that used in other works [23].
Model Training Routine—Participants followed onscreen instructions, performing
static muscle contractions in five wrist positions (rest, flexion, extension, pronation,
and supination; shown in Figure 1A), for five seconds each. The muscle contractions
were performed twice in four limb positions: arm at side, elbow bent at 90°, arm
straight out in front at 90°, and arm up 45° from vertical (shown in Figure 1A). This
multi-limb-position training routine was similar to those used in other real-time control
studies aiming to mitigate the limb position effect [9, 12, 17]). It took approximately
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Fig. 3 Architecture of (A) RCNN-Class’s model and (B) RCNN-Reg’s model, including the size of
each layer and connections between layers.

200 seconds. The resulting EMG and accelerometer data, plus corresponding classes of
muscle contractions, were used to train RCNN-Class’s model. A median total of 4,836
unique samples (where samples are defined as windows of 8 EMG and 3 accelerometer
channels by 32 time stamps) were used for model training. Model training took a
median of 5,275 iterations (meaning that a total of 25.5 million samples were observed),
which required a median of 104.8 seconds to complete (with computer specifications
detailed in the Control Model Implementation section).

2.4.2 RCNN-Reg Controller

Model Architecture—RCNN-Reg’s model architecture consisted of 18 layers, as
illustrated in Figure 3B. The first layers of this model are a sequence input layer and a
sequence folding layer. These were followed by a block of four layers: a 2D convolution,
a batch normalization, a ReLU, and an average pooling layer. This block of layers
was repeated once more. Each of the two average pooling layers had a pooling size of
1x4. A block of three layers followed: a 2D convolution, a batch normalization, and a
ReLU layer. The optimal number of filters in the convolution layers were determined
to be 64, 32, and 16, respectively, and each had a filter window size of 1x5. The next
layers included a sequence unfolding layer (to restore the sequence structure), a flatten
layer, an LSTM layer, and a fully connected layer. Finally, a regression layer yielded
the final predictions. RCNN-Reg’s model had a total of 140,556 weights. Note that to
prevent model overfitting, an early stopping patience hyperparameter (criteria) was
set. In doing so, model training would automatically stop when the validation loss
(calculated every 50 iterations) increased once.
Model Training Routine—Participants followed onscreen instructions, performing
three types of muscle contractions (shown in Figure 1B):
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1. The wrist was held at rest for five seconds;
2. Dynamic muscle contractions, oscillating five times between full wrist flexion (that

is, with a strong contraction that did not introduce discomfort) and corresponding
full wrist extension; and

3. Dynamic muscle contractions, oscillating five times between full forearm pronation
and full forearm supination.

All such muscle contractions were performed twice in four limb positions: arm
at side, elbow bent at 90°, arm straight out in front at 90°, and arm up 45° from
vertical (shown in Figure 1B). This multi-limb-position routine was developed in our
previous offline research [9] and took approximately 300 seconds. Note that although
this training routine was longer than that used for RCNN-Class, it is comparable
as it allowed the model to be exposed to intermediate points between full muscle
contractions. Rather than employing classes of muscle contractions in this work, two
arrays with values between -1 and 1 were used to represent the flexion-extension and
the pronation-supination degree of freedoms, respectively. For the static rest muscle
contractions, both arrays contained zeros. For the flexion-extension oscillations, the
first array contained sinusoidal values between -1 (representing full flexion) and 1
(representing full extension), and the second array contained zeros. For pronation-
supination oscillations, the first array contained zeros and the second array contained
sinusoidal values between -1 (representing full pronation) and 1 (representing full
supination). The resulting EMG and accelerometer data, plus corresponding values,
were used to train RCNN-Reg’s model. A median total of 7,420 unique samples were
used for model training. Model training took a median of 500 iterations (meaning that
a total of 3.7 million samples were observed), which required a median of 21.4 seconds
to complete.

2.4.3 LDA-Baseline Controller

Model Details—Four commonly used EMG features were chosen for implementation
of this baseline classifier’s model: mean absolute value, waveform length, Willison
amplitude, and zero crossings [32]. These features were calculated for each channel
within each window of EMG data. A pseudo-linear LDA discriminant type was used,
given that columns of zeros were occasionally present in some classes for some features
(including Willison amplitude and zero crossings). LDA-Baseline’s model had a total
of 330 coefficients.
Model Training Routine—Participants followed onscreen instructions, performing
muscle contractions in five wrist positions (shown in Figure 1C), for five seconds each.
The muscle contractions were performed twice, with the participants’ elbow bent at
90° (shown in Figure 1C). This single-position routine mimicked standard myoelectric
prosthesis training [11] and took approximately 50 seconds. The resulting EMG data
and corresponding classes of muscle contractions were used to train LDA-Baseline’s
model. Features calculated from a median total of 1,210 unique samples (where samples
are defined as windows of 8 EMG channels by 32 time stamps) were used for model
training. Model training required a median of 0.7 seconds to complete.
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2.4.4 Control Model Implementation

