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Abstract

Upper limb robotic (myoelectric) prostheses are technologically advanced, but challenging

to use. In response, substantial research is being done to develop person-specific prosthe-

sis controllers that can predict a user’s intended movements. Most studies that test and

compare new controllers rely on simple assessment measures such as task scores (e.g.,

number of objects moved across a barrier) or duration-based measures (e.g., overall task

completion time). These assessment measures, however, fail to capture valuable details

about: the quality of device arm movements; whether these movements match users’ inten-

tions; the timing of specific wrist and hand control functions; and users’ opinions regarding

overall device reliability and controller training requirements. In this work, we present a com-

prehensive and novel suite of myoelectric prosthesis control evaluation metrics that better

facilitates analysis of device movement details—spanning measures of task performance,

control characteristics, and user experience. As a case example of their use and research

viability, we applied these metrics in real-time control experimentation. Here, eight partici-

pants without upper limb impairment compared device control offered by a deep learning-

based controller (recurrent convolutional neural network-based classification with transfer

learning, or RCNN-TL) to that of a commonly used controller (linear discriminant analysis, or

LDA). The participants wore a simulated prosthesis and performed complex functional tasks

across multiple limb positions. Analysis resulting from our suite of metrics identified 16

instances of a user-facing problem known as the “limb position effect”. We determined that

RCNN-TL performed the same as or significantly better than LDA in four such problem

instances. We also confirmed that transfer learning can minimize user training burden.

Overall, this study contributes a multifaceted new suite of control evaluation metrics, along

with a guide to their application, for use in research and testing of myoelectric controllers

today, and potentially for use in broader rehabilitation technologies of the future.
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Introduction

Below elbow (transradial) is the most prevalent of major upper limb amputations [1]. A myo-

electric prosthesis offers a means of restoring complex limb function to those with transradial

amputation, ideally across a wide range of arm positions [2]. Conventional myoelectric device

control is based on electromyography (EMG) [3]. Here, signals are typically detected by sur-

face electrodes that are housed within a donned prosthesis socket and then transmitted to the

device’s onboard controller. The controller decodes user-specific muscle contractions and

sends corresponding instructions to appropriate prosthesis wrist and hand motors.

Myoelectric prostheses that employ pattern recognition offer predictive device control that

is capable of learning a user’s intended movements [4, 5]. Despite the potential of such

machine learning-based control solutions, device performance challenges persist for users,

particularly when various limb positions are necessary [6]. In these instances, EMG signals

change due to gravity, supplemental muscle activities, and electrode shifts resulting from

changes in muscle topology [7]. Resulting control can be unpredictable and therefore frustrat-

ing for users [6]. This control challenge is well documented and referred to as the “limb posi-

tion effect” [7]. Several pattern recognition-based control methods have been investigated to

minimize the limb position effect [8–22]. These methods require a user to perform a training

routine across multiple limb positions, prior to daily device use. A training routine involves

execution of a specific sequence of forearm muscle contractions. EMG signals resulting from

the muscle contractions are captured for use by the device controller’s model. The model

learns to recognize various patterns of consistent and repeated muscle signal features [4],

including patterns involved in wrist rotation and hand open/close. Learned features are subse-

quently classified during device use, with classifications informing motor instructions.

Inertial measurement unit (IMU) data can provide a classification control model with addi-

tional and informative limb position-related data [7, 23]. Deep learning control methods, such

as recurrent convolutional neural networks (RCNNs), can combine high volumes of EMG and

IMU data from multiple limb positions. However, to capture all required muscle and limb

position data (in low to high arm positions), lengthy and burdensome training routines must

be performed by users [2, 24, 25]. Control model retraining is also required in instances when

device control degrades, such as due to muscle fatigue or electrode shifts. The overall training

burden poses drawbacks to position-aware myoelectric control methods.

Our earlier study uncovered that the addition of transfer learning (TL) can alleviate the

training burden necessitated by data intensive RCNN-based solutions [26]. In this previous

work, an RCNN classification control model (classifier) was trained using a large dataset of

EMG and IMU signals obtained from numerous individuals with intact upper limbs, to

become the starting point of new users’ control. Each new user required a reduced amount of

personal data for training thereafter. To test control, participants wearing a simulated prosthe-

sis [27, 28] performed two functional tasks: the Pasta Box Task [29] and the Refined Clothespin

Relocation Test [30]. Control assessments were based on metrics established in the literature

[27–29, 31, 32]. This research showed that RCNN-based classification control with TL reduces

training burden and offers a control solution with a tendency towards better functional task

performance across multiple limb positions (versus a linear discriminant analysis, or LDA,

classification controller). Interestingly, the research also identified possible instances of the

limb position effect during high grasping movements, however it was noted that more detailed

measures of control were needed to confirm this [26]. As a corollary to the TL-based findings

resulting from this work, metrics deficiencies were uncovered—control characteristics out-

comes evidenced during task performance could not be fully understood, and user-reported

control experiences were not considered [26].
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Without question, our earlier work identified important omissions in the collective of met-

rics commonly used for prosthesis control appraisal, even amongst those of established task-

based assessments meant to mimic activities of daily living. Such functional assessments

include the Box and Blocks Test [33], Jebsen-Taylor Hand Function Test [34], Activities Mea-

sure for Upper Limb Amputees [35], Southampton Hand Assessment Procedure [36], and

Assessment of Capacity for Myoelectric Control [37, 38]. These assessments typically require

users to interact with a variety of objects (e.g., grasp, move, rotate, release of objects), but the

scores used to summarize arm function are limited—either based on task completion dura-

tions [34, 36], number of objects moved [33], or a trained rater’s assessment [35, 37, 38]. Such

scores cannot yield a complete understanding of the quality of participants’ hand, wrist, and

arm movements [29]. Furthermore, they cannot adequately characterize the nature of device

control, such as the identification of unnecessary grip aperture adjustments [26]. Even a

recently introduced take-home assessment method left researchers unable to distinguish how

available grips were used and how the effects of usage conditions affected control [39]. For all

such reasons, we determined that RCNN-based classification control with TL (RCNN-TL) not

be judged in future work by task performance alone, but rather, that control characteristics

also be considered. Then collectively, the task performance and control characteristics can be

weighed against subjective user experience, to provide a full complement of data-driven pros-

thesis control outcomes.

This current work re-examines RCNN-TL control through the lens of comprehensive

assessment metrics. As a primary contribution, it introduces a novel suite of metrics that aims

to address the issue of inconclusive myoelectric controller assessment outcomes. The suite

includes three broad categories of metrics: task performance, control characteristics, and

user experience. As a secondary contribution, this work showcases the use and thoroughness

of the suite by deploying these metrics to reinvestigate our earlier controller research findings

[26]—examining whether RCNN-TL can indeed reduce training burden, offer improved

device control over a comparative LDA baseline classification controller (LDA-Baseline), and

if instances of the limb position effect can be pinpointed. In using the suite of metrics, this

work provides a data-driven understanding of when and why TL-based neural network control

solutions show great promise towards solving the limb position effect challenge. It is expected

that the suite introduced by this research will guide future rehabilitation device control

experimentation.

What follows is a presentation of our collective of metrics, an overview of our reinvestiga-

tion research, and a detailed presentation of its methods, results, discussion, and conclusion.

Introducing the suite of myoelectric control evaluation metrics

Performance-based assessments for the evaluation of real-time upper limb prosthesis control

often require participants to either move a virtual arm to a target posture or a cursor to a target

position, by performing appropriate muscle contractions in their residual limb [8, 14, 40–50].

For example, a virtual arm is presented on a computer screen in the Target Achievement Con-

trol test [51], and a cursor is presented on-screen in Fitts’ Law tests [52]. EMG sensors placed

on participants’ limbs record the corresponding muscle signals in such assessments. However,

limb kinematics and factors that change EMG signals (including the limb position effect) are

not taken into consideration [43]. Consequently, research that employs on-screen assessments

often recommend that future work be undertaken using alternative real-time methods [8, 42].

Other studies have taken a next step towards a deeper understanding of control, through

the introduction of functional task assessments [50, 53–63]. Here, either non-disabled partici-

pants wearing a simulated prosthesis or actual myoelectric prosthesis users, are required to
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perform upper limb tasks that mimic activities of daily living. One common clinical control

assessment technique, known as the Assessment of Capacity for Myoelectric Control, has a

trained rater assess control during functional task execution [37, 38]. However, a trained rater

may not always be available. Alternative non-rater-based assessment approaches record the

movement of participants’ upper limbs during task execution, using motion capture technol-

ogy. From the resulting data, hand movement metrics, including hand velocity, hand distance

travelled, and hand trajectory variability can be calculated (rather than rated) [29, 32, 64, 65].

As we had motion capture technology available to us, we used these three hand movement

metrics, plus common task success rate and duration-based measures—collectively presenting

them as Task Performance Metrics. All such metrics can be found in Table 1, with calcula-

tions derived from the work of Valevicius et al. [29]. Note that these metrics have already been

validated [32] and have been employed to examine both myoelectric and body-powered pros-

thesis use [31, 66]. Furthermore, they have been compared to common clinical assessments

with prosthesis users [27, 31]. S1 Table offers select examples of strong and weak outcomes

resulting from these metrics.

