
A multifaceted suite of metrics for comparative myoelectric
prosthesis controller research

Heather E. Williams1,3*, Ahmed W. Shehata1, Kodi Y. Cheng1

Jacqueline S. Hebert2, Patrick M. Pilarski2,3

1 Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
2 Division of Physical Medicine and Rehabilitation, Department of Medicine, University
of Alberta, Edmonton, AB, Canada
3 Alberta Machine Intelligence Institute (Amii), Edmonton, AB, Canada

*heather.williams@ualberta.ca

Abstract

Upper limb robotic (myoelectric) prostheses are technologically advanced, but
challenging to use. In response, substantial research is being done to develop
user-specific prosthesis controllers that can predict a person’s intended movements.
Most studies that test and compare new controllers rely on simple assessment measures
such as task scores (e.g., number of objects moved across a barrier) or duration-based
measures (e.g., overall task completion time). These assessment measures, however, fail
to capture valuable details about: the quality of device arm movements; whether these
movements match users’ intentions; the timing of specific wrist and hand control
functions; and users’ opinions regarding overall device reliability and controller training
requirements. In this work, we present a comprehensive and novel suite of myoelectric
prosthesis control evaluation metrics that better facilitates analysis of device movement
details—spanning measures of task performance, control characteristics, and user
experience. As a case example of their use and research viability, we applied these
metrics in real-time control experimentation. Here, eight participants without upper
limb impairment compared device control offered by a deep learning-based controller
(recurrent convolutional neural network-based classification with transfer learning, or
RCNN-TL) to that of a commonly used controller (linear discriminant analysis, or
LDA). The participants wore a simulated prosthesis and performed complex functional
tasks across multiple limb positions. Analysis resulting from our suite of metrics
identified 16 instances of a user-facing problem known as the “limb position effect”. We
determined that RCNN-TL performed the same as or significantly better than LDA in
four such problem instances. We also confirmed that transfer learning can minimize
user training burden. Overall, this study contributes a multifaceted new suite of control
evaluation metrics, along with a guide to their application, for use in research and
testing of myoelectric controllers today, and potentially for use in broader rehabilitation
technologies of the future.
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Introduction 1

Below elbow (transradial) is the most prevalent of major upper limb amputations [1]. A 2

myoelectric prosthesis offers a means of restoring complex limb function to those with 3

transradial amputation, ideally across a wide range of arm positions [2]. Conventional 4

myoelectric device control is based on electromyography (EMG) [3]. Here, signals are 5

typically detected by surface electrodes that are housed within a donned prosthesis 6

socket and then transmitted to the device’s onboard controller. The controller decodes 7

user-specific muscle contractions and sends corresponding instructions to appropriate 8

prosthesis wrist and hand motors. 9

Myoelectric prostheses that employ pattern recognition offer predictive device 10

control that is capable of learning a user’s intended movements [4, 5]. Despite the 11

potential of such machine learning-based control solutions, device performance 12

challenges persist for users, particularly when various limb positions are necessary [6]. 13

In these instances, EMG signals change due to gravity, supplemental muscle activities, 14

and electrode shifts resulting from changes in muscle topology [7]. Control in such 15

instances can be unpredictable and therefore frustrating for users [6]. This control 16

challenge is well documented and referred to as the “limb position effect” [7]. Several 17

pattern recognition-based control methods have been investigated to minimize the limb 18

position effect [8–22]. These methods require a user to execute a training routine across 19

multiple limb positions, prior to daily device use. A training routine involves execution 20

of a specific sequence of forearm muscle contractions. EMG signals resulting from the 21

muscle contractions are captured for use by the device controller’s model. The model 22

learns to recognize various patterns of consistent and repeated muscle signal features [4], 23

including patterns involved in wrist rotation and hand open/close. Learned features are 24

subsequently classified during device use, and the resulting classifications inform device 25

motor instructions. 26

Inertial measurement unit (IMU) data can provide a classification control model 27

with additional and informative limb position-related data [7, 23]. Deep learning control 28

methods, such as recurrent convolutional neural networks (RCNNs), can combine high 29

volumes of EMG and IMU data from multiple limb positions. However, to capture all 30

required muscle and limb position data (in low to high arm positions), lengthy and 31

burdensome training routines must be performed by users [2, 24,25]. Control model 32

retraining is also required in instances when device control degrades, such as due to 33

muscle fatigue or electrode shifts. The overall training burden poses drawbacks to 34

position-aware myoelectric control methods. 35

Our earlier study uncovered that the addition of Transfer Learning (TL) can 36

alleviate the training burden necessitated by data intensive RCNN-based solutions [26]. 37

In this previous work, an RCNN classification control model (classifier) was trained 38

using a large dataset of EMG and IMU signals obtained from numerous individuals with 39

intact upper limbs, to become the starting point of new users’ control (with a simulated 40

prosthesis donned [27,28]). Each new user required a reduced amount of personal data 41

for training thereafter. Not only did this research confirm that RCNN-based 42

classification control with TL reduces training burden, but it also offered a prosthesis 43

control solution with a tendency towards better functional task performance across 44

multiple limb positions, when compared to a linear discriminant analysis (LDA) 45

classification controller. Interestingly, the research identified possible instances of the 46

limb position effect during high grasping movements, however it was noted that more 47

detailed measures of control were needed to confirm this [26]. As a corollary to the 48

TL-based findings resulting from this work, metrics deficiencies were uncovered—control 49

characteristics outcomes evidenced during task performance could not be fully 50

understood, and user-reported control experiences were not considered [26]. 51

There remain gaps in the completeness of metrics used for prosthesis control 52
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research. Most studies that test myoelectric control via functional tasks, tend only to 53

examine general performance metrics, including task success rates or duration-based 54

measures [29–37]. These metrics, however, cannot yield a complete understanding of the 55

quality of participants’ hand, wrist, and arm movements [38]. Furthermore, they cannot 56

adequately characterize the nature of device control, such as the identification of 57

unnecessary grip aperture adjustments [26]. For these reasons, our earlier work 58

recommended that RCNN-based classification control with TL (RCNN-TL) not be 59

judged by task performance alone, but rather, that control characteristics also be 60

considered. Then collectively, the task performance and control characteristics can be 61

weighed against subjective user experience, to provide a full complement of data-driven 62

prosthesis control outcomes. 63

This current study contributes a comprehensive suite of metrics that aims to address 64

the issue of inconclusive myoelectric controller assessment outcomes. The suite includes 65

three broad categories of metrics: task performance, control characteristics, and 66

user experience. We deployed these metrics, as part of this current work, to 67

reinvestigate our earlier controller research findings [26]—examining whether RCNN-TL 68

can indeed reduce training burden, offer improved device control over a comparative 69

LDA baseline classification controller (LDA-Baseline), and if instances of the limb 70

position effect can be pinpointed. In using the novel suite of metrics, this work 71

contributes a data-driven understanding of when and why TL-based neural network 72

control solutions show great promise towards solving the limb position effect challenge. 73

It is expected that the suite of evaluation metrics introduced by this research will guide 74

future rehabilitation device control experimentation. 75

What follows is a presentation of our metrics, an overview of our reinvestigation 76

research, and a detailed presentation of its methods, results, discussion, and conclusion. 77

Introducing the Suite of Myoelectric Control 78

Evaluation Metrics 79

Performance-based assessments for the evaluation of real-time upper limb prosthesis 80

control often require participants to execute on-screen virtual arm movements or 81

on-screen cursor movements (such as the Target Achievement Control test [39] and 82

