
 

 

 
 

Abstract— Position-aware myoelectric prosthesis controllers 
require long, data-intensive training routines. Transfer Learning 
(TL) might reduce training burden. A TL model can be pre-
trained using forearm muscle signal data from many individuals 
to become the starting point for a new user. A recurrent 
convolutional neural network (RCNN)-based classifier has 
already been shown to benefit from TL in offline analysis (95% 
accuracy). The present real-time study tested whether an RCNN-
based classification controller with TL (RCNN-TL) could reduce 
training burden, offer improved device control (per functional 
task performance metrics), and mitigate what is known as the 
“limb position effect”. 27 participants without amputation were 
recruited. 19 participants performed wrist/hand movements 
across multiple limb positions, with resulting forearm muscle 
signal data used to pre-train RCNN-TL. 8 other participants 
donned a simulated prosthesis, retrained (calibrated) and tested 
RCNN-TL, plus trained and tested a conventional linear 
discriminant analysis classification controller (LDA-Baseline). 
Results confirmed that TL reduces user training burden. RCNN-
TL yielded improved task performance durations over LDA-
Baseline (in specific Grasp and Release phases), yet other metrics 
worsened. Overall, this work contributes training condition 
factors necessary for TL success, identifies metrics needed for 
comprehensive control analysis, and contributes insights towards 
improved position-aware control. 

I. INTRODUCTION 

Individuals with a transradial amputation often use 
myoelectric prostheses to restore or assist their impaired upper 
limb function. Prosthetic devices enable users to perform 
everyday tasks like eating, grooming, and getting dressed. 
Accomplishing such tasks requires execution of prosthetic 
hand and wrist movements in varied limb positions. These 
movements are driven by motors housed within the device, 
with instructions sent to the motors by a controller. Wearers 
operate their prosthesis using residual limb muscle 
contractions, and surface electrodes in its socket capture 
resulting muscle signals using electromyography (EMG) [1]. 
Myoelectric controllers, including those that use pattern 
recognition, can interpret EMG signals. When pattern 
recognition is employed for control, a prosthesis wearer must 
perform a series of specific movements, known as a training 
routine, prior to using their device [2]. Once a training routine 
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is complete, patterns evident in the captured signal features are 
learned by the control model, the features are classified during 
device use, and the resulting classifications inform motor 
instructions. Pattern recognition-based myoelectric controllers 
are commonly tested in research settings and are commercially 
available, but are not yet widely accepted clinically. 

Research has shown that EMG signals alone might not 
reliably inform intended prosthesis movement, particularly 
during instances when a user must hold their arm in untrained 
positions to accomplish tasks [3]. Limb position variations can 
result in degraded pattern recognition-based control, as 
evidenced by unexpected device movements and reported user 
frustration [3]. This challenge is known as the “limb position 
effect”. To mitigate this effect, some researchers have 
increased the number of surface EMG electrodes worn by 
users (high-density electrode arrays) [4]. Other researchers 
have successfully introduced the addition of an inertial 
measurement unit (IMU), worn on a user’s residual forearm 
for the capture of supplemental limb position data [5]. By 
combining EMG and IMU data, a position-aware pattern 
recognition-based controller can indeed provide reliable 
function across multiple limb positions [6]. 

To effectively mitigate the limb position effect, a control 
model training routine must include hand/wrist movements 
performed across multiple limb positions—not simply 
performed in a bent-elbow position as required by 
conventional controllers [6]. The time and muscle activation 
demands of such a routine, however, become burdensome for 
the user [1], [7]. In addition, retraining (or calibration) is 
typically required of myoelectric controllers in instances when 
device control degrades, such as due to muscle fatigue or 
electrode shifts. This retraining further contributes to user 
training burden. Overall, mitigation of the limb position effect 
necessitates a burdensome and data-intensive control model 
solution.  

Commercially available myoelectric controllers that 
employ pattern recognition typically use a statistical model 
known as linear discriminant analysis (LDA) [5], [8]. An LDA 
classification control model applies probability theory to 
discover patterns in EMG data, and then uses engineered 
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features to inform control. Given that LDA-based control is 
commonly used in myoelectric prostheses, it has been adopted 
in research as a baseline for comparison to other controllers 
[6]. An emerging area of research that offers an alternative to 
LDA solutions uses deep learning [9]; in particular, recurrent 
convolutional neural networks (RCNNs) [6]. RCNNs offer the 
ability to learn new useful features from raw EMG signals 
(rather than requiring features to be extracted prior to pattern 
learning) and the ability to recognize the nuances of the time-
varying behaviour of EMG signals [9]. RCNN classification 
has been investigated for position-aware prosthesis control, 
because it can combine large amounts of data from multiple 
sensors, including from EMG and IMU data streams [6].  