Each of the three control models implemented in this study was trained using Matlab
software running on a computer with an Intel Core i9-10900K processor (3.70 GHz),
a NVIDIA GeForce RTX 2080 SUPER graphics card with 8GB GDDR6, and 128
GB of RAM. RCNN-Class’s, RCNN-Reg’s, and LDA-Baseline’s models were trained
in median times of 104.8, 21.4, and 0.7 seconds, respectively. After completion of all
model training, the simulated prosthesis was programmatically controlled as follows:

1. Matlab code was written to receive EMG and accelerometer data, from which
the controller predicted intended wrist movements. Note that for RCNN-Reg,
additional code was written to smooth predictions using a moving average filter
(averaging the current prediction with the previous prediction) [9, 33].

2. Matlab code was also written to enable predicted motor instruction transmission
to the device wrist/hand, based on resulting classifications—that is, via brachI/O-
plexus software [34], where received flexion signal data were translated to hand
close, extension to hand open, pronation to move wrist in a counter-clockwise rota-
tion, and supination to move wrist in a clockwise rotation. Note that for RCNN-Reg,
small prediction values were suppressed to 0 as required [9, 35], with a median value
of ±0.05 (range: 0.02–0.1), out of a total signal range of -1 to 1.

3. brachI/Oplexus relayed the corresponding instructions to the simulated prosthesis’
motors. The motor instructions and positions were recorded with a sampling rate
of 50 Hz.

2.5 Simulated Device Control Practice & Testing Eligibility

Recall that for each of the RCNN-Class, RCNN-Reg, and LDA-Baseline testing ses-
sions, participants wore a gesture control armband (equipped with EMG and IMU
sensors), along with a simulated prosthesis. With all such equipment donned and dur-
ing each testing session, participants took part in 40-minute control practice periods.
During this period, they were taught how to operate the simulated prosthesis using
isometric muscle contractions, under three conditions:

1. Controlling the hand open/close while the wrist rotation function was disabled.
They practiced grasping, transporting, and releasing objects at varying heights.

2. Controlling wrist rotation while the hand open/close function was disabled. They
practiced rotating objects at varying heights.

3. Controlling the hand open/close function in concert with the wrist rotation func-
tion. They practiced tasks that involved grasping, transporting, rotating, and
releasing objects at varying heights.

For RCNN-Reg control practice, each of the three conditions also required partic-
ipants to practice controlling device movement velocity (that is, trying to slow down
and speed up device movements). Furthermore, Condition 3 included an opportunity
to practice simultaneous control of the two degrees of freedom (that is, performing
wrist rotation and hand open/close at the same time).
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Following all practice periods, participants were tested to determine whether they
could reliably control the simulated prosthesis. For such testing, two cups were situ-
ated in front of them at two different heights, with a rubber ball in one of the cups.
Participants were asked to pour the ball between the two cups, and instances when
they dropped the ball or a cup were recorded. If participants could not complete at
least 10 pours with a success rate of at least 75% within 10 minutes, the session was
ended, and they were removed from the study. All participants passed this test.

2.6 Motion Capture Setup & Kinematic Calibrations

After participants were deemed eligible for controller testing, the following motion
capture steps were undertaken.
Step 1: Motion Capture Setup—A 10-camera OptiTrack Flex 13 motion capture
system (Natural Point, OR, USA) was used to capture participant movements and
task objects at a sampling rate of 120 Hz. Eight individual markers were placed on
the simulated prosthesis hand, circled in Figure 2C (one on the thumb, one on the
index finger, and the remaining six throughout the back and side of the hand to ensure
reliable rigid body tracking). Rigid marker plates were also placed on each participant’s
right forearm (affixed to the simulated prosthesis socket), upper arm, and thorax, in
accordance with Boser et al.’s cluster-based marker model [36].
Step 2: Kinematic Calibrations—Each participant was required to perform two
kinematics calibrations. As per Boser et al., the first calibration called for partici-
pants to hold an anatomical pose [36], for capture of the relative positions of the hand
markers and motion capture marker plates when wrist rotation and shoulder flex-
ion/extension angles were at 0°. The second calibration required participants to hold
a ski pose [36], for the purpose of refining wrist rotation angles. Here, three additional
individual markers were affixed to the simulated prosthesis, as shown in Figure 2C:

1. One marker placed on the top of the prosthesis’ hand motor, with the device hand
closed

2. One marker placed on the bottom of the prosthesis’ wrist motor, forming a line with
the first marker (to represent the axis about which the wrist rotation occurred)

3. One marker placed on the side of the prosthesis’ wrist motor (to create a second
axis, perpendicular to the axis of wrist rotation)

Upon completion of the two kinematics calibrations, all Step 2 markers were
removed. What remained were only those markers affixed during Step 1 for data
collection purposes.