Fitts’ Law tests [40], respectively) [8, 14,41–51]. EMG sensors placed on participants’ 83

limbs record muscle activations in such assessments. However, limb kinematics and 84

factors that change EMG signals (including the limb position effect) are not taken into 85

consideration [44]. Consequently, research that employs on-screen assessments often 86

recommend that future work be undertaken using alternative real-time methods [8, 43]. 87

Other studies have taken a next step towards a deeper understanding of control, 88

through the introduction of functional task assessments [29–37,51–53]. Here, either 89

non-disabled participants wearing a simulated prosthesis [27] or actual myoelectric 90

prosthesis users, are required to perform upper limb tasks that mimic activities of daily 91

living. The movement of participants’ upper limbs during task execution can be 92

recorded using motion capture technology. From the resulting data, hand movement 93

metrics, including hand velocity, hand distance travelled, and hand trajectory variability 94

can be calculated [38, 54–56]. We used these hand movement metrics, plus common task 95

success rate and duration-based measures, and present them as Task Performance 96

Metrics. All such metrics can be found in Table 1, with calculations derived from the 97

work of Valevicius et al. [38]. S1 Table offers select examples of strong and weak 98

outcomes resulting from these metrics. 99

Task performance metrics alone, however, do not capture the nuances of device 100

control characteristics, such as instances where a user introduces unnecessary 101
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hand/wrist movements when grasping or releasing an object [26]. Some studies have 102

introduced metrics that quantify specific myoelectric prosthesis control characteristics, 103

including misclassification rates [57], grasp force [57, 58], grip aperture plateau time [59], 104

wrist rotation range of motion [57], workload (assessed via pupil size) [60], and measures 105

of muscle activations [61]. We selected and derived metrics from the literature, plus 106

developed additional novel metrics, and collectively present them as Control 107

Characteristic Metrics. All such metrics can be found in Table 2, with select 108

examples in S1 Table. 109

Finally, whether any proposed control solution yields noticeable improvement 110

depends on users’ assessments. The National Aeronautics and Space Administration 111

Task Load Index (NASA-TLX) is a survey tool, which measures subjective mental 112

workload [62]. A recent literature review confirmed that the NASA-TLX has been 113

widely employed in prosthesis use assessments [63]. Usability surveys offer yet another 114

assessment approach and capture the users’ opinions of alternative device control 115

solutions [64]. We selected relevant survey questions from the literature and present 116

them as User Experience Metrics. All such metrics can be found in Table 3 , with 117

select examples in S1 Table. 118

Table 1. Description of Task Performance metrics used in analysis.

For each metric, the following details are outlined: the metric’s name; a description of
the metric; the data analysis level at which the metric is calculated (Controller, Task,
Trial, Movement, Movement Segment, or Phase); the data required for the metric
calculation; the metric calculation procedure; and indicators that constitute a control
improvement.

August 23, 2023 4/28

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2023. ; https://doi.org/10.1101/2023.08.28.554998doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.28.554998
http://creativecommons.org/licenses/by/4.0/


Tables 1, 2, and 3, collectively describe the Suite of Myoelectric Control 119

Evaluation Metrics introduced in this work. The Control Improvement Indicator 120

column in each of these tables uses unimpaired limb movement as a yardstick for control 121

assessment. To conduct such assessments, data collection protocols should include the 122

Table 2. Description of Control Characteristics metrics used in analysis.

For each metric, the following details are outlined: the metric’s name; a description of
the metric; the data analysis level at which the metric is calculated (Controller, Task,
Trial, Movement, Movement Segment, or Phase); the data required for the metric
calculation; the metric calculation procedure; and indicators that constitute a control
improvement.
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following: 123

• Control models under investigation should be trained by participants using a 124

research-specific series of hand/wrist movements that elicit forearm muscle signals 125

for capture 126

• Participants must either wear a myoelectric prosthesis or a simulated prosthesis 127

• Participants must perform functional task(s) that can be split into the distinct 128

phases of Reaches, Grasps, Transports, and Releases 129

• Motion capture data, muscle signals, and device motor data should be collected 130

during functional task execution 131

• User experience survey responses should be collected at the end of each testing 132

session 133

• Data streams of interest (for each functional task trial) could include: the number 134

of error-free trials executed; trial time stamps; the 3D position of the device hand, 135

its grip aperture and wrist rotation angles; plus the participants’ shoulder 136

flexion/extension angles, EMG signal data, and post-testing session survey scores. 137

With adherence to the above-mentioned data collection requirements, the suite of 138

control evaluation metrics presented in this work facilitates in-depth analysis that will 139

uncover numerous upper limb prosthesis control insights. These insights are expected to 140

be particularly beneficial in investigations that compare myoelectric device controllers. 141

Table 3. Description of User Experience metrics used in analysis.

For each metric, the following details are outlined: the metric’s name; a description of
the metric; the data analysis level at which the metric is calculated (Controller, Task,
Trial, Movement, Movement Segment, or Phase); the data required for the metric
calculation; the survey question; and indicators that constitute a control improvement.
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Overview: Reinvestigation using our Suite of Metrics 142

As an example of how the suite of evaluation metrics introduced in this work can be 143

used to advance prosthesis control research, we deployed them in a deliberately 144

challenging experiment—reinvestigating our earlier comparative classifier research 145

findings [26]. Here, device control offered by two classifiers was compared: a proposed 146

deep learning-based controller (RCNN-TL) intent on mitigating the limb position effect, 147

versus a commonly used and commercially available controller (LDA-Baseline). Fig 1 148

presents an overview of how each control model was trained and tested, using two 149

distinct groups of participants without upper limb impairment who wore an EMG and 150

IMU data capture armband. 151

Fig 1. RCNN-TL and LDA-Baseline’s model training and testing. The blue
panel (A) illustrates the step that the General Participant Group performed (training
routine that yielded RCNN-TL’s pre-trained model) while wearing an EMG and IMU
armband. The yellow panels illustrate the steps that the Simulated Prosthesis (SP)
Participant Group performed: (B) respective training routines that yielded RCNN-TL’s
retrained model and LDA-Baseline’s trained model, and (C) subsequent controller
testing using functional tasks, all while wearing an EMG and IMU armband plus a
simulated prosthesis.

(1) A large General Participant Group’s data created a control starting point for new 152

users. RCNN-TL’s Model Pre-Training—Each General Participant Group member 153

performed a training routine (isotonic forearm muscle contractions were executed in four 154

limb positions), during which their forearm EMG and IMU signals were collected. Their 155

collective resulting signal data, along with the corresponding classes of muscle 156

contractions, informed RCNN-TL’s pre-trained control model. 157

(2) A new, smaller Simulated Prosthesis (SP) Participant Group wore a simulated 158

prosthesis. 159

RCNN-TL’s Model Retraining & Testing—Each SP Participant Group member 160

performed a brief training routine (isometric contractions were held in three limb 161

positions). The resulting participant-specific EMG and IMU data, plus classes of muscle 162

contractions, were subsequently used to calibrate RCNN-TL’s model. Participants 163

tested RCNN-TL by performing functional tasks across multiple limb positions—the 164

Pasta Box Task [38] and the Refined Clothespin Relocation Test (RCRT) [65]. 165

LDA-Baseline’s Model Training & Testing—The forearm muscle signals of each 166

SP Participant Group member were also captured using a standard pattern recognition 167

training routine that was not designed to mitigate the limb position effect (isometric 168

contractions were held in one limb position) [23]. The resulting EMG data, plus classes 169

of muscle contractions, were used to train LDA-Baseline’s model. Each SP Participant 170

