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ABSTRACT

Myoelectric upper limb prostheses provide wrist and hand movements to users yet remain somewhat unreliable and

challenging to operate in high and cross-body limb positions. Hand and wrist movements are typically controlled sequen-

tially and at a pre-set velocity. We have made significant inroads towards developing a novel controller that is reliable

in multiple limb positions and offers fluid movements. Our recent work unveiled a promising deep learning regression-

based myoelectric control solution. Herein we present results from our current study that tested device control using our

solution versus a baseline (classification) alternative. A myoelectric prosthesis user with transradial amputation donned an

experimental prosthesis and performed two functional tasks under each control option. The user exhibited superior device

controllability across multiple limb positions using our regression-based solution. This work contributes evidence that a

deep learning regression control approach can elicit accurate, simultaneous, and proportional device movements, while

mitigating the limb position effect for a transradial prosthesis user.

INTRODUCTION

A myoelectric prosthesis connects to a user’s residual limb via a socket and is normally controlled using electromyo-

graphy (EMG) signals. EMG signals are generated by residual muscle contractions, detected by surface electrodes within

the socket, and transmitted to the device’s onboard controller. Pattern recognition-based controllers decode these signals

to predict the user’s intended movements and send corresponding commands to the device’s motors. The most advanced

controllers generally use a classification algorithm (model), which predicts one device action (or class) at a time [1]. The

resulting prosthetic limb movements are somewhat robotic and are delivered at a pre-set velocity. That is, the wrist and

hand cannot inherently move together simultaneously or with varied velocity.

Typically, individuals with transradial amputation are capable of reliably performing a limited number of residual

limb muscle contractions [1]. These distinct contractions are selected to control predetermined device grasp patterns (such

as hand open or close) and wrist rotation [1]. To initialize their pattern recognition-based control model for daily use,

they must first perform a pre-determined series of muscle contractions, known as a training routine. Through training,

patterns observed in captured EMG signals are associated with corresponding device actions [2]. A prevalent control

problem, known as the “limb position effect”, results when users attempt to use their devices in untrained limb positions

[3]. Oftentimes, users struggle to regain control in response to this problem. To mitigate the effect, a control model must

be trained in multiple limb positions [3].

Pattern recognition-based control models can be developed using a recurrent convolutional neural network (RCNN) ap-

proach. RCNNs are a type of network architecture for deep learning, capable of learning directly from and handling large

amounts of multimodal data [4]. These capabilities lend themselves to the capture of limb position data for improved device

control. In our prior work, we merged EMG data with accelerometer data from an inertial measurement unit (EMG+IMU)

using an RCNN [5, 6]. We also tested an EMG+IMU regression-based control model (RCNN-Reg) [6] and found that

regression models can yield smooth device movements, given that they can predict multiple movements at once, each pro-

portional to muscle contraction intensity and across multiple limb positions [5]. In that study, we compared RCNN-Reg to a

classification-based alternative that is commonly used in control comparisons (linear discriminant analysis, LDA-Baseline)

[6]. Model testing involved participants without amputation (with a simulated prosthesis donned, a reasonable proxy for

a person with amputation [7]) who performed two functional tasks—the Refined Clothespin Relocation Test (RCRT) [8]

and the Pasta Box Task [9]. Our work 1) found that RCNN-Reg mitigated the limb position effect; 2) substantiated that

participants could perform simultaneous wrist rotation and hand open/closed movements at varied velocities, as offered by

RCNN-Reg; and 3) reported that RCNN-Reg yielded better predictive accuracy than LDA-Baseline [5, 10].
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This current paper extends our earlier RCNN-Reg control model work by testing its translatability to those with upper

limb loss. To accomplish this, one individual with transradial amputation donned an experimental myoelectric prosthesis

that was controlled by RCNN-Reg in one session and then by LDA-Baseline in a separate session. All experimentation

methods from our earlier research study ([6]) were followed. We were excited to find that RCNN-Reg indeed provided

accurate, simultaneous, and proportional device movements for an individual with amputation, while mitigating the limb

position effect. As such, RCNN-Reg might well offer a valuable control model alternative to traditional classification-based

approaches for consideration in future myoelectric control research.

METHODS

One participant with amputation was recruited for this study. She was female, with an age of 50 years, a height of

167 cm, and corrected-to-normal vision. She was right-handed prior to amputation. Two years prior to this study, she

had a right-side transradial amputation. Her residual limb was 18 cm long with a circumference of 21 cm at the widest

point. The participant typically used a myoelectric hand. She also had some at-home commercial pattern recognition-based

prosthesis control experience with two degrees of freedom (wrist rotation and hand) at an estimated usage of 6 hours/day

over 3 weeks. She provided written informed consent, as approved by the University of Alberta Health Research Ethics

Board (Pro00086557). The participant trained and tested RCNN-Reg in her first session and LDA-Baseline in her second

session, with 28 days between the two sessions. An overview of our equipment, experimentation methods, and control

analysis metrics is illustrated in Figure 1. Full protocol details can be found in our earlier works [6, 10].