Transfer learning (TL) is an adjunct solution that may 
reduce the training and retraining burden placed upon a user, 
as necessitated by position-aware RCNN-based classification 
control (but not applicable to LDA-based control). With this 
solution, a classification control model (classifier) can be 
trained using a large dataset of EMG and IMU signals obtained 
from numerous individuals, to become the starting point for a 
new user’s device control. That new user would require only a 
reduced amount of personal movement data for training and 
retraining thereafter. Our earlier offline research determined 
that an RCNN-based classifier can indeed benefit from TL 
[10]. It relied on the capture of a large dataset of muscle data 
points for control pre-training. Our RCNN-based classifier 
with TL achieved 95% accuracy in movement classification. 
This classifier was pre-trained using data from 19 participants 
and required just 4 seconds of data per movement in three limb 
positions for retraining. The favourable results of this earlier 
work showed both high classification accuracy and decreased 
training burden. 

Still, it has been shown that offline myoelectric prosthesis 
research outcomes do not necessarily correlate with physical 
device controllability [11]. Our earlier work, therefore, could 
be furthered through real-time research—that is, through the 
use of a donned simulated prosthesis. Such devices have been 
shown to be a good proxy for actual myoelectric prosthesis use 
[12]. Experimentation using a simulated device could confirm 
whether an RCNN-based classification controller with TL can 
mitigate the limb position effect and decrease training burden. 
To conduct this real-time research: (1) testing should include 
use of a donned simulated prosthesis, (2) a training routine 
should include multi-position hand and wrist movements, (3) 
functional tasks should be used for testing, and (4) established 
kinematic metrics should be used for outcome analysis. 

The present study bridges the gap between reported offline 
myoelectric control outcomes and real-time device 
controllability when an RCNN classification controller with 
TL (RCNN-TL) is systematically compared to an LDA 
baseline classification controller (LDA-Baseline). Here, a 
simulated prosthesis was worn by participants without 
amputation, each of whom executed training routines and 
performed functional tasks across varying limb positions to 
test control. This work contributes to the literature by offering 
valuable lessons towards addressing the limb position effect. 
We investigated whether TL can indeed reduce user training 
burden in conjunction with RCNN-based classification. 
Important implications were discovered regarding the 
conditions required for training, and the need for 

comprehensive metrics to fully interpret control results. 

II. METHODS 

A. Participants 

Two distinct groups of participants were recruited for this 
study: a General Participant Group, whose data was used to 
pre-train RCNN-TL’s model, and a Simulated Prosthesis (SP) 
Participant Group, who further trained and tested both RCNN-
TL and LDA-Baseline. All participants provided written 
informed consent, as approved by the University of Alberta 
Health Research Ethics Board (Pro00086557).  

General Participant Group (without simulated prosthesis): 
Nineteen participants without upper limb impairment were 
recruited. All had normal or corrected vision, 10 were male, 
nine were female, 17 were right-handed. They had a median 
age of 25 years (range: 19–58 years) and median height of 170 
cm (range: 159–193 cm).  

SP Participant Group (with donned simulated prosthesis): A 
total of nine new participants without upper limb impairment 
were recruited. One participant was removed due to their 
inability to reliably control the donned simulated prosthesis 
even after control practice. Of the remaining eight participants, 
all had normal or corrected vision, five were male, three were 
female, seven were right-handed. They had a median age of 22 
years (range: 20–56 years) and median height of 181 cm 
(range: 169–185 cm). No participants had experience with 
EMG pattern recognition control using a simulated prosthesis. 
The eight participants completed two data collection sessions 
on different days (with a median of 24 days between sessions, 
range: 18–45 days), during which half of the participants used 
RCNN-TL in their first session, and the other half used LDA-
Baseline in their first session. Participants used the other 
controller in their second session.  

B. EMG and Accelerometer Data Collection 

 Each participant in both groups wore a Myo gesture 
control armband (Thalmic Labs, Kitchener, Canada—
discontinued) at approximately the upper third of their forearm 
(with the top of the armband at a median of 27.83% of the way 
down the forearm from the medial epicondyle to ulnar styloid 
process), as shown in Figure 1A. The Myo armband contained 
eight surface electrodes to collect EMG data at 200 Hz. The 
Myo armband also contained one IMU to collect limb position 
data (three accelerometer, three gyroscope, and four 
quaternion data streams) at 50 Hz. Myo Connect software was 
used to stream EMG and IMU data into Matlab.  