Group member tested LDA-Baseline by performing the Pasta Box Task [38] and 171

RCRT [65]. 172

Methods 173

What follows are details about our reinvestigation research methods, including: 174

participant descriptors; muscle signal data collection and processing techniques; a 175

description of the simulated prosthesis donned by participants; specifications of the 176

control models under investigation and their training requirements; setup of the testing 177

environment; the functional tasks used to assess control; the participant survey 178

administration process; control data processing techniques to yield the suite of metrics; 179
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the statistical analysis of such metrics; and the identification of instances of the limb 180

position effect resulting from this analysis. 181

Participants 182

Participants recruitment took place from March 2, 2022, to March 31, 2022. All 183

participants provided written informed consent, as approved by the University of 184

Alberta Health Research Ethics Board (Pro00086557). 185

General Participant Group (without simulated prosthesis) —Nineteen participants 186

without upper limb impairment were recruited. All had normal or corrected vision, 10 187

were male, nine were female, 17 were right-handed. They had a median age of 25 years 188

(range: 19–58 years) and median height of 170 cm (range: 159–193 cm). Each of the 19 189

participants completed one data collection session. 190

SP Participant Group (with donned simulated prosthesis) —A total of nine new 191

participants without upper limb impairment were recruited. One participant was 192

removed due to their inability to reliably control the donned simulated prosthesis even 193

after control practice. Of the remaining eight participants, all had normal or corrected 194

vision, five were male, three were female, seven were right-handed. They had a median 195

age of 22 years (range: 20–56 years) and median height of 181 cm (range: 169–185 cm). 196

No participants had experience with EMG pattern recognition control using a simulated 197

prosthesis. The eight participants completed two data collection sessions on different 198

days, with a median of 24 days between sessions (range: 18 – 45 days). Half of the 199

participants retrained/tested RCNN-TL in their first session (as shown in Fig 1B–C), 200

and the other half trained/tested LDA-Baseline in their first session (also shown in 201

Fig 1B–C). Each trained/tested the other controller in their second session. 202

Signal Data Collection & Processing Procedure 203

Participants in both groups wore a Myo gesture control armband (Thalmic Labs, 204

Kitchener, Canada)over their largest forearm muscle bulk [66]. That is, at 205

approximately the upper third of their forearm, as shown in Fig 2A (with the top of the 206

armband at a median of 28% of the way down the forearm from the medial epicondyle 207

to the ulnar styloid process). The Myo armband contained eight surface electrodes to 208

collect EMG data at a sampling rate of 200 Hz. The Myo armband also contained one 209

IMU to collect limb position data (three accelerometer, three gyroscope, and four 210

quaternion data streams) at 50 Hz. Myo Connect software was used to stream and 211

record EMG and IMU data in Matlab. 212

The EMG data from the Myo armband were filtered using a high pass filter with a 213

cutoff frequency of 20 Hz (to remove movement artifacts), as well as a notch filter at 60 214

Hz (to remove electrical noise). The accelerometer data streams were upsampled to 200 215

Hz (using previous neighbour interpolation) to align them with the corresponding EMG 216

data. Data were then segmented into windows (160-millisecond with a 40-millisecond 217

offset). 218

Simulated Prosthesis & Donning Procedure 219

The simulated prosthesis used in this study was the 3D-printed Modular-Adaptable 220

Prosthetic Platform (MAPP) [67] (shown in Fig 2B). It was fitted to each SP 221

Participant Group member’s right arm for simulation of transradial prosthesis use. The 222

MAPP’s previously-published design [67] was altered to improve wearer comfort in our 223

study—the distal ring was made to resemble the oval shape of a wrist and the hand 224

brace was elongated so that the distal ring would sit more proximally on the wearer’s 225

wrist. A 3D-printed robotic hand [68] was affixed to the MAPP beneath the 226
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Fig 2. Myo armband and simulated prosthesis. A) Myo armband on a participant’s
forearm and B) simulated prosthesis on a participant’s forearm, with labels indicating
the sleeve, two pieces of liner, hand brace, distal ring, cushions, wrist motor, and hand
motor. Adapted from Williams et al. [26]

participant’s hand. Wrist rotation capabilities were also added to the device. Hand and 227

wrist movements were each powered by a Dynamixel MX Series motor (Robotis Inc., 228

Seoul, South Korea). 229

After placement of the Myo armband, each SP Participant Group member donned a 230

thin, protective sleeve and then the simulated prosthesis. To increase participant 231

comfort, pieces of thermoplastic elastomer liner were placed inside the distal ring and 232

just above the participant’s elbow, and 3D-printed cushions, made of Ninjaflex Cheetah 233

filament (Ninjatek, Inc.), were placed throughout the device socket (shown in Fig 2B). 234

The secureness of the device and the participants’ comfort were checked before 235

proceeding with controller training. 236

Control Model Descriptions & Training Routines 237

RCNN-TL’s Model—Bayesian optimization automatically determined the number of 238

convolution layers, number of filters, filter size, pooling size, and patience required for 239

the classifier used in this controller. Optimization was performed in two steps: first, the 240

number of layers along with each hyperparameter being optimized were determined 241

using a broad range of values; thereafter, values were refined using a narrower range 242

(centered at earlier optimized values). RCNN-TL’s model architecture consisted of 19 243

layers, as illustrated in Fig 3. In this model, a sequence input layer first received and 244

normalized the training data. Then, a sequence folding layer was used, allowing 245

convolution operations to be performed independently on each window of EMG and 246

accelerometer data. This was followed by a block of four layers: a 2D convolution, a 247

batch normalization, a rectified linear unit (ReLU), and an average pooling layer. This 248

block of layers was repeated once more. Each of the two average pooling layers had a 249

pooling size of 1x4. A block of three layers followed: a 2D convolution, a batch 250

normalization, and a ReLU layer. The optimal number of filters in the convolution 251

layers were determined to be 4, 16, and 32, respectively, and each had a filter window 252

size of 1x3. The next layers included a sequence unfolding layer (to restore the sequence 253

structure), a flatten layer, a long short-term memory (LSTM) layer, and a fully 254

connected layer. Finally, a softmax layer and classification layer were used. To prevent 255

overfitting, a patience parameter was set to trigger early stopping when the validation 256

loss increased five times (similar to methods used in other works, including Côté-Allard 257

et al. [69]). 258

Fig 3. Architecture of RCNN-TL’s model: sequence input layer; sequence folding
layer; two blocks of 2D convolution, batch normalization, rectified linear unit (ReLU),
and average pooling; one block of 2D convolution, batch normalization, and ReLU;
sequence unfolding layer; flatten layer; long short-term memory (LSTM) layer; fully
connected layer; softmax layer; and classification layer. Adapted from Williams et al. [26]

RCNN-TL’s Model Pre-Training Routine—General Participant Group members 259

followed onscreen instructions, performing muscle contractions in 5 wrist positions (rest, 260

flexion, extension, pronation, and supination; shown in Fig 1A), for 5 seconds each. The 261

muscle contractions were performed twice in 4 limb positions: arm at side, elbow bent 262

at 90°, arm out in front at 90°, and arm up 45° from vertical (shown in Fig 1A). This 263

position-aware routine was similar to those used in other real-time control studies 264
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aiming to mitigate the limb position effect [8, 23,66]) and took approximately 200 265

seconds. The resulting EMG and accelerometer data, plus corresponding classes of 266

muscle contractions, were used to pre-train RCNN-TL’s model. 267

RCNN-TL’s Model Retraining Routine—Our previous offline research [70] 268

examined methods of reducing user training burden and uncovered a 269

shortened/optimized routine that still yielded high predictive accuracy. In keeping with 270

this, the SP Participant Group members followed onscreen instructions, performing 271

muscle contractions in the same 5 wrist positions (shown in Fig 1B), for only 2 (rather 272

than 5) seconds each. The muscle contractions were performed twice in only 3 (not 4) 273

limb positions: arm at side, elbow bent at 90°, and arm up 45° from vertical (shown in 274