2.7 Controller Testing

Testing required participants to execute functional tasks that mimicked activities of
daily living across multiple limb positions, with motion capture data and participant
survey results as outputs.
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2.7.1 Functional Task Execution

Motion capture data were collected while participants executed the following func-
tional tasks.
Pasta Box Task (Pasta)—Participants were required to perform three distinct
movements, where they transported a pasta box between a 1st, 2nd, and 3rd location
(a side table and two shelves at varying heights on a cart, including across their mid-
line) [37]. The task setup is shown in Figure 4A. Motion capture markers were placed
on all task objects, as per Valevicius et al. [37]. Participants performed a total of 10
Pasta trials. If participants dropped the pasta box, placed it incorrectly, performed
an incorrect movement sequence, or hit the frame of the task cart, the trial was not
analyzed. Pasta was the first of two functional tasks performed as it was considered
easier.
RCRT—Participants were required to perform three distinct movements using
clothespins. They moved three clothespins between 1st, 2nd, and 3rd locations on hor-
izontal and vertical bars [38]. To simplify trial execution, RCRT was split into RCRT
Up and RCRT Down trials. The task setup for these trails is shown in Figure 4B.
During Up trials, participants moved the three clothespins from the horizontal bar to
the vertical bar, and during Down trials, they moved the clothespins from the vertical
bar to the horizontal bar. A height adjustable cart was set up—with its top surface
height situated at 65 cm below the participant’s right shoulder. This setup ensured
that the top of each participants’ shoulder was aligned with the midpoint between the

Fig. 4 Task setup for (A) Pasta and (B) RCRT Up and Down, including task dimensions. In
panel (A), the 1st, 2nd, and 3rd pasta box locations are labelled. The pasta box movement sequence
is 1st →2nd →3rd →1st locations. In panel (B), the 1st, 2nd, and 3rd clothespin locations on the
horizontal and vertical bars are labelled. The clothespin movement sequences in RCRT Up are hor-
izontal 1st →vertical 1st, horizontal 2nd →vertical 2nd, and horizontal 3rd →vertical 3rd locations.
The clothespin movement sequence in RCRT Down follows the same order, but with each clothespin
moved from vertical to horizontal locations. Adapted from Williams et al. [27].
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top two targets on the vertical bar used in the RCRT Up and Down trials. Motion
capture markers were placed on all task objects, as per our earlier research [26]. Par-
ticipants performed a total of 10 Up trials and 10 Down trials. If participants dropped
a clothespin, placed it incorrectly, or performed an incorrect movement sequence, the
trial was not analyzed. Performance of RCRT Up and Down trials were alternated,
beginning with RCRT Up.

2.7.2 Perceived Control via Participant Survey Administration

At the end of every controller testing session, participants completed two surveys: the
NASA-TLX [39] and a usability survey [40]. The former was administered using the
official NASA-TLX tablet application, where participants scored their device control
workload demand on a continuous rating scale with endpoint anchors of low and high.
The usability survey was administered on paper, where participants marked their
usability scores on a continuous rating scale with endpoint anchors of 0 and 5. In their
second session, participants were not reminded of their survey responses from their
first session.

2.8 Analysis of Controller Testing Data

Statistical data analysis was undertaken after the following steps were completed:
processing of the motion capture data (with some measures estimated); finalization of
estimated measures; task segmentation; and calculation of control assessment metrics.

2.8.1 Motion Capture Data Processing

Motion capture data were cleaned and filtered. As per Valevicius et al. [37], grip
aperture was estimated using the distance between the motion capture markers on the
simulated prosthesis’ index finger and thumb. In addition, a 3D object representing
the simulated prosthesis’ hand was generated using the remaining 6 hand markers, for
the purpose of calculating upcoming metrics [37]. Next, using calculations modified
from Boser et al. [36], wrist rotation angles were estimated using the forearm and hand
markers, whereas shoulder flexion/extension angles were calculated using the upper
arm and thorax motion markers.