Task performance metrics alone, however, do not capture the nuances of device control

characteristics, such as instances where a user introduces unnecessary hand/wrist movements

when grasping or releasing an object [26]. Some studies have introduced metrics that quantify

specific myoelectric prosthesis control characteristics, including misclassification rates [67],

grasp force [67, 68], grip aperture plateau time [69], wrist rotation range of motion [67], work-

load (assessed via pupil size) [70], and measures of muscle activations [71]. We selected and

derived metrics from the literature, plus developed additional novel metrics, and collectively

present them as Control Characteristic Metrics. All such metrics can be found in Table 2,

with select examples in S1 Table.

Finally, whether any proposed control solution yields noticeable improvement depends on

users’ assessments. The National Aeronautics and Space Administration Task Load Index

(NASA-TLX) is a survey tool, which measures subjective mental workload [72]. A recent liter-

ature review confirmed that the NASA-TLX has been widely employed in prosthesis use

assessments [73]. Usability surveys offer yet another assessment approach and capture the

users’ opinions of alternative device control solutions [74]. We selected relevant survey ques-

tions from the literature and present them as User Experience Metrics. All such metrics can

be found in Table 3.

Tables 1–3, collectively describe the Suite of Myoelectric Control Evaluation Metrics

introduced in this work. The Control Improvement Indicator column in each of these tables

uses unimpaired limb movement as a yardstick for control assessment. To conduct such

assessments, data collection protocols should include the following:

• Control models under investigation should be trained by participants using a research-spe-

cific series of hand/wrist movements that elicit forearm muscle signals for capture

• Participants must either wear a myoelectric prosthesis or a simulated prosthesis

• Participants must perform functional task(s) that can be split into the distinct phases of

Reaches, Grasps, Transports, and Releases. All such task(s) should be standardized—using

specific object sizes and locations for grasp and release actions. Examples of suitable func-

tional tasks include, but are not limited to, the Pasta Box Task [29], Cup Transfer Task [29],

Refined Clothespin Relocation Test [30], and the modified Box and Blocks test [75, 76].

• Motion capture data, muscle signals, and device motor data should be collected during func-

tional task execution
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Table 1. Description of task performance metrics used in analysis.

Metric Metric Description Metric Calculation Control Improvement Indicator

(∵ means because)Data Analysis Level Required Data Calculation Procedure

Success Rate Percent of trials that are

error-free (%)

Task Number of

error-free trials

The number of error-free trials

divided by the number of possible

trial attempts [29]

A higher success rate ∵participants

make fewer errors

Trial

Duration

Elapsed time for each

trial (sec)

Trial Timestamps The timestamp at the end of the

trial’s last phase minus the

timestamp at the start of trial’s first

phase [29]

A shorter trial duration

∵participants complete trials

quicker, also indicative of higher

skill level [27, 69]

Phase

Duration

Elapsed time for each

phase (sec)

Phase: Reach, Grasp,

Transport, Release

Timestamps The timestamp at the end of the

phase minus the timestamp at the

beginning of the phase [29]

A shorter phase duration

∵participants complete phases

quicker, also indicative of higher

skill level [27, 69]

Relative

Phase

Duration

Elapsed time for each

phase, relative to the

elapsed time for a Reach-

Grasp- Transport-

Release movement (%)

Phase: Reach, Grasp,

Transport, Release

Timestamps The phase duration divided by the

movement duration (i.e., the

difference between the timestamps

at the beginning and end of a

Reach- Grasp-Transport-Release

movement) [29]

For Grasp and Release phases: A

shorter relative phase duration

∵participants manipulate objects

with more ease [27] For Reach and

Transport phases: Shorter Grasp

and Release relative phase

durations lead to longer Reach and

Transport relative phase durations

[27]

Peak Hand

Velocity

Maximum velocity of the

hand while moving (mm/

s)

Movement Segment: Reach-

Grasp, Transport- Release

3D Position of

the Hand (mm,

mm, mm)

The maximum hand velocity

achieved within a movement

segment [29]

A higher peak hand velocity ∵
participants move their hand

quicker

Hand

Distance

Travelled

Total distance travelled

by the hand while

moving (mm)

Movement Segment: Reach-

Grasp, Transport- Release

3D Position of

the Hand (mm,

mm, mm)

Calculation steps:

1. The distance between the 3D

positions of the hand at successive

sampled points in time are

calculated

2. The sum of these distances is

calculated [29]

A shorter hand distance travelled ∵
the hand movement paths of

participants are more efficient [27]

Hand

Trajectory

Variability

How much the hand

movement path varies

between trials (mm)

Movement Segment: Reach-

Grasp, Transport- Release

(Note that hand trajectory

variability is calculated for

each participant, rather than

for each trial)

3D Position of

the Hand (mm,

mm, mm)

Calculation steps, used for each

participant:

1. The 3D position (x, y, z) of the

hand is time-normalized to 101

sampled points in time (0%, 1%,

. . ., 100% of the movement

segment) for each of the

participant’s trials

2. At each sampled point, the

standard deviation of the x, y, and

z positions across the participant’s

trials are independently calculated

3. The mean of the resulting

standard deviations is calculated at

each sampled point

4. The maximum of these means is

determined [29]

A smaller hand trajectory

variability ∵ participants do not

explore a variety of hand

movement paths (possibly

indicating confidence in their

chosen path with movements in

keeping with those of unimpaired

individuals) [27, 69]

For each metric, the following details are outlined: the metric’s name; a description of the metric; the data analysis level at which the metric is calculated (Controller,

Task, Trial, Movement, Movement Segment, or Phase); the data required for the metric calculation; the metric calculation procedure; and indicators that constitute a

control improvement.

https://doi.org/10.1371/journal.pone.0291279.t001
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Table 2. Description of control characteristics metrics used in analysis.

Metric Metric Description Metric Calculation Control Improvement Indicator

(∵ means because)Data Analysis Level Required Data Calculation Procedure

Total Grip

Aperture

Movement

Total amount of grip

aperture variation

(mm)

Phase: Reach, Grasp,

Transport, Release

Grip Aperture

(mm)

1. The absolute differences

between the grip apertures at

successive sampled points in time

are calculated

2. The sum of these differences is

calculated

A smaller total grip aperture

movement ∵ fewer unnecessary hand

open/close movements occur

Total Wrist

Rotation

Movement

Total amount of wrist

rotation angle variation

(deg)

Phase: Reach, Grasp,

Transport, Release

Wrist Rotation

Angle (degree)

1. The absolute differences

between the wrist rotation angles

at successive sampled points in

time are calculated

2. The sum of these differences is

calculated

A smaller total wrist rotation

movement ∵ fewer unnecessary wrist

rotation movements occur

Number of Grip

Aperture

Adjustments

Number of times that

grip aperture variation

commences or changes

direction

Phase: Reach, Grasp,

Transport, Release

(Note that Transport

adjustments may not

cause object drop)

Grip Aperture

(mm)

1. The grip aperture velocity is

smoothed using a moving average

filter

2. The sign of the smoothed

velocity is used to detect the

following: a change from 0 to

positive; a change from 0 to

negative; a change from negative

to positive; a change from positive

to negative

3. The number of times that the

above sign changes occurred is

tallied [81]

A smaller number of grip aperture

adjustments ∵ fewer

misclassifications are made [81]

Number of Wrist

Rotation

Adjustments

Number of times that

wrist rotation angle

variation commences or

changes direction

Phase: Reach, Grasp,

Transport, Release

Wrist Rotation

Angle (degree)

The number of wrist rotation

adjustments were calculated as

per grip aperture velocity detailed

above (but with wrist rotation

data rather than grip aperture

data).

A smaller number of wrist rotation

adjustments ∵ fewer

misclassifications are made [81]

Grip Aperture

Plateau

Amount of time during

which the grip aperture

remains open before

closing to grasp a task

object (sec)

Movement Segment:
Reach-Grasp

Grip Aperture

(mm)

1. The grip aperture and grip

aperture velocity are both

smoothed using a moving average

filter

2. Plateaus are identified when

both of the following conditions

are met:

• the smoothed grip aperture is

greater than 90% of the maximum

grip aperture in the movement

segment

• the smoothed grip aperture

velocity is less than 10% of the

maximum grip aperture velocity

in the movement segment

3. The sum of the time duration

(s) in which the above conditions

are met is calculated

(modified from Bouwsema et al.’s

calculation [69].)

A shorter plateau ∵ more natural

movements are made (more closely

mimicking those of unimpaired

individuals) and higher skill level is

evident [27, 69]

(Continued)
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Table 2. (Continued)

Metric Metric Description Metric Calculation Control Improvement Indicator

(∵ means because)Data Analysis Level Required Data Calculation Procedure

Simultaneous

Wrist-Shoulder

Movements

Percent of the phase

during which the wrist

rotation is controlled

while the shoulder is

moving (%)

Phase: Any phase that

requires both wrist

rotation and shoulder

movements.