Fig 1B). The resulting EMG and accelerometer data, plus corresponding classes of 275

muscle contractions, were used to retrain RCNN-TL’s model. 276

LDA-Baseline’s Model—Four commonly used EMG features were chosen for 277

implementation of this controller’s classifier: mean absolute value, waveform length, 278

Willison amplitude, and zero crossings [71]. These features were calculated for each 279

channel within each window of EMG data. A pseudo-linear LDA discriminant type was 280

used, given that columns of zeros were occasionally present in some classes for some 281

features (including Willison amplitude and zero crossings). 282

LDA-Baseline’s Model Training Routine—SP Participant Group members 283

followed onscreen instructions, performing muscle contractions in 5 wrist positions 284

(shown in Fig 1B), for 5 seconds each. The muscle contractions were performed twice, 285

with the participants’ elbow bent at 90° (shown in Fig 1B). This single-position routine 286

mimicked standard myoelectric prosthesis training [3] and took approximately 50 287

seconds. The resulting EMG data and corresponding classes of muscle contractions were 288

used to train LDA-Baseline’s model. 289

RCNN-TL & LDA-Baseline Implementation—Each model was trained using 290

Matlab software running on a computer with an Intel Core i9-10900K CPU (3.70 GHz) 291

with 128 GB of RAM. RCNN-TL’s and LDA-Baseline’s models were retrained/trained 292

in median times of 3.41 and 0.39 seconds, respectively. For both controllers, Matlab 293

code was written to receive signal data and subsequently classify wrist and hand 294

movements. Code was also written to send motor instructions, based on the resulting 295

classifications, to brachI/Oplexus software [72] (flexion controls hand close, extension 296

controls hand open, pronation controls wrist counter-clockwise rotation, and supination 297

controls wrist clockwise rotation). brachI/Oplexus relayed the corresponding control 298

signals to the simulated prosthesis’ motors. The positions of the motors were recorded 299

with a sampling rate of 50 Hz. 300

Simulated Device Control Practice & Testing Eligibility 301

During each testing session, SP Participant Group members took part in a control 302

practice period (approximately 40 minutes), during which they were taught how to 303

operate the simulated prosthesis using isometric muscle contractions, under three 304

conditions: 305

1. Controlling the hand open/close while the wrist rotation function was disabled. 306

They practiced grasping, transporting, and releasing objects at varying heights. 307

2. Controlling wrist rotation while the hand open/close function was disabled. They 308

practiced rotating objects at varying heights. 309

3. Controlling the hand open/close function in concert with the wrist rotation 310

function. They practiced tasks that involved grasping, transporting, rotating, and 311

releasing objects at varying heights. 312
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Following their practice period, participants were tested to determine whether they 313

could reliably control the simulated prosthesis. Two cups were situated in front of them 314

at two different heights, with a ball in one of the cups. Participants were asked to pour 315

the ball between the two cups, and instances when they dropped the ball or a cup were 316

recorded. If participants could not complete at least 10 pours with a success rate of at 317

least 75% within 10 minutes, the session was ended, and they were removed from the 318

study. Recall that one participant was removed (as stated in the Participants section), 319

given that they could not complete this activity with LDA-Baseline in their first session. 320

Motion Capture Setup & Kinematic Calibrations 321

For participants who were deemed eligible for controller testing, the following motion 322

capture steps were undertaken: Step 1: Motion Capture Setup—An 8-camera 323

OptiTrack Flex 13 motion capture system (Natural Point, OR, USA) was used to 324

capture participant movements and task objects at a sampling rate of 120 Hz. Eight 325

individual markers were placed on the simulated prosthesis hand, circled in Fig 4 (one on 326

the thumb, one on the index finger, and the remaining six throughout the back and side 327

of the hand to ensure reliable rigid body tracking). Rigid marker plates were also placed 328

on each participant’s right forearm (affixed to the simulated prosthesis socket), upper 329

arm, and thorax, in accordance with Boser et al.’s cluster-based marker model [73]. 330

Step 2: Kinematic Calibrations—Each participant was required to perform two 331

kinematics calibrations. As per Boser et al., the first calibration called for participants 332

to hold an anatomical pose [73], for capture of the relative positions of the hand 333

markers and motion capture marker plates when wrist rotation and shoulder 334

flexion/extension angles were at 0°. The second calibration required participants to hold 335

a ski pose [73], for the purpose of refining wrist rotation angles. Here, three additional 336

individual markers were affixed to the simulated prosthesis, as shown in Figure 4: 337

1. One marker placed on the top of the prosthesis’ hand motor, with the device hand 338

closed 339

2. One marker placed on the bottom of the prosthesis’ wrist motor, forming a line 340

with the first marker (to represent the axis about which the wrist rotation 341

occurred) 342

3. One marker placed on the side of the prosthesis’ wrist motor (to create a second 343

axis, perpendicular to the axis of wrist rotation) 344

Upon completion of the two kinematics calibrations, all Step 2 markers were 345

removed. What remained were only those markers affixed during Step 1 for data 346

collection purposes.

Fig 4. Motion capture markers affixed to the simulated prosthesis. The eight
motion capture markers that remained attached to the hand are circled, and the three
additional individual markers for the ski pose calibration are labelled.

347

Functional Tasks & Data Collection 348

Motion capture data were collected during the execution of the following functional 349

tasks: Pasta Box Task (Pasta)—Participants were required to perform three distinct 350

movements, where they transported a pasta box between a 1st, 2nd, and 3rd location (a 351

side table and two shelves at varying heights on a cart, including across their 352

midline) [38]. The task setup is shown in Fig 5A. Motion capture markers were placed 353
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on all task objects, as per Valevicius et al. Participants performed a total of 10 Pasta 354

trials. If participants dropped the pasta box, placed it incorrectly, performed an 355

incorrect movement sequence, or hit the frame of the task cart, the trial was not 356

analyzed. Pasta was the first of two functional tasks performed as it was considered 357

easier. 358

RCRT—Participants were required to perform three distinct movements using 359

clothespins. They moved three clothespins between 1st, 2nd, and 3rd locations on 360

horizontal and vertical bars [65]. To simplify trial execution, RCRT was split into 361

RCRT Up and RCRT Down trials. The task setup for these trials is shown in Fig 5B. 362

During Up trials, participants moved the three clothespins from the horizontal bar to 363

the vertical bar, and during Down trials, they moved the clothespins from the vertical 364

bar to the horizontal bar. A height adjustable cart was set such that the top of each 365

participants’ shoulder was aligned with the midpoint between the top two targets on the 366

vertical bar. Motion capture markers were placed on all task objects, as per our earlier 367

research [26]. Participants performed a total of 10 Up trials and 10 Down trials. If 368

participants dropped a clothespin, placed it incorrectly, or performed an incorrect 369

movement sequence, the trial was not analyzed. Performance of RCRT Up and Down 370

trials were alternated, and started with RCRT Up. 371

Fig 5. Task setup for (A) Pasta and (B) RCRT Up and Down. In panel (A), the
1st, 2nd, and 3rd pasta box locations are labelled. The pasta box movement sequence is
1st –>2nd –>3rd –>1st locations. In panel (B), the 1st, 2nd, and 3rd clothespin locations
on the horizontal and vertical bars are labelled. The clothespin movement sequences in
RCRT Up are horizontal 1st –>vertical 1st, horizontal 2nd –>vertical 2nd, and horizontal
3rd –>vertical 3rd locations. The clothespin movement sequence in RCRT Down follows
the same order, but with each clothespin moved from vertical to horizontal locations.