2.8.2 Finalization of Grip Aperture and Wrist Rotation Measures

The grip aperture and wrist rotation measures were finalized using data from the sim-
ulated prosthesis’ two motors. As small (yet informative) adjustments in the positions
of these motors may not have been detected by the motion capture cameras, we chose
not to ignore them. First, the positions of the motors were upsampled to 120 Hz using
linear interpolation. Then, the estimated measures were finalized—Grip aperture: the
motion-capture-estimated grip apertures were fitted to a trinomial curve, to facilitate
transforming the hand motor data to final grip aperture measures. Wrist rotation:
the motion-capture-estimated wrist rotation angles were fitted to a binomial curve, to
facilitate transforming the wrist motor data to final wrist rotation angle measures.
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2.8.3 Task Segmentation

The task data were segmented in accordance with Valevicius et al. [37]. For each task,
the data from each trial were first divided into distinct movements 1, 2, and 3 based
on hand velocity and the velocity of the pasta box/clothespins during transport.
Pasta Movements 1, 2, and 3 differentiated between: (1) reaching for the pasta box at
its 1st location, grasping it, transporting it to its 2nd location, releasing it, and moving
their hand back to a home position; (2) reaching for the pasta box at the 2nd location,
grasping it, transporting it to its 3rd location, releasing it, and moving their hand back
to the home position; and (3) reaching for the pasta box at the 3rd location, grasping
it, transporting it back to the 1st location, releasing it, and moving their hand back
to the home position.
RCRT Up Movements 1, 2, and 3 differentiated between: (1) reaching for the 1st

clothespin at its 1st horizontal location, grasping it, transporting it to its 1st vertical
location, releasing it, and moving their hand back to a home position; (2) reaching for
the 2nd clothespin at its 2nd horizontal location, grasping it, transporting it to its 2nd

vertical location, releasing it, and moving their hand back to the home position; and (3)
reaching for the 3rd clothespin at its 3rd horizontal location, grasping it, transporting
it to its 3rd vertical location, releasing it, and moving their hand back to the home
position.
RCRT Down Movements 1, 2, and 3 differentiated between: (1) reaching for the 1st

clothespin at its 1st vertical location, grasping it, transporting it to its 1st horizontal
location, releasing it, and moving their hand back to a home position; (2) reaching for
the 2nd clothespin at its 2nd vertical location, grasping it, transporting it to its 2nd

horizontal location, releasing it, and moving their hand back to the home position; and
(3) reaching for the 3rd clothespin at its 3rd vertical location, grasping it, transporting
it to its 3rd horizontal location, releasing it, and moving their hand back to the home
position.

Then, the data from each of the three movements were further segmented into five
phases of Reach, Grasp, Transport, Release, and Home (note that the Home phase
was not used for data analysis). Finally, two movement segments of Reach-Grasp and
Transport-Release were defined for select metrics analysis. Six final levels for data
analysis resulted: controller (either RCNN-Class, RCNN-Reg, or LDA-Baseline), task
(either Pasta, RCRT Up, or RCRT Down), trial (1–10), movement (1–3), movement
segment (Reach-Grasp or Transport-Release), and phase (Reach, Grasp, Transport,
or Release).

2.8.4 Control Assessment Metrics Calculations

The Suite of Myoelectric Control Evaluation Metrics, introduced in our previous work
[27], were used to compare prosthesis control resulting from RCNN-Class versus LDA-
Baseline and RCNN-Reg versus LDA-Baseline. A summary of these metrics can be
found in Table 1.

To identify occurrences where the limb position effect impeded control, we ana-
lyzed our resulting Control Characteristics metrics from the suite, as outlined in our
previous work [27]—the thresholds used for identification of the limb position effect
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Table 1 Summary of metrics used in this study, including details of whether a smaller or larger
value indicates a control improvement.

remained the same, with the total muscle activity metric eliminated from analysis
thereof. Specifically, this present work’s limb position effect analysis considered trends
across the Control Characteristics metrics’ medians and interquartile ranges (IQRs)
for each task’s three movements, with larger medians and/or larger interquartile ranges
providing evidence of degraded control. Figure 5A illustrates an example where the
limb position effect was identified by the increasing medians and IQRs from move-
ment 1 (in the lowest limb position) to movement 3 (in the highest limb position).
Conversely, Figure 5B illustrates an example where the limb position effect was not
identified.

Finally, to assess whether participants took advantage of RCNN-Reg’s simulta-
neous and proportional velocity control capabilities, we calculated two additional
metrics from recorded motor instructions. To assess whether participants capitalized
on RCNN-Reg’s simultaneous control capabilities, simultaneous wrist-grip move-
ments were calculated—the percent of each phase in which the wrist rotation and the
grip aperture velocities were simultaneously moving. Of note, this metric was only cal-
culated for RCRT Up and RCRT Down tasks (given that wrist rotation movements
were not necessary for Pasta). Furthermore, the metric was only applicable to Reach,
Grasp, and Release phases (given that grip aperture adjustments were not necessary in
Transports). To assess whether participants capitalized on RCNN-Reg’s proportional

16

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 8, 2024. ; https://doi.org/10.1101/2024.02.05.578477doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.05.578477


Fig. 5 Box plots indicating LDA-Baseline number of wrist rotation adjustments in (A) RCRT Down
Grasp and (B) RCRT Down Transport of each task movement (Mvmt). Medians are indicated with
thick lines, and interquartile ranges are indicated with boxes.

velocity control capabilities, instances where velocity fluctuated between 0 and full
speed were counted—as indicated by the percentage of each task in which wrist rota-
tion and grip aperture respectively varied. These two motor-recorded metrics were only
calculated for RCNN-Reg, given that neither simultaneous control nor proportional
velocity control were possible under RCNN-Class or LDA-Baseline alternatives.