Figure 1: Equipment, experimentation, and analysis metrics in order of use: A) donned Myo armband, B) donned prosthesis

[11], C) training routine employed for RCNN-Reg and LDA-Baseline models, including overall training durations [6], D)

control model architecture details for RCNN-Reg and LDA-Baseline [6], E) functional tasks performed to test control—the

Pasta Box Task [9] and the Refined Clothespin Relocation Test (RCRT) [8], split into RCRT Up and RCRT Down, and F)

select metrics calculated for control analysis from our suite of metrics for comparative myoelectric prosthesis control [10].

RESULTS

RCNN-Reg yielded comparatively better myoelectric prosthesis control than LDA-Baseline. RCNN-Reg’s improved

control, barring a few exceptions, was evidenced by: 1) lower trial durations; 2) less total grip aperture and wrist rotation
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movement (indicators of corrections in mm and degrees, respectively); 3) simultaneous control of the prosthetic hand and

wrist; along with 4) fewer grip aperture and wrist rotation adjustments (number of corrections). Results are illustrated in

Figures 2A–F, respectively, with Figures 2A–C,2E–F showing exceptions where some grip and wrist rotation corrections

were made by the participant. It was also apparent that the participant took advantage of RCNN-Reg’s proportional control

capabilities during task execution. That is, her hand and wrist movements occurred at a less-than-maximal velocity 100%

of the time.

In our previous work [6], under LDA-Baseline control, the limb position effect was identified a total of 13 times (as

determined through analysis of median and interquartile range trends [10]). Ten instances were evidenced during the Pasta

Box Task (in 1 reach, 1 reach-grasp, 4 grasp, 2 transport, and 2 release metrics) and 3 instances during RCRT Down (all in

grasp metrics). Conversely, in this present work, under RCNN-Reg control, the limb position effect was identified a total of

3 times, all during the Pasta Box Task (determined using our earlier work’s analysis methods [10]). Such instances were

evidenced in 1 reach metric and 2 transport metrics.

Figure 2: Controller comparison results (abbreviated as RCNN/LDA), including median A) trial duration, B) total grip

aperture movement, C) total wrist rotation movement, D) simultaneous hand-wrist control, E) number of grip aperture

adjustments, and F) number of wrist rotation adjustments. Medians are presented for each task, and for each phase (Reach

in red, Grasp in orange, Transport in blue, and Release in green) where applicable. Interquartile ranges across trials are

indicated with coloured error bars where applicable. Note that simultaneous hand-wrist control is only illustrated for RCRT

Up/Down, as wrist rotation is not required in the Pasta Box Task (Pasta).

DISCUSSION & FUTURE WORK

Pasta Box Task Control Successes and Challenges: Although RCNN-Reg control was generally superior to LDA-Baseline,

our participant exhibited some unexpected control challenges in the transport phases of the Pasta Box Task (Figure 2B,E’s

abovementioned control exceptions)—evidenced by increased total grip aperture movement and grip aperture adjustments.

The Pasta Box Task requires a participant to transport a box in both cross-body and away-from-body limb positions (the spe-

cific instances where the limb position effect under RCNN-Reg control occurred). Notably, RCNN-Reg’s training routine

did not include these specific limb positions. Given these circumstances, the addition of cross-body and away-from-body

limb positions to RCNN-Reg’s training routine is advised. Future work should investigate which training positions improve

device control.

RCRT Up and Down Control Successes and Challenges: When testing RCNN-Reg, our participant did not experience the

limb position effect during execution of RCRT Up and Down. The effect was likely mitigated because RCNN-Reg’s control

model was trained in the same high limb positions required of these tasks. Despite this, the participant exhibited control

challenges in transport phases of RCRT Up and Down (Figure 2B,C,E,F’s abovementioned control exceptions)—evidenced
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by increased total grip aperture and wrist rotation movement, along with more grip aperture and wrist rotation adjustments,

versus under LDA-Baseline control. These outcomes indicated her need to perform movement corrections to maintain

control. RCRT’s transport phases require a participant to rotate their wrist while not dropping the grasped clothespin, an

inherently difficult movement. Although our participant experienced challenges, she appreciated the simultaneous control

capabilities offered by RCNN-Reg in transport phases, as verbally reported: “It’s neat that you can do it at the same time

[simultaneous control], because you feel like you’re losing it [starting to drop the clothespin while rotating the wrist] and

you can try and grab it [adjust grip during wrist rotation].” Based on our participant’s appreciation of these capabilities,

and the fact that progressive learning needs to be allocated for complicated hand-tasks [12], we believe she could master

simultaneous control and exhibit fewer adjustments in RCRT’s transport phases if afforded more controller-use practice.