Survey Administration 372

At the end of each session, each participant completed two surveys: the NASA-TLX [62] 373

and a usability survey [64]. The former was administered using the official NASA-TLX 374

iPad application, where participants scored their device control workload demand on a 375

continuous rating scale with endpoint anchors of low and high. The usability survey was 376

administered on paper, where participants marked their usability scores on a continuous 377

rating scale with endpoint anchors of 0 and 5. In their second session, participants were 378

not reminded of their survey responses from their first session. 379

Data Processing & Calculation Procedures 380

Motion Capture Data Cleaning & Calculations—Motion capture marker 381

trajectory data were cleaned and filtered. As per Valevicius et al. [38], grip aperture 382

was calculated as the distance between the motion capture markers on the simulated 383

prosthesis’ index and thumb, and a 3D object representing the simulated prosthesis’ 384

hand was generated using the remaining 6 hand motion capture markers. Then, through 385

calculations modified from Boser et al. [73], wrist rotation was calculated using the 386

forearm and hand motion capture markers, and shoulder flexion/extension was 387

calculated using the upper arm and thorax motion capture markers. 388

Data Segmentation—The task data were segmented in accordance with Valevicius et 389

al. [38], as follows: 390

• For each task, the data from each trial were first divided into distinct movements 391

1, 2, and 3 based on hand velocity and the velocity of the pasta box/clothespins 392

during transport. 393
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Pasta Movements 1, 2, and 3 differentiated between: (1) reaching for the pasta 394

box at its 1st location, grasping it, transporting it to its 2nd location, releasing it, 395

and moving their hand back to a home position; (2) reaching for the pasta box at 396

the 2nd location, grasping it, transporting it to its 3rd location, releasing it, and 397

moving their hand back to the home position; and (3) reaching for the pasta box 398

at the 3rd location, grasping it, transporting it back to the 1st location, releasing 399

it, and moving their hand back to the home position. 400

RCRT Up Movements 1, 2, and 3 differentiated between: (1) reaching for the 1st 401

clothespin at its 1st horizontal location, grasping it, transporting it to its 1st 402

vertical location, releasing it, and moving their hand back to a home position; (2) 403

reaching for the 2nd clothespin at its 2nd horizontal location, grasping it, 404

transporting it to its 2nd vertical location, releasing it, and moving their hand 405

back to the home position; and (3) reaching for the 3rd clothespin at its 3rd 406

horizontal location, grasping it, transporting it to its 3rd vertical location, 407

releasing it, and moving their hand back to the home position. 408

RCRT Down Movements 1, 2, and 3 differentiated between: (1) reaching for the 409

1st clothespin at its 1st vertical location, grasping it, transporting it to its 1st 410

horizontal location, releasing it, and moving their hand back to a home position; 411

(2) reaching for the 2nd clothespin at its 2nd vertical location, grasping it, 412

transporting it to its 2nd horizontal location, releasing it, and moving their hand 413

back to the home position; and (3) reaching for the 3rd clothespin at its 3rd 414

vertical location, grasping it, transporting it to its 3rd horizontal location, 415

releasing it, and moving their hand back to the home position. 416

• Then, the data from each of the three movements were further segmented into five 417

phases of (1) Reach, (2) Grasp, (3) Transport, (4) Release, and (5) Home (note 418

that the Home phase was not used for data analysis) 419

• Finally, two movement segments of (1) Reach-Grasp and (2) Transport-Release 420

were defined for select metrics analysis 421

• Six final levels for data analysis resulted: controller (either RCNN-TL or 422

LDA-Baseline), task (either Pasta, RCRT Up, or RCRT Down), trial (1–10), 423

movement (1–3), movement segment (Reach-Grasp or Transport-Release), and 424

phase (Reach, Grasp, Transport, or Release) 425

Grip Aperture & Wrist Rotation Re-Calculations—The grip aperture and wrist 426

rotation angle were re-calculated using the data from the simulated prosthesis’ two 427

motors, given that small (yet informative) adjustments in the positions of these motors 428

may not have been detected by motion capture cameras. The positions of these motors 429

were first upsampled to 120 Hz using linear interpolation. Grip aperture re-calculation: 430

motion-capture-calculated grip aperture was used to fit a trinomial curve to transform 431

the hand motor data to grip aperture. Wrist motor angle re-calculation: 432

motion-capture-calculated wrist rotation was used to fit a binomial curve to transform 433

the wrist motor data to wrist rotation angles. 434

Final Suite of Metrics Calculations—The final suite of metrics was calculated using 435

the procedures described in Tables 1, 2, and 3. Note that the simultaneous 436

wrist-shoulder movements metric was calculated only for Reach and Transport phases of 437

RCRT Up and RCRT Down trials, because these were the only phases that required the 438

participant to rotate the device wrist while moving their arm to a different height. 439

Statistical Analysis 440

To investigate task performance difference between RCNN-TL and LDA-Baseline, the 441

following statistical analyses were performed: 442
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For metrics that were analyzed at the phase or movement segment 443

level—Participants’ results were first averaged across trials and movements. If results 444

were normally-distributed, a two-factor repeated-measures analysis of variance 445

(RMANOVA) was conducted using the factors of controller and phase/movement 446

segment. When the resulting controller effects or controller-phase/movement segment 447

interactions were deemed significant (that is, when the Greenhouse-Geisser corrected p 448

value was less than 0.05), pairwise comparisons between the controllers were conducted. 449

If results were not normally-distributed, the Friedman test was conducted. When the 450

resulting p value was less than 0.05, pairwise comparisons between the controllers were 451

conducted. Pairwise comparisons (t-test/Wilcoxon sign rank test) were deemed 452

significant if the p value was less than 0.05. 453

For metrics that were analyzed at the trial level—Participants’ results were first 454

averaged across trials, then pairwise comparisons were conducted as detailed above. 455

For metrics that were analyzed at the task or controller level—Pairwise 456

comparisons were conducted as detailed above. 457

Limb Position Effect Identification 458

The limb position effect has been shown to cause control accuracy degradation and large 459

between-participant control variation in offline research [41]. However, earlier works 460

have not pinpointed specific instances of the effect in functional task execution data. 461

Using the novel control characteristics metrics introduced in this work, identification of 462

such instances is possible—larger medians and/or larger interquartile ranges (IQRs) can 463

provide evidence of degraded control. To identify the limb position effect in this study, 464

metrics’ medians and IQRs for Reach, Grasp, Transport, and Release phases were 465

considered separately across movements 1, 2, and 3 of Pasta, RCRT Up and RCRT 466

Down. An occurrence where movement variation was not due to the limb position effect 467

is illustrated in Fig 6A, where the number of wrist rotation adjustments metric in 468

RCRT Down Release phases have medians and IQRs that remain relatively constant at 469

different limb positions. Conversely, an occurrence where movement variation was due 470

to the limb position effect can be seen in Fig 6B. Here, the same metric in RCRT Down 471

Grasp phases shows its medians and IQRs both increasing as the limb position changed. 472

Fig 6. Box plots indicating LDA-Baseline number of wrist rotation adjust-
ments in each (A) RCRT Down Release and (B) RCRT Down Grasp of each task
movement (Mvmt). Medians are indicated with thick lines, and interquartile ranges are
indicated with boxes.