2.8.5 Statistical Analysis

To compare control resulting from RCNN-Class versus LDA-Baseline and RCNN-Reg
versus LDA-Baseline, the following statistical analyses were performed using all Task
Performance, Control Characteristics, and User Experience metrics:
For metrics that were analyzed at the phase or movement segment
level—Participants’ results were first averaged across trials and movements. If
results were normally-distributed, a two-factor repeated-measures analysis of variance
(RMANOVA) was conducted using the factors of controller and phase/movement seg-
ment. When the resulting controller effects or controller-phase/movement segment
interactions were deemed significant (that is, when the Greenhouse-Geisser corrected
p value was less than 0.05), pairwise comparisons between the controllers were con-
ducted. If results were not normally-distributed, the Friedman test was conducted.
When the resulting p value was less than 0.05, pairwise comparisons between the con-
trollers were conducted. Pairwise comparisons (t-test/Wilcoxon sign rank test) were
deemed significant if the p value was less than 0.05.
For metrics that were analyzed at the trial level—Participants’ results were first
averaged across trials, then pairwise comparisons were conducted as detailed above.
For metrics that were analyzed at the task or controller level—Pairwise
comparisons were conducted as detailed above.
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One participant’s data were not included in this study’s statistical analysis. That
participant experienced difficulties with LDA-Baseline control in their second test-
ing session (comparing RCNN-Reg versus LDA-Baseline). Although they passed their
practice test, they only completed three error-free trials of Pasta and were unable
to complete any error-free trials of RCRT Up or Down. Consequently, their data
stemming from all controller testing sessions were excluded from analysis.

3 Results

The Suite of Myoelectric Control Evaluation Metrics [27] was used in this com-
parative controller study. The suite includes three broad categories of metrics: task
performance, control characteristics, and user experience. Through an analysis of
these metrics, numerous control findings were uncovered. These findings included
identification of significant improvements in RCNN-based controller performance
over LDA-Baseline, metrics-substantiated evidence of the limb position effect, indi-
cations that prosthesis control improvements in high limb positions can be offered
by RCNN-based controllers, and that RCNN-Reg’s simultaneous and proportional
velocity control capabilities yield overall improved device performance.

3.1 Significant Differences between RCNN-based Controllers
and LDA-Baseline

Instances of significant improvements for RCNN-based control over LDA-Baseline are
summarized in Figure 6—48 Task Performance and 67 Control Characteristics metrics
for Pasta, RCRT Up, and RCRT Down tasks are presented. Here, 11 out of 115
metrics showed significant controller performance improvement by RCNN-Class over
LDA-Baseline, and 38 out of 115 metrics showed significant controller performance
improvements by RCNN-Reg versus LDA-Baseline. No significant differences between
controllers were identified in User Experience metrics. All controller comparison results
can be found in Appendix A.

Two examples are presented below to illustrate controller outcomes during move-
ments in high limb positions. One example presents a discrete metric, the other
presents a continuous metric. Note that the LDA-Baseline results presented in these
examples vary slightly between RCNN-Class versus LDA-Baseline and RCNN-Reg
versus LDA-Baseline, because they are specific to two different groups of participants.

3.2 Discrete Metric Example: Number of Grip Aperture
Adjustments

To understand whether participants altered their device control behaviour when using
the simulated prosthesis in high limb positions, the Number of Grip Aperture Adjust-
ments made by a participant in RCRT Down Grasp phases were analyzed (an example
of which is presented in Figure 7). Figure 7A illustrates the median number of such
adjustments for RCNN-Class versus LDA-Baseline and for RCNN-Reg versus LDA-
Baseline, with significant differences identified only between the latter. To further
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understand differences between RCNN-Reg versus LDA-Baseline, grip aperture exam-
ples from the same participant using RCNN-Reg and LDA-Baseline control were
analyzed (with Movement 3, which was at a high limb position and therefore where
control was most difficult, presented in Figure 7B and 7C, respectively). In subplots
7B and 7C, the Grasp phases are highlighted, grip aperture adjustments in these
phases are identified, and these adjustments are tallied. Notably, only one grip aper-
ture adjustment was identified in the RCNN-Reg example (Figure 7B) whereas five
grip aperture adjustments were identified in the LDA-Baseline example (Figure 7C).
Evidently fewer adjustments were required under RCNN-Reg control.