C. Donned Simulated Prosthesis  

The simulated prosthesis used in this study was the 3D-
printed Modular-Adaptable Prosthetic Platform (MAPP) [13] 

 
Figure 1.  (A) Myo armband on a participant’s forearm and (B) donned 
simulated prosthesis on a participant’s forearm, with labels indicating the 
sleeve, 2 pieces of liner, hand brace, distal ring, cushions, wrist motor, and 
hand motor. Five motion capture markers are indicated with red circles. 

 



 

 

(shown in Figure 1B). It was fitted to each SP Participant 
Group member’s right arm for simulation of transradial 
prosthesis use. The MAPP’s previously-published design [13] 
was altered to improve wearer comfort in our study—the distal 
ring was made to resemble the oval shape of a wrist and the 
hand brace was elongated so that the distal ring would sit more 
proximally on the wearer’s wrist. A 3D-printed robotic hand 
[14] was affixed to the MAPP beneath the participant’s hand. 
Wrist rotation capabilities were also added to the device. Hand 
and wrist movements were each powered by a Dynamixel MX 
Series motor (Robotis Inc., Seoul, South Korea).  

After placement of the Myo armband, each SP Participant 
Group member donned a thin sleeve and then the MAPP. To 
increase participant comfort, pieces of thermoplastic elastomer 
liner were placed inside the distal ring and just above the 
participant’s elbow, and 3D-printed cushions, made of 
Ninjaflex Cheetah filament (Ninjatek, Inc.), were placed 
throughout the device socket (shown in Figure 1B). The 
secureness of the device and each participant’s comfort were 
checked before proceeding with controller training. 

D. Control Model Implementation and Training  

RCNN-TL Implementation: Bayesian optimization 
automatically determined the number of convolution layers, 
number of filters, filter size, pooling size, and patience 
required for the classifier used in this controller. Optimization 
was performed in two steps: first, the number of layers along 
with each hyperparameter being optimized were determined 
using a broad range of values; thereafter, values were refined 
using a narrower range (centered at earlier optimized values). 
RCNN-TL’s model architecture consisted of 19 layers, as 
illustrated in Figure 2. In this model, a sequence input layer 
first received and normalized the training data. Then, a 
sequence folding layer was used, allowing convolution 
operations to be performed independently on each window. 
This was followed by a block of four layers: a 2D convolution, 
a batch normalization, a rectified linear unit (ReLU), and an 
average pooling layer. This block of layers was repeated once 
more. Each of the two average pooling layers had a pooling 
size of 1x4. A block of three layers followed: a 2D 
convolution, a batch normalization, and a ReLU layer. The 
optimal number of filters in the convolution layers were 
determined to be 4, 16, and 32, respectively, and each had a 
filter window size of 1x3. The next layers included a sequence 
unfolding layer (to restore the sequence structure), a flatten 
layer, a long short-term memory (LSTM) layer, and a fully 
connected layer. Finally, a softmax layer and classification 
layer were used. To prevent overfitting, a patience parameter 
was set to trigger early stopping when the validation loss 
increased five times (e.g., similar to Côté-Allard et al. [15]).  

RCNN-TL’s Model Pre-Training Routine: General 
Participant Group members followed onscreen instructions, 
performing muscle contractions in 5 wrist positions, for 5 
seconds each: flexion, extension, pronation, supination, and 
rest. The muscle contractions were performed twice in 4 limb 
positions: arm at side, elbow bent at 90°, arm straight out in 
front at 90°, and arm up 45° from vertical. This position-aware 
routine was similar to those used in other real-time control 
studies aiming to mitigate the limb position effect [5], [6], 
[11]). The resulting EMG and accelerometer data, plus 
corresponding classes of muscle contractions, were used to 

pre-train RCNN-TL’s model. 

RCNN-TL’s Model Retraining Routine: SP Participant 
Group members followed onscreen instructions, performing 
muscle contractions in the same 5 wrist positions, for only 2 
(rather than 5) seconds each. The muscle contractions were 
performed twice in only 3 (not 4) limb positions: arm at side, 
elbow bent at 90°, and arm up 45° from vertical. Note that this 
shortened/optimized routine was uncovered in our previous 
offline research [10]. The resulting EMG and accelerometer 
data, plus corresponding classes of muscle contractions, were 
used to retrain RCNN-TL’s model.  