Wrist Rotation

Angle (degree) &

Shoulder Flexion/

Extension Angle

(degree)

1. Wrist rotation and shoulder

flexion/extension angular

velocities are smoothed using a

moving average filter

2. The absolute values of the

smoothed angular velocities are

calculated

3. Simultaneous movements are

identified when both of the

following conditions are met:

• The smoothed wrist rotation

angular velocity is above a

threshold of 10% of the maximum

wrist rotation angular velocity in

the movement

• The smoothed shoulder flexion/

extension angular velocity is

above a threshold of 10% of the

maximum shoulder flexion/

extension angular velocity in the

movement

4. The sum of the time duration

(s) in which the above conditions

are met is calculated

5. The resulting sum is divided by

the phase duration (i.e., the

timestamp at the end of the phase

minus the timestamp at the

beginning of the phase)

A larger percent of simultaneous

wrist-shoulder movements

∵participants control wrist rotation

while moving their arm, rather than

pausing arm movements to focus on

device control—x2014;in keeping

with unimpaired movements

Total Muscle

Activity

Total amount of muscle

activity expended

Phase: Reach, Grasp,

Transport, Release

EMG signals

(range of -1 to 1)

1. The EMG signals are filtered

and rectified

2. Each EMG channel is

normalized using training data: a)

signals from the rest wrist

position with the elbow bent at

90˚ are obtained from that

session’s training data; b) step 2a

rest signals are rectified; c) the

mean of the step 2b rectified

signals is calculated for each

channel; d) each channel’s mean

is subtracted from that channel’s

step 1 signals

3. Step 2 signals are summed

across channels

4. The envelope of the step 3

signals is obtained

5. The step 4 envelope is summed

across time (similar to the

calculation of Ingraham et al.’s

composite sum EMG metric [71])

A smaller value ∵ participants exert

less muscle activity

For each metric, the following details are outlined: the metric’s name; a description of the metric; the data analysis level at which the metric is calculated (Controller,

Task, Trial, Movement, Movement Segment, or Phase); the data required for the metric calculation; the metric calculation procedure; and indicators that constitute a

control improvement.

https://doi.org/10.1371/journal.pone.0291279.t002
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• User experience survey responses should be collected at the end of each testing session

• Data streams of interest (for each functional task trial) could include: the number of error-

free trials executed; trial time stamps; the 3D position of the device hand, its grip aperture

and wrist rotation angles; plus the participants’ shoulder flexion/extension angles, EMG sig-

nal data, and post-testing session survey scores.

• Given that standardized tasks are to be used, results calculated with the suite of metrics

should only be compared within each task, not across tasks

With adherence to the above-mentioned data collection requirements, the suite of control

evaluation metrics presented in this work facilitates in-depth analysis that will uncover

Table 3. Description of user experience metrics used in analysis.

Metric Metric Description Metric Calculation Control Improvement

Indicator (∵ means because)Data

Analysis

Level

Required

Data

Survey Question

NASA-TLX Mental

Demand

Workload demand

resulting from each

controller

Controller Survey Scores

(rating 0–100)

How much mental and perceptual activity was

required (e.g., thinking, remembering, looking,

etc.)? Was the control easy or demanding, simple

or complex? [72]

A smaller score

∵ participants experience less

workload demand

Physical

Demand

How much physical activity was required (e.g.,

very strong muscle contractions, upper arm

movements, trunk movements, etc.)? Was the

control easy or demanding, restful or laborious?

[72]

Temporal

Demand

How much time pressure did you feel to complete

the tasks with this control strategy? Was the pace

slow and leisurely or rapid and frantic? [72]

Performance How hard did you have to work (mentally &

physically) to accomplish your level of

performance? [72]

Effort How successful do you think you were in

accomplishing the goals of the task with this

control strategy? How satisfied were you with your

performance in accomplishing these goals? [72]

Frustration How insecure, discouraged, irritated, stressed,

and/or annoyed versus secure, gratified, content,

relaxed, and/or complacent did you feel during the

task? [72]

Usability

Survey

Intuitiveness Usability of each

controller

Controller Survey Scores

(rating 0–5)

Intuitiveness is defined as how easy it was to learn

how to use the controller.

How easy is the controller to learn? [74]

A larger score ∵ participants

report greater ease of use

(device controllability)

Task

Effectiveness

Effectiveness is defined as how well the controller

was able to perform the task.

How well did the controller perform the task? [74]

(asked for each task performed)
Reliability Reliability is defined as how often the controller

did something that was intended or expected.

How often did the arm move in a way that you

wanted or expected? [74]

For each metric, the following details are outlined: the metric’s name; a description of the metric; the data analysis level at which the metric is calculated (Controller,

Task, Trial, Movement, Movement Segment, or Phase); the data required for the metric calculation; the survey question; and indicators that constitute a control

improvement.

https://doi.org/10.1371/journal.pone.0291279.t003
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numerous upper limb prosthesis control insights. These insights are expected to be particularly

beneficial in investigations that compare myoelectric device controllers.

Overview: Reinvestigation using our suite of metrics

As an example of how the suite of evaluation metrics introduced in this work can be used to

advance prosthesis control research, we deployed them in a deliberately challenging experi-

ment—reinvestigating our earlier comparative classifier research findings [26]. Here, device

control offered by two classifiers was compared: a proposed deep learning-based controller

(RCNN-TL) intent on mitigating the limb position effect, versus a commonly used and com-

mercially available controller (LDA-Baseline). Given that LDA-based control is commonly

used in myoelectric prostheses, it has been adopted in research as a baseline for comparison to

other controllers [23, 77, 78]. Fig 1 presents an overview of how each control model was

trained and tested, using two distinct groups of participants without upper limb impairment

who wore an EMG and IMU data capture armband.

(1) A large General Participant Group’s data created a control starting point for new users.

RCNN-TL’s Model Pre-Training—Each General Participant Group member performed a

training routine (isotonic forearm muscle contractions were executed in four limb positions),

during which their forearm EMG and IMU signals were collected. Their collective resulting

signal data, along with the corresponding classes of muscle contractions, informed

RCNN-TL’s pre-trained control model.

(2) A new, smaller Simulated Prosthesis (SP) Participant Group wore a simulated

prosthesis.

RCNN-TL’s Model Retraining & Testing—Each SP Participant Group member per-

formed a brief training routine (isometric contractions were held in three limb positions). The

Fig 1. RCNN-TL and LDA-baseline’s model training and testing. The blue panel (A) illustrates the step that the General Participant Group

performed (training routine that yielded RCNN-TL’s pre-trained model) while wearing an EMG and IMU armband. The yellow panels illustrate the

steps that the Simulated Prosthesis (SP) Participant Group performed: (B) respective training routines that yielded RCNN-TL’s retrained model and

LDA-Baseline’s trained model, and (C) subsequent controller testing using functional tasks, all while wearing an EMG and IMU armband plus a

simulated prosthesis.

https://doi.org/10.1371/journal.pone.0291279.g001
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resulting participant-specific EMG and IMU data, plus classes of muscle contractions, were

used to calibrate RCNN-TL’s model. Participants tested RCNN-TL by performing functional

tasks across multiple limb positions—the Pasta Box Task [29] and the Refined Clothespin

Relocation Test (RCRT) [30].

LDA-Baseline’s Model Training & Testing—The forearm muscle signals of each SP Par-

ticipant Group member were also captured using a standard pattern recognition training rou-

tine that was not designed to mitigate the limb position effect (isometric contractions were

held in one limb position) [23]. The resulting EMG data, plus classes of muscle contractions,

were used to train LDA-Baseline’s model. Each SP Participant Group member tested LDA-Ba-

seline by performing the Pasta Box Task [29] and RCRT [30].

Methods

What follows are details about our reinvestigation research methods, including: participant

descriptors; muscle signal data collection and processing techniques; a description of the simu-

lated prosthesis donned by participants; specifications of the control models under investiga-

tion and their training requirements; setup of the testing environment; the functional tasks

used to assess control; the participant survey administration process; control data processing

techniques to yield the suite of metrics; the statistical analysis of such metrics; and the identifi-

cation of instances of the limb position effect resulting from this analysis.

Participants

Participants recruitment took place from March 2, 2022, to March 31, 2022. All participants

provided written informed consent, as approved by the University of Alberta Health Research

Ethics Board (Pro00086557).

General participant group (without simulated prosthesis). Nineteen participants without

upper limb impairment were recruited. All had normal or corrected vision, 10 were male, nine

were female, 17 were right-handed. They had a median age of 25 years (range: 19–58 years)

and median height of 170 cm (range: 159–193 cm). Each of the 19 participants completed one

data collection session.

SP participant group (with donned simulated prosthesis). A total of nine new partici-

pants without upper limb impairment were recruited. One participant was removed due to

their inability to reliably control the donned simulated prosthesis even after control practice.