3.3 Continuous Metric Example: Grip Aperture Plateaus

To further understand whether participants altered their device control behaviour
when using the simulated prosthesis in high limb positions, Grip Aperture Plateaus
of a participant in RCRT Down Reach-Grasp movement segments were analyzed (an
example of which is presented in Figure 8). Figure 8A illustrates the median plateaus
for RCNN-Class versus LDA-Baseline and for RCNN-Reg versus LDA-Baseline, with
significant differences identified only between the latter. To further understand dif-
ferences between RCNN-Reg versus LDA-Baseline, grip aperture examples from the
same participant using RCNN-Reg and LDA-Baseline control were analyzed (with
Movement 3, which was at a high limb position and therefore where control was most
difficult, presented in Figure 8B and 8C, respectively). In subplots 8B and 8C, Grip
Aperture Plateaus are highlighted, and these plateaus are summed. Notably, only a
0.86 s plateau was identified in the RCNN-Reg example (Figure 8B) whereas a 2.61
s plateau was identified in the LDA-Baseline example (Figure 8C). Evidently more
natural movements resulted under RCNN-Reg control.

Fig. 6 Number of significant differences between RCNN-Class versus LDA-Baseline and RCNN-Reg
versus LDA-Baseline in Task Performance and Control Characteristics metrics. An average tally of
performance improvement results is presented per task.
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3.4 Metrics-Substantiated Evidence of Limb Position Effect

LDA-Baseline—Under LDA-Baseline control, a total of 13 instances of the limb
position effect were identified in Pasta and RCRT Down tasks’ Control Characteristics
metrics. During Pasta execution, the following instances confirmed the limb position
effect problem: in 1 of 4 metrics in Reach, 1 of 1 metric in Reach-Grasp, 4 of 4 metrics
in Grasp, 2 of 4 metrics in Transport, and 2 of 3 metrics in Release. During RCRT
Down execution, 3 of 4 metrics in Grasp showed evidence of the limb position effect
problem (one of which is illustrated in Figure 5A). Notably, the limb position effect
was not identified in RCRT Up under LDA-Baseline control.
RCNN-based Controllers—The limb position effect was never identified under
RCNN-Class or RCNN-Reg control, suggesting that both such controllers might have
mitigated the limb position effect.

3.5 RCNN-Reg Simultaneous and Proportional Velocity
Control Capabilities

Participants in this study took advantage of the simultaneous and proportional velocity
control capabilities offered by RCNN-Reg. Figure 9A illustrates simultaneous con-
trol use in Reach, Grasp, and Release phases of RCNN-Reg in RCRT Up and Down
tasks. Figure 9B illustrates proportional velocity control use of grip aperture and wrist
rotation using RCNN-Reg in all three tasks.

Fig. 7 (A) Median Number of Grip Aperture Adjustments in RCRT Down Grasp phases, comparing
RCNN-Class versus LDA-Baseline and RCNN-Reg versus LDA-Baseline, with interquartile ranges
indicated with boxes and significant differences indicated with asterisks (*** indicates p < 0.05); (B)
grip aperture in Movement 3 of one trial under RCNN-Reg Control from a participant; and (C) grip
aperture in Movement 3 of the one trial under LDA-Baseline Control from the same participant as
panel B. The Grasp phases in panels B and C are highlighted in grey and each Grasp phase grip
aperture adjustment is identified with a red line.
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Fig. 8 (A) Median Grip Aperture Plateaus in RCRT Down Reach-Grasp movement segments, com-
paring RCNN-Class versus LDA-Baseline and RCNN-Reg versus LDA-Baseline, with interquartile
ranges indicated with boxes and significant differences indicated with asterisks (*** indicates p <
0.05); (B) grip aperture in Movement 3 of one trial under RCNN-Reg Control from a participant;
and (C) grip aperture in Movement 3 of the one trial under LDA-Baseline Control from the same
participant as panel B. The Grip Aperture Plateaus are identified with red shading.

Fig. 9 (A) The median percentage of each Reach, Grasp, and Release phase of RCRT Up and Down
where grip aperture and wrist rotation were simultaneously controlled using RCNN-Reg, and (B)
the median percentage of each trial where grip aperture and wrist rotation were each controlled at a
velocity between no movement and maximum velocity.