The following limb position identification process was used to examine all control 473

characteristics metrics for Reach, Grasp, Transport, and Release phases across the three 474

movements of Pasta, RCRT Up, and RCRT Down: 475

• First, the three medians were rescaled as percentages of the maximum of the three 476

medians 477

• Next, the three IQRs were rescaled as percentages of the maximum of the three 478

IQRs 479

• Then, the limb position effect identification rules outlined in Table 4 were 480

developed—through iterative trial-and-error comparisons of potential rules to 481

visual representations of metrics’ medians and IQRs (as in Figs 6BA, B) 482

• The resulting rules were subsequently used to identify instances of the limb 483

position effect. Note that for Pasta, two rule options were used, given that the 484
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limb position effect was most likely to be present in that task’s movements 2 or 3 485

(at the highest shelf location). For RCRT Up and RCRT Down, only one rule 486

option was necessary, given that the limb position effect was most likely to occur 487

in movement 3 (at the top clothespin location). For each rule, the limb position 488

effect was identified only in instances where all conditions were met (that is, when 489

all rules in a row of Table 4 were true). 490

The abovementioned rules are applicable to metrics where smaller values are 491

indicative of control improvements, as was the case with most control characteristics 492

metrics in this work. The exception was the simultaneous wrist-shoulder movements 493

metric, where larger values were indicative of improved control. To adjust for this 494

exception, the three movements’ medians were modified by subtracting each from 100% 495

(therefore changing these medians to represent the percent of the phase in which 496

simultaneous movements did not occur). After this adjustment, the limb position 497

identification process could be followed. 498

Results 499

Task Performance 500

The significant differences across the task performance metrics are reported in Table 5. 501

Task specific outcomes derived from the table include: 502

Pasta—RCNN-TL performed significantly better than LDA-Baseline in one metric: 503

Release phase duration. 504

RCRT Up—LDA-Baseline performed significantly better than RCNN-TL in one 505

metric: success rate. 506

RCRT Down—RCNN-TL performed significantly better than LDA-Baseline in one 507

metric: Grasp relative phase duration. LDA-Baseline performed significantly better 508

than RCNN-TL in one metric: release relative phase duration. 509

Summary—Only 4 of the 48 Task Performance metrics showed significant differences, 510

2 of which demonstrated that RCNN-TL performed better than LDA-Baseline. It 511

appears that a richer set of metrics is needed to better understand such 512

outcomes—beyond those derived from task performance metrics alone. 513

Control Characteristics 514

The significant differences across control characteristics metrics are reported in Table 6. 515

Task specific outcomes derived from the table include: 516

Table 4. Limb position effect identification rules for control characteristics
metrics.

The rules used for limb position effect identification are based on each movement’s
median and interquartile range (IQR). In each row, all conditions had to be true for a
positive identification of the limb position effect.
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Pasta—RCNN-TL performed significantly better than LDA-Baseline in seven metrics. 517

Examples of one such metric are illustrated in S1 Table. (for Reach-Grasp grip aperture 518

plateau). The limb position effect was identified in 12 metrics under LDA-Baseline 519

control, and in one metric (Grasp total muscle activity) under RCNN-TL control. Four 520

of the seven significant RCNN-TL versus LDA-Baseline differences were in metrics that 521

showed evidence of the limb position effect. 522

RCRT Up—No significant differences were identified, and no metrics showed evidence 523

of the limb position effect. 524

RCRT Down—RCNN-TL performed significantly better than LDA-Baseline in two 525

metrics. Examples of one such metric are illustrated in S1 Table. (for Reach 526

simultaneous wrist-shoulder movements). The limb position effect was identified in four 527

other metrics, with one such instance illustrated in Fig 6B (Grasp number of wrist 528

rotation adjustments). 529

Summary—9 of the 81 Control Characteristics metrics showed significant differences, 530

all of which demonstrated that RCNN-TL performed better than LDA-Baseline. 531

Furthermore, 16 metrics showed evidence of the limb position effect. All such metrics 532

Table 5. Task Performance metrics results.

Each cell contains the RCNN-TL median (and interquartile range in parentheses) in the
first line and the LDA-Baseline median (interquartile range) in the second line. Green
cells indicate metrics in which RCNN-TL performed significantly better than
LDA-Baseline (solid green: p ¡ 0.005, dense green grid: p ¡ 0.01). Red cells indicate
metrics in which LDA-Baseline performed significantly better than RCNN-TL (sparse
red grid: p ¡ 0.05).
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were only identified in Pasta and RCRT Down, suggesting that these outcomes are 533

Table 6. Control Characteristics metrics results.

Each cell contains the RCNN-TL median (and interquartile range in parentheses) in the
first line and the LDA-Baseline median (interquartile range) in the second line. Green
cells indicate metrics in which RCNN-TL performed significantly better than
LDA-Baseline (solid green: p ¡ 0.005, dense green grid: p ¡ 0.01, sparse green grid: p ¡
0.05). Dark grey cells indicate instances in which a metric was not relevant. Dark cell
borders indicate metrics that displayed evidence of the limb position effect under
LDA-Baseline control. A double cell border indicates the metric that displayed evidence
of the limb position effect under both LDA-Baseline and RCNN-TL control.
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likely influenced by the position-aware nature of RCNN-TL control. 534

User Experience 535

User experience metrics were calculated at the controller level, rather than for each task 536

(detailed in Table 3). There were no significant differences between RCNN-TL and 537

LDA-Baseline. Box plots illustrating the median controller-level scores across 538

participants can be found in Fig 7. 539

Fig 7. Box plots indicating user experience metrics results with RCNN-TL
(orange) and LDA-Baseline (grey) for: (A) NASA-TLX, and (B) usability survey.
Medians are indicated with thick lines, interquartile ranges are indicated with boxes,
and outliers are indicated with circles.

Of note, RCNN-TL scored better than LDA-Baseline in the NASA-TLX’s Mental 540

Demand dimension and in the usability survey’s Intuitiveness dimension. These results 541

suggest that RCNN-TL offered more intuitive control. The two controllers had equal 542

median scores in NASA-TLX’s Effort dimension. LDA-Baseline scored better than 543

RCNN-TL in all other dimensions. 544

Discussion 545

The suite of myoelectric prosthesis control evaluation metrics introduced in this work 546

(detailed in Tables 1, 2, and 3) yielded informative limb position effect-related 547

outcomes that could only be speculated upon in our earlier work [26]. What follows is a 548

discussion about the metrics-driven findings from this current work, with a focus on 549

understanding when and why limb position variations caused control challenges during 550

participants’ execution of the Pasta Box Task (Pasta) and the Refined Clothespin 551

Relocation Test (RCRT Up and RCRT Down). 552

Findings from Control Characteristics Metrics 553

Limb Position Effect Identification—To our knowledge, no other study has 554

identified occurrences of the limb position effect using functional task assessment 555

outcomes. In this work, we used functional tasks to assess device control and found that 556

analysis of our control characteristics metrics did uncover instances of the limb position 557

effect. In LDA-Baseline results, instances were identified in Pasta and RCRT Down (16 558

of 81 cells with dark borders in Table 6), and never in RCRT Up. Note that for 559

RCNN-TL, one instance of the limb position effect was uncovered—Grasp total muscle 560

activity in Pasta. However, this instance may simply be due to inevitable positional 561

EMG signal variations, rather than due to control degradation. Based solely on 562

LDA-Baseline results, we surmised the following: 563

• Raised arm positions in the sagittal plane caused grasp challenges for participants, 564

as evidenced by the identification of the limb position effect only during the Grasp 565

phases of RCRT Down (in four metrics). 566

• Raised arm positions in the sagittal plane did not cause release challenges for 567

participants, as evidenced by the absence of limb position effect identification in 568