Of the remaining eight participants, all had normal or corrected vision, five were male, three

were female, seven were right-handed. They had a median age of 22 years (range: 20–56 years)

and median height of 181 cm (range: 169–185 cm). No participants had experience with EMG

pattern recognition control using a simulated prosthesis. The eight participants completed two

data collection sessions on different days, with a median of 24 days between sessions (range:

18–45 days). Half of the participants retrained/tested RCNN-TL in their first session (as

shown in Fig 1B and 1C), and the other half trained/tested LDA-Baseline in their first session

(also shown in Fig 1B and 1C). Each trained/tested the other controller in their second session.

Signal data collection & processing procedure

Participants in both groups wore a Myo gesture control armband (Thalmic Labs, Kitchener,

Canada) over their largest forearm muscle bulk [79]. That is, at approximately the upper third

of their forearm, as shown in Fig 2A (with the top of the armband at a median of 28% of the

way down the forearm from the medial epicondyle to the ulnar styloid process). The Myo arm-

band contained eight surface electrodes to collect EMG data at a sampling rate of 200 Hz. The

Myo armband also contained one IMU to collect limb position data (three accelerometer,
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three gyroscope, and four quaternion data streams) at 50 Hz. Myo Connect software was used

to stream and record EMG and IMU data in Matlab.

The EMG data from the Myo armband were filtered using a high pass filter with a cutoff

frequency of 20 Hz (to remove movement artifacts), as well as a notch filter at 60 Hz (to

remove electrical noise). The accelerometer data streams were upsampled to 200 Hz (using

previous neighbour interpolation) to align them with the corresponding EMG data. Data were

then segmented into windows (160-millisecond with a 40-millisecond offset).

Simulated prosthesis & donning procedure

The simulated prosthesis used in this study was the 3D-printed Modular-Adaptable Prosthetic

Platform (MAPP) [80] (shown in Fig 2B). It was fitted to each SP Participant Group member’s

right arm for simulation of transradial prosthesis use. The MAPP’s previously-published

design [80] was altered to improve wearer comfort in our study—the distal ring was made to

resemble the oval shape of a wrist and the hand brace was elongated so that the distal ring

would sit more proximally on the wearer’s wrist. A nonproprietary 3D-printed robotic hand

[81] was affixed to the MAPP beneath the participant’s hand. Wrist rotation capabilities were

also added to the device. Hand and wrist movements (that is, with two degrees of freedom)

were powered by two Dynamixel MX Series motors (Robotis Inc., Seoul, South Korea).

After placement of the Myo armband, each SP Participant Group member donned a thin,

protective sleeve and then the simulated prosthesis. To increase participant comfort, pieces of

thermoplastic elastomer liner were placed inside the distal ring and just above the participant’s

elbow, and 3D-printed cushions, made of Ninjaflex Cheetah filament (Ninjatek, Inc.), were

placed throughout the device socket (shown in Fig 2B). The secureness of the device and the

participants’ comfort were checked before proceeding with controller training.

Fig 2. Myo armband and simulated prosthesis. A) Myo armband on a participant’s forearm and B) simulated prosthesis on a participant’s forearm,

with labels indicating the sleeve, two pieces of liner, hand brace, distal ring, cushions, wrist motor, and hand motor. Adapted from Williams et al. [26].

https://doi.org/10.1371/journal.pone.0291279.g002
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Control model descriptions & training routines

RCNN-TL’s model. Bayesian optimization automatically determined the number of con-

volution layers, number of filters, filter size, pooling size, and patience required for the classi-

fier used in this controller. Optimization was performed in two steps: first, the number of

layers along with each hyperparameter being optimized were determined using a broad range

of values; thereafter, values were refined using a narrower range (centered at earlier optimized

values). RCNN-TL’s model architecture consisted of 19 layers, as illustrated in Fig 3. In this

model, a sequence input layer first received and normalized the training data. Then, a sequence

folding layer was used, allowing convolution operations to be performed independently on

each window of EMG and accelerometer data. This was followed by a block of four layers: a

2D convolution, a batch normalization, a rectified linear unit (ReLU), and an average pooling

layer. This block of layers was repeated once more. Each of the two average pooling layers had

a pooling size of 1x4. A block of three layers followed: a 2D convolution, a batch normaliza-

tion, and a ReLU layer. The optimal number of filters in the convolution layers were deter-

mined to be 4, 16, and 32, respectively, and each had a filter window size of 1x3. The next

layers included a sequence unfolding layer (to restore the sequence structure), a flatten layer, a

long short-term memory (LSTM) layer, and a fully connected layer. Finally, a softmax layer

and classification layer were used. To prevent overfitting, a patience parameter was set to trig-

ger early stopping when the validation loss increased five times (similar to methods used in

other works, including Côté-Allard et al. [82]).

RCNN-TL’s model pre-training routine. General Participant Group members followed

onscreen instructions, performing muscle contractions in 5 wrist positions (rest, flexion,

extension, pronation, and supination; shown in Fig 1A), for 5 seconds each. The muscle con-

tractions were performed twice in 4 limb positions: arm at side, elbow bent at 90˚, arm out in

front at 90˚, and arm up 45˚ from vertical (shown in Fig 1A). This position-aware routine was

similar to those used in other real-time control studies aiming to mitigate the limb position

effect [8, 23, 79]) and took approximately 200 seconds. The resulting EMG and accelerometer

data, plus corresponding classes of muscle contractions, were used to pre-train RCNN-TL’s

model.

Fig 3. Architecture of RCNN-TL’s model: Sequence input layer; sequence folding layer; two blocks of 2D convolution, batch normalization,

rectified linear unit (ReLU), and average pooling; one block of 2D convolution, batch normalization, and ReLU; sequence unfolding layer; flatten

layer; long short-term memory (LSTM) layer; fully connected layer; softmax layer; and classification layer. Adapted from Williams et al. [26].

https://doi.org/10.1371/journal.pone.0291279.g003
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RCNN-TL’s model retraining routine. Our previous offline research [66] examined

methods of reducing user training burden and uncovered a shortened/optimized routine that

still yielded high predictive accuracy. In keeping with this, the SP Participant Group members

followed onscreen instructions, performing muscle contractions in the same 5 wrist positions

(shown in Fig 1B), for only 2 (rather than 5) seconds each. The muscle contractions were per-

formed twice in only 3 (not 4) limb positions: arm at side, elbow bent at 90˚, and arm up 45˚

from vertical (shown in Fig 1B). The resulting EMG and accelerometer data, plus correspond-

ing classes of muscle contractions, were used to retrain RCNN-TL’s model.

LDA-baseline’s model. Four commonly used EMG features were chosen for implementa-

tion of this controller’s classifier: mean absolute value, waveform length, Willison amplitude,

and zero crossings [83]. These features were calculated for each channel within each window

of EMG data. A pseudo-linear LDA discriminant type was used, given that columns of zeros

were occasionally present in some classes for some features (including Willison amplitude and

zero crossings).

LDA-baseline’s model training routine. SP Participant Group members followed

onscreen instructions, performing muscle contractions in the same 5 wrist positions (shown

in Fig 1B), for 5 seconds each. The muscle contractions were performed twice, with the partici-

pants’ elbow bent at 90˚ (shown in Fig 1B). This single-position routine mimicked standard

myoelectric prosthesis training [3] and took approximately 50 seconds. The resulting EMG

data and corresponding classes of muscle contractions were used to train LDA-Baseline’s

model.

RCNN-TL & LDA-baseline implementation. Each model was trained using Matlab soft-

ware running on a computer with an Intel Core i9–10900K CPU (3.70 GHz) with 128 GB of

RAM. RCNN-TL’s and LDA-Baseline’s models were retrained/trained in median times of 3.41

and 0.39 seconds, respectively. For both controllers, Matlab code was written to receive signal

data and subsequently classify wrist movements. Code was also written to send motor instruc-

tions, based on the resulting classifications, to brachI/Oplexus software [84] (flexion controls

hand close, extension controls hand open, pronation controls wrist counter-clockwise rota-

tion, and supination controls wrist clockwise rotation). brachI/Oplexus relayed the corre-

sponding control signals to the simulated prosthesis’ motors. The positions of the motors were

recorded with a sampling rate of 50 Hz.

Simulated device control practice & testing eligibility

During each testing session, SP Participant Group members took part in a control practice

period (approximately 40 minutes), during which they were taught how to operate the simu-

lated prosthesis using isometric muscle contractions, under three conditions:

1. Controlling the hand open/close while the wrist rotation function was disabled. They prac-

ticed grasping, transporting, and releasing objects at varying heights.

2. Controlling wrist rotation while the hand open/close function was disabled. They practiced

rotating objects at varying heights.

3. Controlling the hand open/close function in concert with the wrist rotation function. They

practiced tasks that involved grasping, transporting, rotating, and releasing objects at vary-

ing heights.