Training Routine Implications: RCNN-Reg’s 5-minute training routine might prove to be burdensome for a user if repeated

multiple times throughout the day (for re-calibration purposes). Future work should be undertaken to shorten the training

routine duration. For instance, reducing the number of oscillations performed might be feasible. The incorporation of

dynamic limb positions might also reduce routine duration and provide richer training data [13].

Future Experimentation: We recognize that our work did not exhaustively investigate RCNN-Reg. To corroborate our

findings, the experimentation must be repeated by more participants with transradial amputation.

CONCLUSION

Our case study contributes, for the first time, evidence that an RCNN regression-based controller offers a user with

transradial amputation control of their prosthetic wrist and hand simultaneously across multiple limb positions, using

varied velocities. RCNN-Reg successfully mitigated the limb position effect during device use, given that our participant

was able to retain control of their myoelectric prosthesis throughout numerous re-orientations of their limb in space during

different tasks. Although regression-based control solutions have not garnered as much research attention as classification-

based counterparts, the merits of RCNN-Reg, as presented in this paper, suggest that it be strongly considered as a future

prosthesis controller.

ACKNOWLEDGEMENTS

We thank Quinn Boser, Thomas R. Dawson, Michael R. Dawson, and Albert Vette for data collection, data processing

and/or experimental design assistance. This work was supported by Amii, the CIFAR AI Chairs program, NSERC DG

RGPIN-2019-05961, and NSERC RGPIN-2023-04450.

REFERENCES

[1] P. Geethanjali, “Myoelectric control of prosthetic hands: State-of-the-art review,” Medical Devices: Evidence and Research, vol. 9, pp. 247–55,
2016.

[2] E. Scheme, K. Englehart, “Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and challenges for
clinical use,” J. Rehabil. Res. Dev., vol. 48, no. 6, pp. 643–59, 2011.

[3] E. Campbell, A. Phinyomark, E. Scheme, “Current trends and confounding factors in myoelectric control: Limb position and contraction intensity,”
Sensors (Switzerland), vol. 20, no. 6, p. 1613, 2020.

[4] A. Phinyomark, E. Scheme, “EMG pattern recognition in the era of big data and deep learning,” Big Data and Cognitive Computing, vol. 2, no. 3,
p. 21, 2018.

[5] H. E. Williams, A. W. Shehata, M. R. Dawson, E. Scheme, J. S. Hebert, P. M. Pilarski, “Recurrent convolutional neural networks as an approach to
position-aware myoelectric prosthesis control,” IEEE Trans. Biomed. Eng., vol. 69, no. 7, pp. 2243–55, 2022.

[6] H. E. Williams, A. W. Shehata, K. Y. Cheng, J. S. Hebert, P. M. Pilarski, “Myoelectric Prosthesis Control using Recurrent Convolutional Neural
Network Regression Mitigates the Limb Position Effect,” bioRxiv, 2024.

[7] H. E. Williams, C. S. Chapman, P. M. Pilarski, A. H. Vette, J. S. Hebert, “Myoelectric prosthesis users and non-disabled individuals wearing a
simulated prosthesis exhibit similar compensatory movement strategies,” J. Neuroeng. Rehabil., vol. 18, p. 72, 2021.

[8] A. Hussaini, P. Kyberd, “Refined clothespin relocation test and assessment of motion,” Prosthet. Orthot. Int., vol. 41, no. 3, pp. 294–302, 2017.

[9] A. M. Valevicius, Q. A. Boser, E. B. Lavoie, G. S. Murgatroyd, P. M. Pilarski, C. S. Chapman, A. H Vette, J. S. Hebert, “Characterization of
normative hand movements during two functional upper limb tasks,” PLOS ONE, vol. 13, no. 6, p. e0199549, 2018.

[10] H. E. Williams, A. W. Shehata, K. Y. Cheng, J. S. Hebert, P. M. Pilarski, “A multifaceted suite of metrics for comparative myoelectric prosthesis
controller research,” accepted to PLOS One, 2024.

[11] B. W. Hallworth, A. W. Shehata, M. R. Dawson, F. Sperle, M. Connan, W. Friedl, B. Vodermayer, C. Castellini, J. S. Hebert, P. M. Pilarski, “A
transradial modular adaptable platform for evaluating prosthetic feedback and control strategies,” Proc. MEC20, pp. 203–6, 2020.

[12] J. M. Hahne, M. Markovic, D. Farina, “User adaptation in Myoelectric Man-Machine Interfaces,” Sci. Rep., vol. 7, p. 4437, 2017.

[13] A. Gigli, A. Gijsberts, C. Castellini, “Natural myocontrol in a realistic setting: A comparison between static and dynamic data acquisition,” Proc.

ICORR, pp. 1061–6, 2019.

MEC24