RCRT Up. Logically, as hand opening during object release phases is controlled 569

by wrist extension muscle activation, classification of wrist extension was not 570

affected by the limb position effect. 571
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• Arm movements along the frontal plane caused further control challenges for 572

participants. Not only did Pasta require participants to perform arm raises in the 573

sagittal plane, large cross-body and away-from-body movements had to be 574

introduced to accomplish this task. The limb position effect was detected in three 575

of four Pasta phases (four times in Reach, once in Reach-Grasp, three times in 576

Grasp, and four times in Release) 577

So overall, LDA-Baseline control often appeared to be impeded by shoulder position 578

fluctuations in the frontal plane. Furthermore, arm raises limited to the sagittal plane 579

caused only grasp control deterioration for this controller. Both such circumstances 580

identify catalysts for limb position effect control challenges. 581

Evidence of Limb Position Effect Mitigation—Recall that Table 6 also identified 582

significant differences in control characteristics metrics, where green cells indicated 583

instances where RCNN-TL performed significantly better than LDA-Baseline. Nine of 584

the 81 metrics (cells) were significant (shaded in green), indicating that RCNN-TL 585

always performed the same as, or significantly better than, LDA-Baseline for these 586

metrics. Furthermore, all such significant differences presented in Table 6 occurred in 587

Pasta and RCRT Down, and never in RCRT Up. This coincides with those tasks where 588

instances of the limb position effect were identified, suggesting that RCNN-TL 589

successfully mitigated such occurrences. 590

Interestingly, RCNN-TL performed significantly better than LDA-Baseline in several 591

Pasta metrics, even though Pasta involves numerous limb positions that were not 592

included in RCNN-TL’s pre-training/retraining routines. We speculate that the 593

pre-training data from 19 individuals provided sufficient variety to result in a controller 594

that is robust to limb positions not included in its training routines. 595

Significant control characteristics differences between RCNN-TL and LDA-Baseline 596

were not identified for RCRT Up. Recall that the problem was not identified in RCRT 597

Up, despite this task’s requirement for varied limb positions. So, if the limb position 598

effect did not cause control degradation for either controller, then perhaps: (a) 599

LDA-Baseline simply performed well during this task and control improvements were 600

not necessary, or (b) RCNN-TL control should be improved in instances when the limb 601

position effect is not evident. 602

Merits of Control Characteristics Metrics—Significant differences between 603

RCNN-TL and LDA-Baseline were identified in at least one phase/movement segment 604

for all control characteristics metrics analyzed, with the exceptions of total grip 605

aperture movement and total muscle activity. Still, these two metric exceptions might 606

yield outcomes beneficial to other controller comparisons and should not be discounted 607

from the metrics introduced in this work. Total grip aperture movement, for instance, 608

might help to identify grasping efficiency during task execution, and total muscle 609

activity might help to identify muscle exertion required for task completion. Future 610

controller comparisons are expected to determine whether these metrics are sensitive to 611

controller variations. 612

Findings from Task Performance Metrics 613

Table 5 identified 2 of 48 metrics that showed RCNN-TL performing significantly better 614

than LDA-Baseline (for Release phase duration in Pasta and Grasp relative phase 615

duration in RCRT Down), and 2 of 48 metrics that showed the contrary (for success 616

rate in RCRT Up and Release relative phase duration in RCRT Down). These outcomes 617

coincided with those of our earlier work [26], however, the control characteristics metrics 618

introduced in this study facilitated a deeper understanding of why task performance 619

deteriorated at times—specifically, when instances of the limb position effect hampered 620

control. The following task performance insights were uncovered in this work: 621

August 23, 2023 19/28

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2023. ; https://doi.org/10.1101/2023.08.28.554998doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.28.554998
http://creativecommons.org/licenses/by/4.0/


• RCNN-TL successfully mitigated the limb position effect, as evidenced by the two 622

specific instances when its control was significantly better than that of 623

LDA-Baseline—in Pasta Release and RCRT Down Grasp phases. Our control 624

characteristics analysis revealed that participants struggled during these phases 625

(identified as instances where the limb position effect occurred). Such struggles 626

were apparent when participants used LDA-Baseline, but not so when using 627

RCNN-TL. So, RCNN-TL likely remedied control degradation introduced by the 628

limb position effect. 629

• RCNN-TL may not have performed well in instances where the limb position 630

effect was not evidenced. Consider that two task performance metrics showed that 631

RCNN-TL performed significantly worse than LDA-Baseline: (1) the relative 632

duration of the RCRT Down Release phases, and (2) the RCRT Up success rate. 633

Furthermore, consider that analysis of control characteristics revealed that device 634

control was not affected by the limb position effect in either the RCRT Down 635

Release phase, or any phase of RCRT Up. Together, these outcomes support the 636

hypothesis that RCNN-TL may not have performed well in instances where the 637

limb position effect was not evidenced. 638

– Of note, the lower RCRT Up success rate was due to clothespins being 639

dropped by participants. This tendency towards unintended hand opening is 640

in keeping with RCNN-TL’s control characteristics results versus those of 641

LDA-Baseline, with higher medians in grip aperture total movement, higher 642

medians in number of grip aperture adjustments, along with larger IQRs in 643

Reach and Grasp phases of these same metrics. 644

Findings from User Experience Metrics 645

Fig 7 presented the user experience metrics. Despite this work’s improved control 646

outcomes, no significant differences were identified in the NASA-TLX and usability 647

surveys. This work uncovered the following insights, to guide future use of user 648

experience metrics: 649

• Without the provision of participants’ scores from their first testing session upon 650

return for their second session (following the washout period of at least one week), 651

their initial anchor scores of “good” and “poor” were not likely to have been 652

precisely recalled. 653

• Given that participants were without limb loss, they only had a perception of fully 654

functional control using their intact hand and wrist. They did not have a baseline 655

perception of poor or diminished control, as none had prior experience with a 656

simulated prosthesis. As a result, their subjective anchor scores of “good” and 657

“poor” in their first session were likely influenced by their perception of perfect 658

control, whereas in their second session, they might have been further influenced 659

by their first session’s simulated prosthesis control experience. 660

Overall, a specific question about which controller each participant preferred (asked 661

at the end of their second session) would better gauge their controller partiality. In 662

addition, reminding participants of their first-session scores immediately prior to their 663

second session survey completion, might address expectation-related variability in 664

anchor scores [74]. After this current study was conducted, a new Prosthesis Task Load 665

Index (PROS-TLX) was developed and validated [75], and should be considered in 666

future comparative prosthesis control research. 667
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Evidence of Training Routine Reduction 668

The General Participant Group performed a long (200-second) pre-training routine prior 669

to RCNN-TL use. This pre-training duration is similar to that of position-aware 670

controller solutions in the literature [8, 12,20,66,76–78]. RCNN-TL retraining, as 671

performed by the SP Participant Group, was accomplished using a shortened 672

(60-second) routine. That is, a 70% decrease in model training duration resulted due to 673

the introduction of transfer learning. This current research, therefore, confirms that TL 674

is a valuable adjunct to RCNN-based classification control, as it offers a model starting 675

point that needs only to be calibrated using a smaller amount of individual-specific data. 676