Following their practice period, participants were tested to determine whether they could

reliably control the simulated prosthesis. Two cups were situated in front of them at two differ-

ent heights, with a ball in one of the cups. Participants were asked to pour the ball between the
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two cups, and instances when they dropped the ball or a cup were recorded. If participants

could not complete at least 10 pours with a success rate of at least 75% within 10 minutes, the

session was ended, and they were removed from the study. Recall that one participant was

removed (as stated in the Participants section), given that they could not complete this activity

with LDA-Baseline in their first session.

Motion capture setup & kinematic calibrations

For participants who were deemed eligible for controller testing, the following motion capture

steps were undertaken:

Step 1: Motion capture setup. An 8-camera OptiTrack Flex 13 motion capture system

(Natural Point, OR, USA) was used to capture participant movements and task objects at a

sampling rate of 120 Hz. Eight individual markers were placed on the simulated prosthesis

hand, circled in Fig 4 (one on the thumb, one on the index finger, and the remaining six

throughout the back and side of the hand to ensure reliable rigid body tracking). Rigid marker

plates were also placed on each participant’s right forearm (affixed to the simulated prosthesis

socket), upper arm, and thorax, in accordance with Boser et al.’s cluster-based marker model

[85].

Step 2: Kinematic calibrations

Each participant was required to perform two kinematics calibrations. As per Boser et al., the

first calibration called for participants to hold an anatomical pose [85], for capture of the rela-

tive positions of the hand markers and motion capture marker plates when wrist rotation and

Fig 4. Motion capture markers affixed to the simulated prosthesis. The eight motion capture markers that remained attached to the hand are circled,

and the three additional individual markers for the ski pose calibration are labelled.

https://doi.org/10.1371/journal.pone.0291279.g004
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shoulder flexion/extension angles were at 0˚. The second calibration required participants to

hold a ski pose [85], for the purpose of refining wrist rotation angles. Here, three additional

individual markers were affixed to the simulated prosthesis, as shown in Fig 4:

1. One marker placed on the top of the prosthesis’ hand motor, with the device hand closed

2. One marker placed on the bottom of the prosthesis’ wrist motor, forming a line with the

first marker (to represent the axis about which the wrist rotation occurred)

3. One marker placed on the side of the prosthesis’ wrist motor (to create a second axis, per-

pendicular to the axis of wrist rotation)

Upon completion of the two kinematics calibrations, all Step 2 markers were removed.

What remained were only those markers affixed during Step 1 for data collection purposes.

Functional tasks & data collection

Motion capture data were collected during the execution of the following functional tasks:

Pasta Box Task (Pasta)—Participants were required to perform three distinct movements,

where they transported a pasta box between a 1st, 2nd, and 3rd location (a side table and two

shelves at varying heights on a cart, including across their midline) [29]. The task setup is

shown in Fig 5A. Motion capture markers were placed on all task objects, as per Valevicius

Fig 5. Task setup for (A) Pasta and (B) RCRT Up and Down. In panel (A), the 1st, 2nd, and 3rd pasta box locations are labelled. The pasta

box movement sequence is 1st —>2nd —>3rd —>1st locations. In panel (B), the 1st, 2nd, and 3rd clothespin locations on the horizontal and vertical bars

are labelled. The clothespin movement sequences in RCRT Up are horizontal 1st —>vertical 1st, horizontal 2nd —>vertical 2nd, and horizontal 3rd —>

vertical 3rd locations. The clothespin movement sequence in RCRT Down follows the same order, but with each clothespin moved from vertical to

horizontal locations.

https://doi.org/10.1371/journal.pone.0291279.g005
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et al. Participants performed a total of 10 Pasta trials. If participants dropped the pasta box,

placed it incorrectly, performed an incorrect movement sequence, or hit the frame of the task

cart, the trial was not analyzed. Pasta was the first of two functional tasks performed as it was

considered easier.

RCRT. Participants were required to perform three distinct movements using clothespins.

They moved three clothespins between 1st, 2nd, and 3rd locations on horizontal and vertical

bars [30]. To simplify trial execution, RCRT was split into RCRT Up and RCRT Down trials.

The task setup for these trials is shown in Fig 5B. During Up trials, participants moved the

three clothespins from the horizontal bar to the vertical bar, and during Down trials, they

moved the clothespins from the vertical bar to the horizontal bar. A height adjustable cart was

set such that the top of each participants’ shoulder was aligned with the midpoint between the

top two targets on the vertical bar. Motion capture markers were placed on all task objects, as

per our earlier research [26]. Participants performed a total of 10 Up trials and 10 Down trials.

If participants dropped a clothespin, placed it incorrectly, or performed an incorrect move-

ment sequence, the trial was not analyzed. Performance of RCRT Up and Down trials were

alternated, and started with RCRT Up.

Survey administration

At the end of each session, each participant completed two surveys: the NASA-TLX [72] and a

usability survey [74]. The former was administered using the official NASA-TLX iPad applica-

tion, where participants scored their device control workload demand on a continuous rating

scale with endpoint anchors of low and high. The usability survey was administered on paper,

where participants marked their usability scores on a continuous rating scale with endpoint

anchors of 0 and 5. In their second session, participants were not reminded of their survey

responses from their first session.

Data processing & calculation procedures

Motion capture data cleaning & calculations. Motion capture marker trajectory data

were cleaned and filtered. As per Valevicius et al. [29], grip aperture was calculated as the dis-

tance between the motion capture markers on the simulated prosthesis’ index and thumb, and

a 3D object representing the simulated prosthesis’ hand was generated using the remaining 6

hand motion capture markers. Then, through calculations modified from Boser et al. [85],

wrist rotation was calculated using the forearm and hand motion capture markers, and shoul-

der flexion/extension was calculated using the upper arm and thorax motion capture markers.

Data segmentation. The task data were segmented in accordance with Valevicius et al.

[29], as follows:

• For each task, the data from each trial were first divided into distinct movements 1, 2, and 3
based on hand velocity and the velocity of the pasta box/clothespins during transport.

Pasta Movements 1, 2, and 3 differentiated between: (1) reaching for the pasta box at its 1st

location, grasping it, transporting it to its 2nd location, releasing it, and moving their hand

back to a home position; (2) reaching for the pasta box at the 2nd location, grasping it, trans-

porting it to its 3rd location, releasing it, and moving their hand back to the home position;

and (3) reaching for the pasta box at the 3rd location, grasping it, transporting it back to the

1st location, releasing it, and moving their hand back to the home position.

RCRT Up Movements 1, 2, and 3 differentiated between: (1) reaching for the 1st clothespin

at its 1st horizontal location, grasping it, transporting it to its 1st vertical location, releasing it,

and moving their hand back to a home position; (2) reaching for the 2nd clothespin at its 2nd
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horizontal location, grasping it, transporting it to its 2nd vertical location, releasing it, and

moving their hand back to the home position; and (3) reaching for the 3rd clothespin at its

3rd horizontal location, grasping it, transporting it to its 3rd vertical location, releasing it, and

moving their hand back to the home position.

RCRT Down Movements 1, 2, and 3 differentiated between: (1) reaching for the 1st clothes-

pin at its 1st vertical location, grasping it, transporting it to its 1st horizontal location, releas-

ing it, and moving their hand back to a home position; (2) reaching for the 2nd clothespin at

its 2nd vertical location, grasping it, transporting it to its 2nd horizontal location, releasing it,

and moving their hand back to the home position; and (3) reaching for the 3rd clothespin at

its 3rd vertical location, grasping it, transporting it to its 3rd horizontal location, releasing it,

and moving their hand back to the home position.

• Then, the data from each of the three movements were further segmented into five phases of

(1) Reach, (2) Grasp, (3) Transport, (4) Release, and (5) Home (note that the Home phase

was not used for data analysis)

• Finally, two movement segments of (1) Reach-Grasp and (2) Transport-Release were defined

for select metrics analysis

• Six final levels for data analysis resulted: controller (either RCNN-TL or LDA-Baseline), task
(either Pasta, RCRT Up, or RCRT Down), trial (1–10), movement (1–3), movement segment
(Reach-Grasp or Transport-Release), and phase (Reach, Grasp, Transport, or Release)

Grip aperture & wrist rotation re-calculations. The grip aperture and wrist rotation

angle were re-calculated using the data from the simulated prosthesis’ two motors, given that

small (yet informative) adjustments in the positions of these motors may not have been

detected by motion capture cameras. The positions of these motors were first upsampled to

120 Hz using linear interpolation. Grip aperture re-calculation: motion-capture-calculated grip

aperture was used to fit a trinomial curve to transform the hand motor data to grip aperture.

Wrist motor angle re-calculation: motion-capture-calculated wrist rotation was used to fit a

binomial curve to transform the wrist motor data to wrist rotation angles.

Final suite of metrics calculations. The final suite of metrics was calculated using the

procedures described in Tables 1–3. Note that the simultaneous wrist-shoulder movements

metric was calculated only for Reach and Transport phases of RCRT Up and RCRT Down tri-

als, because these were the only phases that required the participant to rotate the device wrist

while moving their arm to a different height.