4 Discussion

In this work, RCNN control using either classification (RCNN-Class) or regression
(RCNN-Reg), versus LDA-Baseline classification control were compared. Analysis of
comprehensive myoelectric control evaluation metrics [27] yielded rich, limb-position-
related outcomes. What follows is a discussion about such outcomes, with a focus
on understanding control challenges experienced during participants’ execution of the
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Pasta Box Task (Pasta) and the Refined Clothespin Relocation Test (RCRT Up and
RCRT Down).

The first major finding from this comparative controller research study is that
RCNN-Reg offers more accurate and position-aware prosthesis control versus LDA-
Baseline. This assertion is evidenced by four key findings:

• RCNN-Reg performed significantly better than LDA-Baseline in 38 control evalua-
tion metrics.

• Fifteen of these 38 metrics were in the specific phases where instances of the limb
position effect occurred (that is, in all phases of the Pasta functional task, and
Grasp phases of RCRT Down task). As such, RCNN-Reg successfully mitigated
these instances of the limb position effect.

• Furthermore, RCNN-Reg performed significantly better than LDA-Baseline in every
phase of each functional task performed in this study. Given this, RCNN-Reg can
be said to provide accurate control under a variety of limb positions.

• Finally, RCNN-Reg performed significantly better than LDA-Baseline in 12 Pasta
task metrics. Recall that this task requires limb positions not included in RCNN-
Reg model’s training routine (that is, cross-body and away-from-body movements).
This suggests that RCNN-Reg can maintain its predictive movement accuracy in
limb positions for which it is not specifically trained.

A second major takeaway from this study is that RCNN-Reg likely offers more
accurate control as compared to RCNN-Class. Although RCNN-Reg and RCNN-Class
were not directly compared in this work to respect participants’ time, their respec-
tive number of significant improvements over LDA-Baseline can be compared to offer
evidence of this conclusion:

• In the Pasta task, RCNN-Class was significantly better than LDA-Baseline in 1
metric and RCNN-Reg was significantly better than LDA-Baseline in 12 metrics
→RCNN-Reg yielded 11 more control improvement instances.

• In RCRT Up, RCNN-Class was never significantly better than LDA-Baseline,
whereas RCNN-Reg was significantly better than LDA-Baseline in 14 metrics
→RCNN-Reg yielded 14 more control improvement instances.

• In RCRT Down, RCNN-Class was significantly better than LDA-Baseline in 10
metrics and RCNN-Reg was significantly better than LDA-Baseline in 12 metrics
→RCNN-Reg yielded 2 more control improvement instances.

A third major finding from this work is that RCNN-Reg offers more natural func-
tionality versus LDA-Baseline or even RCNN-Class. RCNN-Reg affords users the
ability to control multiple device movements at a given time (such as those of the wrist
and hand), and to control device movement velocity. It is recognized in the literature
that regression-based myoelectric control is natural and flexible—device functions can
be accessed in combination, with their velocities being independently controlled [41].
This work examined whether participants took advantage of these control capabilities,
as offered by RCNN-Reg. The following two observations were uncovered:
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• Participants did take advantage of simultaneous control. Under RCNN-Reg control,
simultaneous movements during task execution were indeed evidenced (see Figure
9A).

• Participants also took advantage of movement velocity control capabilities. Under
RCNN-Reg control, mid-velocity hand and wrist movements were evidenced during
task execution (that is, velocities ranging between no movement and maximum
velocity were found; see Figure 9B).

Despite the improved control outcome takeaways, particularly as offered by RCNN-
Reg, no significant differences between controllers under investigation were identified
in the NASA-TLX and usability surveys. Interestingly, though not statistically sig-
nificant, participants did rate the mental demand required of RCNN-Reg to be high
(see Appendix A). Mental demand had the largest difference between RCNN-Reg and
LDA-Baseline scores, in comparison to all survey dimensions. This outcome aligns
with the notion that progressive learning needs to be allocated for complicated hand-
tasks, given that such tasks are mentally demanding [41]. As RCNN-Reg control offers
both simultaneous and velocity control capabilities, it is reasonable to assume that
introducing a revised and perhaps longer, progressive learning approach during con-
troller practice sessions will improve users’ appreciation of these improvements. Our
earlier research, which employed the same surveys, offered other important consider-
ations—that users’ perceptions of poor or diminished control between sessions might
change over time, and that reminders of earlier session control perceptions would have
helped to establish first-session anchor scores [42]. This work concurs with these con-
siderations and recommends that the Prosthesis Task Load Index (PROS-TLX) [43]
be considered in future comparative prosthesis control research.