Notably, a TL solution is not possible with LDA-based control. Overall, this training 677

routine reduction solution shows promise towards solving the limb position effect 678

challenge—without the requirement of a burdensome training routine. 679

Limitations 680

As a first limitation of this study, participants without upper limb impairment were 681

recruited rather than myoelectric prosthesis users. Although these participants learned 682

how to control a simulated prosthesis, further practice may have been necessary to 683

accurately represent the control capabilities of myoelectric prosthesis users. Secondly, 684

the implementation of the surveys may not have adequately captured user experience 685

data. Thirdly, previous work had suggested that the conditions under which the 686

RCNN-TL pre-training data was collected could result in control flaws [26]—because 687

pre-training data from participants without a donned simulated prosthesis were too 688

dissimilar from those with a donned simulated prosthesis (the conditions under which 689

the retraining and device use occurred). This testing condition dissimilarity 690

consideration was not examined in the current study. Finally, although our 691

experimentation used optical motion capture technology to gather movement data, our 692

suite of control metrics is not reliant on this data for metrics calculations. Alternative 693

sources that capture grip aperture and wrist rotation (such as the positions of device 694

motors), along with shoulder flexion/extension (such as IMUs) can be used for such 695

calculations. Furthermore, other methods of segmenting functional tasks into Reach, 696

Grasp, Transport, and Release phases (such as IMUs) c 697

Future Work 698

RCNN-TL future work—Next steps for RCNN-TL should focus on improvements to 699

device control in instances when the limb position effect is least likely to occur. 700

Improvements to pre-training data collection conditions need to be studied. 701

Examination of RCNN-TL using myoelectric prosthesis users is also a necessary step. 702

Suite of control evaluation metrics future work—To verify whether the suite of 703

metrics introduced in this study are beneficial, future work should examine different 704

controllers, using both participants without limb loss wearing a simulated prosthesis and 705

actual myoelectric prosthesis users. 706

Conclusion 707

This work reinvestigated earlier comparative RCNN-TL versus LDA-Baseline research, 708

which recommended that pattern recognition-based control not be judged by task 709

performance alone, but rather, that control characteristics also be measured [26]. Then 710

collectively, the task performance and control characteristics should be weighed against 711

qualitative user experience [26]. The current study heeded these recommendations, and 712

in doing so, contributed and tested a viable suite of myoelectric prosthesis control 713
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evaluation metrics for use in future comparative control model research. Using these 714

metrics, this study has contributed insights into occurrences and implications of the 715

limb position effect challenge and offered validation that TL-based neural network 716

control solutions show promise towards solving this pervasive problem. The suite of 717

metrics introduced and subsequently used in this work is expected to benefit future 718

research intent on improving rehabilitation device control. 719

Supporting information 720

S1 Table. Metrics examples. This table contains figures that exemplify “good” 721

and “poor” results for selected metrics. For each metric presented, a description of the 722

example figure precedes that associated good/poor graphs. 723
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Cognitive vision system for control of dexterous prosthetic hands: Experimental
evaluation. Journal of NeuroEngineering and Rehabilitation. 2010;7:42.
doi:10.1186/1743-0003-7-42.

53. Marasco PD, Hebert JS, Sensinger JW, Beckler DT, Thumser ZC, Shehata AW,
et al. Neurorobotic fusion of prosthetic touch, kinesthesia, and movement
promotes intrinsic. Science Robotics. 2021;6:eabf3368.

54. Valevicius AM, Boser QA, Lavoie EB, Chapman CS, Pilarski PM, Hebert JS,
et al. Characterization of normative angular joint kinematics during two
functional upper limb tasks. Gait & Posture. 2019;69:176–86.

55. Lavoie EB, Valevicius AM, Boser QA, Kovic O, Vette AH, Pilarski PM, et al.
Using synchronized eye and motion tracking to determine high-precision
eye-movement patterns during object-interaction tasks. Journal of Vision.
2018;18(6):18. doi:10.1167/18.6.18.

August 23, 2023 26/28

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2023. ; https://doi.org/10.1101/2023.08.28.554998doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.28.554998
http://creativecommons.org/licenses/by/4.0/


56. Williams HE, Chapman CS, Pilarski PM, Vette AH, Hebert JS. Gaze and
Movement Assessment (GaMA): Inter-site validation of a visuomotor upper limb
functional protocol. PLoS ONE. 2019;14(12):e0219333.
doi:10.1371/journal.pone.0219333.

57. Patel GK, Hahne JM, Castellini C, Farina D, Dosen S. Context-dependent
adaptation improves robustness of myoelectric control for upper-limb prostheses.
Journal of Neural Engineering. 2017;14(5):056016. doi:10.1088/1741-2552/aa7e82.

58. Fu Q, Santello M. Improving fine control of grasping force during hand-object
interactions for a soft synergy-inspired myoelectric prosthetic hand. Frontiers in
Neurorobotics. 2018;11:71. doi:10.3389/fnbot.2017.00071.

59. Bouwsema H, Kyberd PJ, Hill W, van der Sluis CK, Bongers RM. Determining
skill level in myoelectric prosthesis use with multiple outcome measures. Journal
of Rehabilitation Research and Development. 2012;49(9):1331–48.

60. Zhang W, White M, Zahabi M, Winslow AT, Zhang F, Huang H, et al. Cognitive
workload in conventional direct control vs. pattern recognition control of an
upper-limb prosthesis. Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics (SMC). 2017; p. 2335–40.
doi:10.1109/SMC.2016.7844587.

61. Ingraham KA, Ferris DP, Remy CD. Evaluating physiological signal salience for
estimating metabolic energy cost from wearable sensors. Journal of Applied
Physiology. 2018;126(3):717–29. doi:10.1152/japplphysiol.00714.2018.

62. Hart SG. NASA-task load index (NASA-TLX); 20 years later. Proceedings of the
Human Factors and Ergonomics Society. 2006; p. 904–8.
doi:10.1177/154193120605000909.

63. Park J, Zahabi M. Cognitive Workload Assessment of Prosthetic Devices: A
Review of Literature and Meta-Analysis. IEEE Transactions on Human-Machine
Systems. 2022;52(2):181 – 95. doi:10.1109/THMS.2022.3143998.

64. Brenneis DJA, Dawson MR, Tanikawa H, Hebert JS, Carey JP, Pilarski PM. The
effect of an automatically levelling wrist control system. Proceedings of the IEEE
International Conference on Rehabilitation Robotics. 2019; p. 816–823.
doi:10.1109/ICORR.2019.8779444.

65. Hussaini A, Kyberd P. Refined clothespin relocation test and assessment of
motion. Prosthetics and Orthotics International. 2017;41(3):294–302.
doi:10.1177/0309364616660250.

66. Fougner A, Scheme E, Chan ADC, Englehart K, Stavdahl O. Resolving the limb
position effect in myoelectric pattern recognition. IEEE Transactions on Neural
Systems and Rehabilitation Engineering. 2011;19(6):644–51.
doi:10.1109/TNSRE.2011.2163529.

67. Hallworth BW, Austin JA, Williams HE, Rehani M, Shehata AW, Hebert JS. A
Modular Adjustable Transhumeral Prosthetic Socket for Evaluating Myoelectric
Control. IEEE Journal of Translational Engineering in Health and Medicine.
2020;8:0700210. doi:10.1109/JTEHM.2020.3006416.

68. Wells ED, Shehata AW, Dawson MR, Carey JP, Hebert JS. Preliminary
Evaluation of the Effect of Mechanotactile Feedback Location on Myoelectric
Prosthesis Performance Using a Sensorized Prosthetic Hand. Sensors.
2022;22(10):3892. doi:10.3390/s22103892.

August 23, 2023 27/28

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2023. ; https://doi.org/10.1101/2023.08.28.554998doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.28.554998
http://creativecommons.org/licenses/by/4.0/
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