Statistical analysis

To investigate task performance difference between RCNN-TL and LDA-Baseline, the follow-

ing statistical analyses were performed:

For metrics that were analyzed at the phase or movement segment level. Participants’

results were first averaged across trials and movements. If results were normally-distributed, a

two-factor repeated-measures analysis of variance (RMANOVA) was conducted using the fac-

tors of controller and phase/movement segment. When the resulting controller effects or con-

troller-phase/movement segment interactions were deemed significant (that is, when the

Greenhouse-Geisser corrected p value was less than 0.05), pairwise comparisons between the

controllers were conducted. If results were not normally-distributed, the Friedman test was

conducted. When the resulting p value was less than 0.05, pairwise comparisons between the
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controllers were conducted. Pairwise comparisons (t-test/Wilcoxon sign rank test) were

deemed significant if the p value was less than 0.05.

For metrics that were analyzed at the trial level. Participants’ results were first averaged

across trials, then pairwise comparisons were conducted as detailed above.

For metrics that were analyzed at the task or controller level. Pairwise comparisons

were conducted as detailed above.

Limb position effect identification

The limb position effect has been shown to cause control accuracy degradation and large

between-participant control variation in offline research [40]. However, earlier works have not

pinpointed specific instances of the effect in functional task execution data. Using the novel

control characteristics metrics introduced in this work, identification of such instances is pos-

sible—larger medians and/or larger interquartile ranges (IQRs) can provide evidence of

degraded control. To identify the limb position effect in this study, metrics’ medians and IQRs

for Reach, Grasp, Transport, and Release phases were considered separately across movements

1, 2, and 3 of Pasta, RCRT Up and RCRT Down. An occurrence where movement variation

was not due to the limb position effect is illustrated in Fig 6A, where the number of wrist rota-

tion adjustments metric in RCRT Down Release phases have medians and IQRs that remain

relatively constant at different limb positions. Conversely, an occurrence where movement

variation was due to the limb position effect can be seen in Fig 6B. Here, the same metric in

RCRT Down Grasp phases shows its medians and IQRs both increasing as the limb position

changed.

The following limb position identification process was used to examine all control charac-

teristics metrics for Reach, Grasp, Transport, and Release phases across the three movements

of Pasta, RCRT Up, and RCRT Down:

• First, the three medians were rescaled as percentages of the maximum of the three medians

Fig 6. Box plots indicating LDA-Baseline number of wrist rotation adjustments. in each (A) RCRT Down Release

and (B) RCRT Down Grasp of each task movement (Mvmt). Medians are indicated with thick lines, and interquartile

ranges are indicated with boxes.

https://doi.org/10.1371/journal.pone.0291279.g006
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• Next, the three IQRs were rescaled as percentages of the maximum of the three IQRs

• Then, the limb position effect identification rules outlined in Table 4 were developed—

through iterative trial-and-error comparisons of potential rules to visual representations of

metrics’ medians and IQRs (as in Fig 6A and 6B)

• The resulting rules were subsequently used to identify instances of the limb position effect.

Note that for Pasta, two rule options were used, given that the limb position effect was most

likely to be present in that task’s movements 2 or 3 (at the highest shelf location). For RCRT

Up and RCRT Down, only one rule option was necessary, given that the limb position effect

was most likely to occur in movement 3 (at the top clothespin location). For each rule, the

limb position effect was identified only in instances where all conditions were met (that is,

when all rules in a row of Table 4 were true).

The abovementioned rules are applicable to metrics where smaller values are indicative of

control improvements, as was the case with most control characteristics metrics in this work.

The exception was the simultaneous wrist-shoulder movements metric, where larger values

were indicative of improved control. To adjust for this exception, each of the three movements’

rescaled medians (represented as percentages) were subtracted from 100%. In doing so, these

medians were altered to represent the percent of the phase in which simultaneous movements

did not occur. After this adjustment, the limb position identification process could be

followed.

Results

Task performance

The significant differences across the task performance metrics are reported in Table 5. Task

specific outcomes derived from the table include:

Pasta. RCNN-TL performed significantly better than LDA-Baseline in one metric: Release

phase duration.

RCRT Up. LDA-Baseline performed significantly better than RCNN-TL in one metric:

success rate.

RCRT Down. RCNN-TL performed significantly better than LDA-Baseline in one metric:

Grasp relative phase duration. LDA-Baseline performed significantly better than RCNN-TL in

one metric: release relative phase duration.

Summary. Only 4 of the 48 Task Performance metrics showed significant differences, 2 of

which demonstrated that RCNN-TL performed better than LDA-Baseline. It appears that a

Table 4. Limb position effect identification rules for control characteristics metrics.

Limb Position Effect Identification

Rule

Conditions Identifying Limb Position Effect

Movement 1

Median

Movement 2

Median

Movement 3

Median

Movement 1 IQR Movement 2 IQR Movement 3 IQR

Pasta Reach and Grasp Rule <90% <75% = 100% <55% = 100%

Pasta Transport and Release Rule = 100% <85% = 100%

RCRT Up and RCRT Down Rule <55% <85% = 100% <25% >80%

The rules used for limb position effect identification are based on each movement’s median and interquartile range (IQR). In each row, all conditions had to be true for

a positive identification of the limb position effect.

https://doi.org/10.1371/journal.pone.0291279.t004
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richer set of metrics is needed to better understand such outcomes—beyond those derived

from task performance metrics alone.

Control characteristics

The significant differences across control characteristics metrics are reported in Table 6. Task

specific outcomes derived from the table include:

Table 5. Task performance metrics results.

Task Pasta RCRT Up RCRT Down

Success Rate (%) 95.00 (15.00) 75.00 (35.00) 100.00 (10.00)

95.00 (10.00) 100.00 (5.00) 90.00 (20.00)

Trial Duration (s) 25.28 (9.86) 31.62 (8.14) 31.12 (10.37)

30.78 (16.28) 27.85 (13.40) 31.72 (6.87)

Phase Duration (s) Reach 1.28 (0.75) 1.61 (0.88) 1.40 (1.21)

1.38 (1.03) 1.52 (1.17) 1.35 (0.93)

Grasp 1.59 (1.46) 2.09 (1.54) 1.67 (1.33)

1.84 (1.33) 1.68 (1.31) 2.28 (3.19)

Transport 2.40 (0.69) 2.90 (1.24) 2.56 (0.72)

2.54 (1.04) 2.89 (2.04) 2.59 (1.44)

Release 0.88 (0.62) 1.96 (1.28) 2.19 (0.93)

1.11 (1.31) 1.48 (0.87) 1.57 (1.28)

Relative Phase Duration (%) Reach 23.08 (4.81) 18.62 (6.49) 18.03 (8.17)

20.80 (8.48) 19.49 (7.34) 15.83 (4.65)

Grasp 24.95 (10.10) 23.68 (10.46) 22.77 (8.39)

23.65 (10.34) 23.42 (8.01) 27.45 (14.61)

Transport 38.07 (9.53) 33.62 (10.38) 32.15 (11.38)

32.81 (11.95) 35.82 (7.46) 30.44 (10.80)

Release 16.45 (9.30) 20.82 (13.73) 25.80 (7.39)

18.57 (10.91) 19.75 (6.75) 20.23 (8.73)

Peak Hand Velocity (mm/s) Reach-Grasp 780.06 (265.86) 559.84 (243.55) 855.12 (425.89)

801.79 (291.61) 543.16 (254.90) 837.28 (322.24)

Transport-Release 768.74 (387.29) 486.19 (272.47) 485.99 (281.39)

789.18 (424.73) 495.46 (286.86) 444.93 (314.93)

Hand Distance Travelled (mm) Reach-Grasp 689.38 (298.01) 537.06 (178.13) 679.54 (251.59)

766.21 (379.84) 464.67 (192.90) 684.68 (543.83)

Transport-Release 931.14 (420.62) 610.88 (324.93) 513.42 (303.34)

978.56 (396.90) 584.27 (321.36) 512.70 (365.95)

Hand Trajectory Variability (mm) Reach-Grasp 44.37 (42.81) 35.74 (21.68) 50.11 (32.74)

68.58 (51.60) 32.56 (18.68) 70.92 (46.82)

Transport-Release 53.92 (28.02) 39.32 (31.70) 33.74 (28.57)

82.75 (52.25) 40.83 (37.77) 42.02 (32.92)

Hand Trajectory Variability (mm) Reach-Grasp 44.37 (42.81) 35.74 (21.68) 50.11 (32.74)

68.58 (51.60) 32.56 (18.68) 70.92 (46.82)

Transport-Release 53.92 (28.02) 39.32 (31.70) 33.74 (28.57)

82.75 (52.25) 40.83 (37.77) 42.02 (32.92)

Each cell contains the RCNN-TL median (and interquartile range in parentheses) in the first line and the LDA-Baseline median (interquartile range) in the second line.