It is understood in the literature that two key factors influence user-assessments
of upper limb prosthetic devices (hands in particular)—intuitive control experiences
and minimal burden placed on the user (including training burden) [7, 8]. This study’s
RCNN-Reg offered control improvements over RCNN-Class and LDA-Baseline but
required longer training routines (training routine durations of 300, 200, and 50 sec-
onds, respectively). It is worth noting that improved control should not come at the
cost of a burdensome training routine, as the latter will overshadow users’ perceptions
of control benefits [10]. The longer training routine required of RCNN-Reg, therefore,
must not be ignored despite the users’ benefits of simultaneous control over multiple
degrees of freedom and movement velocity control. It is recommended that routines
based on continuous hand movements be streamlined, to make model training less of
a burden for users. In addition, transfer learning methods should be explored as a
means of minimizing training burden introduced by RCNN-Reg [26].

This current study’s RCNN-Reg success is believed to be largely due to how
the training routine was implemented (despite its length) and how the prediction
smoothing was undertaken. Participants followed on-screen sinusoids during training,
to ensure that they executed well-paced continuous wrist and hand motions. This
on-screen method kept them engaged and focused throughout all multi-limb-position
training. Routine implementation methods are important, given that successfully
training a control model in multiple limb positions is known to improve prosthesis con-
trol [12, 44, 45]. Along with use of an engaging multi-limb-position training method,
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prediction smoothing was rigorously undertaken in this study. It is recognized that
smoothing a continuous model’s output, including that from RCNN-Reg, can improve
model stability [46]. So together, the model training and prediction smoothing meth-
ods used in this work were key factors in RCNN-Reg’s performance success, its ability
to mitigate the limb position effect, and its capacity to offer simultaneous wrist/hand
movements with variable velocity.

Future work should build upon the regression-based control successes uncovered
in this study, including: introducing simultaneous wrist and hand movements to the
model training routine; extending model training and testing to offer more degrees of
freedom; averaging three or more predictions (rather than two, as used in this work)
to potentially improve prediction smoothing; and investigating the window size and
overlap used in data processing (given that RCNN-based models are not yet the norm
in prosthesis control). Finally, to corroborate our finding that the limb position effect
can indeed be mitigated, future control model training and testing should be conducted
by persons with amputation.

5 Conclusion

This work contributes to upper limb myoelectric prosthesis research by offering a novel
regression-based controller that employs deep learning methods. The controller pro-
vides both simultaneous control of multiple device movements at a given time and
control over device movement velocity, across numerous limb positions—capabilities
much closer to the fluid movements of an intact wrist and hand. In this study, an
RCNN classification controller and an RCNN regression controller were each com-
pared to a commonly used LDA classification (baseline) alternative. Of these, the
regression-based approach offered the most reliable and fluid prosthetic wrist/hand
movements. Offering such position-aware control, however, required a training rou-
tine that was longer than that of baseline pattern recognition, and therefore could
be considered burdensome to the user. Nevertheless, regression-based solutions should
continue to be investigated in future RCNN control studies, as we expect newer mod-
els to yield similarly smooth and natural wrist and hand movements. We recommend
that model architectures be reimagined, training routines be altered to include simul-
taneous wrist and hand movements, and that transfer learning methods be applied to
minimize training burden. Given that RCNN regression-based control considers the
complex and dynamic process of a wrist and hand functioning in concert with varied
velocities, we recognize this as a promising direction for myoelectric upper limb device
control that satisfies user needs and wants. As such, next-step testing and validation of
RCNN regression-based control should include persons with transradial amputation,
to confirm the validity of our proposed controller’s benefits. Finally, as EMG-based
controllers are not restricted to upper limb prosthesis applications, this research has
far-reaching implications—towards use in rehabilitation exoskeletons and even EMG-
activated video games. When the limb position effect is solved, acceptance of future
device movement technologies by clinicians and users should become a reality.
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Appendix A Detailed Controller Comparison
Results

This appendix outlines results for both controller comparisons, all three tasks, and
in all three groups of metrics (Task Performance, Control Characteristics, and User
Experience). The two controller comparisons are as follows:

• The recurrent convolutional neural network classification controller (RCNN-Class)
versus the linear discriminant analysis baseline classification control (LDA-Baseline)

• The recurrent convolutional neural network regression controller (RCNN-Reg)
versus LDA-Baseline

The controller comparison results are detailed in the three tables below—one table
for each group of metrics. Each table displays the median within-participant differences
between the controllers in question, calculated as RCNN-Class minus LDA-Baseline or
RCNN-Reg minus LDA-Baseline. Interquartile ranges of these differences are presented
in parentheses. Green cells indicate metrics in which RCNN-Class or RCNN-Reg per-
formed significantly better than LDA-Baseline (p ¡ 0.05). Grey cells indicate instances
where a metric was not relevant. Dark cell borders indicate metrics that displayed
evidence of the limb position effect under LDA-Baseline control.

Table A1 Task Performance Results
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Table A2 Control Characteristics Results

Table A3 User Experience Results
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