Green cells indicate metrics in which RCNN-TL performed significantly better than LDA-Baseline (p <0.05). Red cells indicate metrics in which LDA-Baseline

performed significantly better than RCNN-TL (p <0.05).

https://doi.org/10.1371/journal.pone.0291279.t005
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Table 6. Control characteristics metrics results.

Task Pasta RCRT Up RCRT Down

Grip Aperture Total Movement (mm) Reach 10.37 (13.46) 20.16 (41.19) 10.12 (23.23)

4.77 (12.80) 18.53 (30.34) 11.87 (21.75)

Grasp 66.02 (33.61) 77.88 (51.67) 72.50 (20.96)

69.27 (33.10) 61.22 (29.51) 75.99 (58.61)

Transport 18.55 (7.78) 13.05 (8.13) 11.88 (8.36)

13.54 (15.50) 10.51 (13.76) 10.28 (7.56)

Release 51.50 (15.89) 60.06 (19.01) 60.64 (9.82)

56.90 (13.77) 57.85 (9.42) 56.49 (10.75)

Wrist Rotation Total Movement (˚) Reach 7.57 (14.51) 60.46 (55.57) 32.39 (44.86)

4.92 (15.80) 41.64 (32.46) 16.04 (30.04)

Grasp 14.89 (21.38) 22.87 (39.61) 17.82 (20.64)

25.32 (37.22) 14.74 (25.36) 27.90 (80.36)

Transport 13.13 (24.25) 73.90 (55.64) 66.91 (32.28)

26.55 (45.64) 64.23 (53.11) 50.78 (49.08)

Release 2.92 (9.78) 20.91 (42.18) 31.22 (25.14)

20.38 (54.62) 8.05 (18.85) 18.35 (54.44)

Number of Grip Aperture Adjustments Reach 0.44 (1.31) 2.33 (3.10) 1.00 (2.21)

0.37 (1.56) 2.11 (2.49) 0.89 (1.94)

Grasp 2.98 (4.00) 3.50 (4.81) 3.30 (1.79)

3.74 (4.46) 3.20 (4.69) 5.38 (8.88)

Transport 2.17 (1.68) 3.52 (2.33) 3.05 (2.40)

2.84 (2.40) 3.40 (3.41) 2.90 (2.47)

Release 1.78 (1.97) 3.80 (2.74) 4.11 (2.85)

2.56 (3.84) 2.60 (2.81) 3.11 (3.40)

Number of Wrist Rotation Adjustments Reach 0.68 (2.18) 2.32 (2.66) 2.50 (2.15)

0.30 (1.84) 2.06 (2.60) 1.44 (2.56)

Grasp 2.65 (4.65) 2.55 (2.04) 2.84 (3.38)

4.72 (6.44) 2.05 (3.55) 4.47 (9.95)

Transport 2.40 (4.29) 4.69 (3.38) 2.90 (2.78)

4.43 (6.00) 4.20 (3.33) 3.94 (4.96)

Release 0.68 (2.09) 3.10 (5.48) 3.35 (3.40)

3.18 (5.89) 1.90 (3.44) 3.24 (6.88)

Grip Aperture Plateau (s) Reach-Grasp 1.49 (0.84) 1.69 (0.61) 1.79 (1.02)

1.91 (1.39) 1.66 (0.81) 1.66 (0.89)

Simultaneous Wrist-Shoulder Movements (%) Reach 27.36 (16.02) 23.77 (29.15)

31.40 (17.10) 9.70 (13.46)

Transport 28.68 (13.48) 17.97 (14.10)

22.25 (20.74) 10.57 (12.61)

(Continued)
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Pasta. RCNN-TL performed significantly better than LDA-Baseline in seven metrics.

Examples of one such metric are illustrated in S1 Table (for Reach-Grasp grip aperture pla-

teau). The limb position effect was identified in 12 metrics under LDA-Baseline control, and

in one metric (Grasp total muscle activity) under RCNN-TL control. Four of the seven signifi-

cant RCNN-TL versus LDA-Baseline differences were in metrics that showed evidence of the

limb position effect.

RCRT Up. No significant differences were identified, and no metrics showed evidence of

the limb position effect.

RCRT Down. RCNN-TL performed significantly better than LDA-Baseline in two met-

rics. Examples of one such metric are illustrated in S1 Table (for Reach simultaneous wrist-

shoulder movements). The limb position effect was identified in four other metrics, with one

such instance illustrated in Fig 6B (Grasp number of wrist rotation adjustments).

Summary. 9 of the 81 Control Characteristics metrics showed significant differences, all

of which demonstrated that RCNN-TL performed better than LDA-Baseline. Furthermore, 16

metrics showed evidence of the limb position effect. All such metrics were only identified in

Pasta and RCRT Down, suggesting that these outcomes are likely influenced by the position-

aware nature of RCNN-TL control.

User experience

User experience metrics were calculated at the controller level, rather than for each task

(detailed in Table 3). There were no significant differences between RCNN-TL and LDA-Base-

line. Box plots illustrating the median controller-level scores across participants can be found

in Fig 7.

Of note, RCNN-TL scored better than LDA-Baseline in the NASA-TLX’s Mental Demand

dimension and in the usability survey’s Intuitiveness dimension. These results suggest that

RCNN-TL offered more intuitive control. The two controllers had equal median scores in

NASA-TLX’s Effort dimension. LDA-Baseline scored better than RCNN-TL in all other

dimensions.

Table 6. (Continued)

Task Pasta RCRT Up RCRT Down

Total Muscle Activity Reach 87.60 (49.47) 159.53 (252.54) 130.99 (155.05)

82.38 (100.06) 184.27 (137.85) 90.73 (102.13)

Grasp 152.98 (168.33)* 232.44 (220.79) 138.10 (150.30)

186.28 (240.38)* 153.28 (115.47) 190.20 (327.96)

Transport 181.99 (88.61) 244.02 (133.68) 226.15 (138.11)

183.95 (114.74) 208.27 (139.09) 248.58 (84.72)

Release 85.77 (107.96) 207.73 (157.52) 226.28 (161.05)

120.56 (150.44) 148.54 (96.00) 184.11 (161.54)

Each cell contains the RCNN-TL median (and interquartile range in parentheses) in the first line and the LDA-Baseline median (interquartile range) in the second line.

Green cells indicate metrics in which RCNN-TL performed significantly better than LDA-Baseline (p <0.05). Dark grey cells indicate instances in which a metric was

not relevant. Cell borders indicate metrics that displayed evidence of the limb position effect under LDA-Baseline control. Asterisks indicates the metric that displayed

evidence of the limb position effect under both LDA-Baseline and RCNN-TL control.

https://doi.org/10.1371/journal.pone.0291279.t006
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Discussion

The suite of myoelectric prosthesis control evaluation metrics introduced in this work

(detailed in Tables 1, 2 and 3) yielded informative limb position effect-related outcomes that

could only be speculated upon in our earlier work [26]. What follows is a discussion about the

metrics-driven findings from this current work, with a focus on understanding when and why
limb position variations caused control challenges during participants’ execution of the Pasta

Box Task (Pasta) and the Refined Clothespin Relocation Test (RCRT Up and RCRT Down).

Findings from control characteristics metrics

Limb position effect identification. To our knowledge, no other study has identified

occurrences of the limb position effect using functional task assessment outcomes. In this

work, we used functional tasks to assess device control and found that analysis of our control

characteristics metrics did uncover instances of the limb position effect. In LDA-Baseline

results, instances were identified in Pasta and RCRT Down (16 of 81 cells with dark borders in

Table 6), and never in RCRT Up. Note that for RCNN-TL, one instance of the limb position

effect was uncovered—Grasp total muscle activity in Pasta. However, this instance may simply

be due to inevitable positional EMG signal variations, rather than due to control degradation.

Based solely on LDA-Baseline results, we surmised the following:

• Raised arm positions in the sagittal plane caused grasp challenges for participants, as evi-

denced by the identification of the limb position effect only during the Grasp phases of

RCRT Down (in four metrics).

• Raised arm positions in the sagittal plane did not cause release challenges for participants, as

evidenced by the absence of limb position effect identification in RCRT Up. Logically, as

hand opening during object release phases is controlled by wrist extension muscle activation,

classification of wrist extension was not affected by the limb position effect.

• Arm movements along the frontal plane caused further control challenges for participants.

Not only did Pasta require participants to perform arm raises in the sagittal plane, large

Fig 7. Box plots indicating user experience metrics results with RCNN-TL (orange) and LDA-Baseline (grey) for: (A) NASA-TLX, and (B)

usability survey. Medians are indicated with thick lines, interquartile ranges are indicated with boxes, and outliers are indicated with circles.

https://doi.org/10.1371/journal.pone.0291279.g007
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cross-body and away-from-body movements had to be introduced to accomplish this task.

The limb position effect was detected in three of four Pasta phases (four times in Reach, once

in Reach-Grasp, three times in Grasp, and four times in Release)

So overall, LDA-Baseline control often appeared to be impeded by shoulder position fluctu-

ations in the frontal plane. Furthermore, arm raises limited to the sagittal plane caused only

grasp control deterioration for this controller. Both such circumstances identify catalysts for

limb position effect control challenges.

Evidence of limb position effect mitigation. Recall that Table 6 also identified significant

differences in control characteristics metrics, where green cells indicated instances where

RCNN-TL performed significantly better than LDA-Baseline. Nine of the 81 metrics (cells)

were significant (shaded in green), indicating that RCNN-TL always performed the same as,

or significantly better than, LDA-Baseline for these metrics. Furthermore, all such significant

differences presented in Table 6 occurred in Pasta and RCRT Down, and never in RCRT Up.

This coincides with those tasks where instances of the limb position effect were identified, sug-

gesting that RCNN-TL successfully mitigated such occurrences.

Interestingly, RCNN-TL performed significantly better than LDA-Baseline in several Pasta

metrics, even though Pasta involves numerous limb positions that were not included in

RCNN-TL’s pre-training/retraining routines. We speculate that the pre-training data from 19

individuals provided sufficient variety to result in a controller that is robust to limb positions

not included in its training routines.

Significant control characteristics differences between RCNN-TL and LDA-Baseline were

not identified for RCRT Up. Recall that the problem was not identified in RCRT Up, despite

this task’s requirement for varied limb positions. So, if the limb position effect did not cause

control degradation for either controller, then perhaps: (a) LDA-Baseline simply performed

well during this task and control improvements were not necessary, or (b) RCNN-TL control

should be improved in instances when the limb position effect is not evident.

Merits of control characteristics metrics. Significant differences between RCNN-TL and

LDA-Baseline were identified in at least one phase/movement segment for all control charac-

teristics metrics analyzed, with the exceptions of total grip aperture movement and total mus-

cle activity. Still, these two metric exceptions might yield outcomes beneficial to other

controller comparisons and should not be discounted from the metrics introduced in this

work. Total grip aperture movement, for instance, might help to identify grasping efficiency

during task execution, and total muscle activity might help to identify muscle exertion

required for task completion. Future controller comparisons are expected to determine

whether these metrics are sensitive to controller variations.

Findings from task performance metrics

Table 5 identified 2 of 48 metrics that showed RCNN-TL performing significantly better than

LDA-Baseline (for Release phase duration in Pasta and Grasp relative phase duration in RCRT

Down), and 2 of 48 metrics that showed the contrary (for success rate in RCRT Up and Release

relative phase duration in RCRT Down). These outcomes coincided with those of our earlier

work [26], however, the control characteristics metrics introduced in this study facilitated a

deeper understanding of why task performance deteriorated at times—specifically, when

instances of the limb position effect hampered control. The following task performance

insights were uncovered in this work:

• RCNN-TL successfully mitigated the limb position effect, as evidenced by the two specific

instances when its control was significantly better than that of LDA-Baseline—in Pasta
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Release and RCRT Down Grasp phases. Our control characteristics analysis revealed that

participants struggled during these phases (identified as instances where the limb position

effect occurred). Such struggles were apparent when participants used LDA-Baseline, but

not so when using RCNN-TL. So, RCNN-TL likely remedied control degradation intro-

duced by the limb position effect.

• RCNN-TL may not have performed well in instances where the limb position effect was not
evidenced. Consider that two task performance metrics showed that RCNN-TL performed

significantly worse than LDA-Baseline: (1) the relative duration of the RCRT Down Release

phases, and (2) the RCRT Up success rate. Furthermore, consider that analysis of control

characteristics revealed that device control was not affected by the limb position effect in

either the RCRT Down Release phase, or any phase of RCRT Up. Together, these outcomes

support the hypothesis that RCNN-TL may not have performed well in instances where the

limb position effect was not evidenced.

• Of note, the lower RCRT Up success rate was due to clothespins being dropped by partici-

pants. This tendency towards unintended hand opening is in keeping with RCNN-TL’s

control characteristics results versus those of LDA-Baseline, with higher medians in grip

aperture total movement, higher medians in number of grip aperture adjustments, along

with larger IQRs in Reach and Grasp phases of these same metrics.

Findings from user experience metrics

Fig 7 presented the user experience metrics. Despite this work’s improved control outcomes,

no significant differences were identified in the NASA-TLX and usability surveys. This work

uncovered the following insights, to guide future use of user experience metrics:

• Without the provision of participants’ scores from their first testing session upon return for

their second session (following the washout period of at least one week), their initial anchor

scores of “good” and “poor” were not likely to have been precisely recalled.

• Given that participants were without limb loss, they only had a perception of fully functional

control using their intact hand and wrist. They did not have a baseline perception of poor or

diminished control, as none had prior experience with a simulated prosthesis. As a result,

their subjective anchor scores of “good” and “poor” in their first session were likely influ-

enced by their perception of perfect control, whereas in their second session, they might

have been further influenced by their first session’s simulated prosthesis control experience.

Overall, a specific question about which controller each participant preferred (asked at the

end of their second session) would better gauge their controller partiality. In addition, remind-

ing participants of their first-session scores immediately prior to their second session survey

completion, might address expectation-related variability in anchor scores [86]. After this cur-

rent study was conducted, a new Prosthesis Task Load Index (PROS-TLX) was developed and

validated [87], and should be considered in future comparative prosthesis control research.

Evidence of training routine reduction

The General Participant Group performed a long (200-second) pre-training routine prior to

RCNN-TL use. This pre-training duration is similar to that of position-aware controller solu-

tions in the literature [8, 12, 20, 79, 88–90]. RCNN-TL retraining, as performed by the SP Par-

ticipant Group, was accomplished using a shortened (60-second) routine. That is, a 70%
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decrease in model training duration resulted due to the introduction of transfer learning. This

current research, therefore, confirms that TL is a valuable adjunct to RCNN-based classifica-

tion control, as it offers a model starting point that needs only to be calibrated using a smaller

amount of individual-specific data. Notably, a TL solution is not possible with LDA-based con-

trol. Overall, this training routine reduction solution shows promise towards solving the limb

position effect challenge—without the requirement of a burdensome training routine.

Limitations

As a first limitation of this study, participants without upper limb impairment were recruited

rather than myoelectric prosthesis users. Although these participants learned how to control a

simulated prosthesis, further practice may have been necessary to accurately represent the con-

trol capabilities of myoelectric prosthesis users. Secondly, the implementation of the surveys

may not have adequately captured user experience data. Thirdly, previous work had suggested

that the conditions under which the RCNN-TL pre-training data was collected could result in

control flaws [26]—because pre-training data from participants without a donned simulated

prosthesis were too dissimilar from those with a donned simulated prosthesis (the conditions

under which the retraining and device use occurred). This testing condition dissimilarity con-

sideration was not examined in the current study. Finally, although our experimentation used

optical motion capture technology to gather movement data, the use of this costly equipment

might not always be feasible. As such, our suite of control metrics is not solely reliant on

motion capture data for metrics calculations. Alternative sources that capture grip aperture

and wrist rotation data (such as from device motor positions), along with shoulder flexion/

extension data (such as from markerless motion capture technology or IMUs [91]) can be used

for these calculations. Furthermore, other methods of segmenting functional tasks into Reach,

Grasp, Transport, and Release phases (such as segmenting markerless motion capture data or

IMU-captured data) can be implemented in preparation for metrics calculations.

Future work

RCNN-TL future work. Next steps for RCNN-TL should focus on improvements to

device control in instances when the limb position effect is least likely to occur. Improvements

to pre-training data collection conditions need to be studied. Examination of RCNN-TL using

myoelectric prosthesis users is also a necessary step.

Suite of control evaluation metrics future work. To verify whether the suite of metrics

introduced in this study are beneficial, future work should examine different controllers, using

both participants without limb loss wearing a simulated prosthesis and actual myoelectric

prosthesis users operating a commercial device. Further use of the suite of metrics in control

research is expected to uncover recommended subsets of discriminant metrics, based on each

study’s goals and experimentation methods—for instance, studies with tasks that do not

require wrist rotation need not examine simultaneous wrist-shoulder movements; they should

instead focus on metrics such as the number of grip aperture adjustments and grip aperture

plateau time.

Conclusion

This work reinvestigated earlier comparative RCNN-TL versus LDA-Baseline research, which

recommended that pattern recognition-based control not be judged by task performance
alone, but rather, that control characteristics also be measured [26]. Then collectively, the task

performance and control characteristics should be weighed against qualitative user experience
[26]. The current study heeded these recommendations, and in doing so, contributed and
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tested a viable suite of myoelectric prosthesis control evaluation metrics for use in future com-

parative control model research. Using these metrics, this study has contributed insights into

occurrences and implications of the limb position effect challenge and offered validation that

TL-based neural network control solutions show promise towards solving this pervasive prob-

lem. The suite of metrics introduced and subsequently used in this work is expected to benefit

future research intent on improving rehabilitation device control.

Supporting information

S1 Table. Metrics examples. This table contains figures that exemplify “good” and “poor”

results for selected metrics. For each metric presented, a description of the example figure pre-

cedes that associated good/poor graphs.

(PDF)
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