LDA-Baseline Implementation: Four commonly used EMG 
features were chosen for implementation of LDA-Baseline’s 
model: mean absolute value, waveform length, Willison 
amplitude, and zero crossings [16]. A pseudo-linear LDA 
discriminant type was used, given that columns of zeros were 
occasionally present in some classes for some features 
(including Willison amplitude and zero crossings). 

LDA-Baseline’s Model Training Routine: SP Participant 
Group members followed onscreen instructions, performing 
muscle contractions in the same 5 wrist positions, for 5 
seconds each. The muscle contractions were performed twice, 
with the participants’ elbow bent at 90°. This single-position 
routine mimicked standard myoelectric prosthesis training [3]. 
The resulting EMG data and corresponding classes of muscle 
contractions were used to train LDA-Baseline’s model.  

E. Data Processing  

For both model training and real-time control, the EMG 
data from the Myo armband were filtered using a high pass 
filter at 20 Hz (to remove movement artifacts), as well as a 
notch filter at 60 Hz (to remove electrical noise). Next, the 
accelerometer data streams were upsampled to 200 Hz (using 
previous neighbour interpolation) to align them with the 
corresponding EMG data. Data were then segmented into 
windows (160-millisecond with a 40-millisecond offset). 
These windows of EMG and accelerometer data were used for 
RCNN-TL. For LDA-Baseline, time-domain features were 
calculated for each EMG channel, in each window. Each 
model was trained in Matlab using an Intel Core i9-10900K 
CPU (3.70 GHz) with 128 GB of RAM. RCNN-TL’s and 
LDA-Baseline’s models were retrained/trained in median 
times of 3.41 and 0.39 seconds, respectively. For real-time 
control, the classifiers predicted wrist and hand movements in 
Matlab, predictions were relayed to brachI/Oplexus [17], and 
control signals were sent to the simulated prosthesis’ motors.  

 
Figure 2.  Architecture of RCNN-TL’s model: sequence input layer; 
sequence folding layer; two blocks of 2D convolution, batch 
normalization, rectified linear unit (ReLU), and average pooling; one block 
of 2D convolution, batch normalization, and ReLU; sequence unfolding 
layer; flatten layer; long short-term memory (LSTM) layer; fully 
connected layer; softmax layer; and classification layer. 

 



 

 

F. Control Practice 

Each SP Participant Group member took part in a control 
practice period. They were taught how to operate the simulated 
prosthesis using their muscle contractions. This control 
practice took approximately 40 minutes.  

To determine whether participants could reliably control 
the simulated prosthesis, they completed an activity. Two cups 
were situated in front of them at two different heights, with a 
ball in one of the cups. Participants were asked to pour the ball 
between the two cups, and instances when the participants 
dropped the ball or a cup were recorded. If participants could 
not complete at least 10 pours with a success rate of at least 
75% within 10 minutes, they were removed from the study. 
Recall that one participant was removed (as stated in Section 
II.A), given that they could not complete this activity with 
LDA-Baseline in their first session.   

G. Motion Capture Setup 

An 8-camera OptiTrack Flex 13 motion capture system 
(Natural Point, OR, USA) was used to capture hand 
movements and task objects at 120 Hz. Six individual markers 
were placed on the simulated prosthesis hand to ensure reliable 
rigid body tracking (with at least 3 markers always trackable), 
five of which are shown in Figure 1B. Note that unlabelled 
markers in Figure 1B were not used for analysis.  

H. Functional Tasks for Control Testing 

Pasta Box Task (Pasta): Participants were required to pick up 
a box of pasta and move it between a side table and two shelves 
at varying heights on a cart (including across their midline), 
and then back to the side table [18], as shown in Figure 3A. 
Motion capture markers were placed on the cart, side table, and 
pasta box, as per Valevicius et al. [18]. Participants performed 
a total of 10 Pasta trials. If participants dropped the pasta box, 
placed it incorrectly, performed an incorrect movement 
sequence, or hit the frame of the task cart, the trial was labelled 
as an error and not analyzed.  

Refined Clothespin Relocation Test (RCRT): Participants 
were required to move three clothespins between targets on 
horizontal and vertical bars [19], as shown in Figure 3B,C. To 
simplify trial execution, RCRT was split into RCRT Up and 
RCRT Down trials. During Up trials, participants moved the 
clothespins from the horizontal bar (right to left positions) to 
the vertical bar (bottom to top positions), as shown in Figure 
3B. During Down trials, participants moved the clothespins 
from the vertical bar to the horizontal bar, in the same order as 
in Up trials, as shown in Figure 3C. A height adjustable cart 
was set such that the top of each participants’ shoulder was 
aligned with the midpoint between the top two targets on the 
vertical bar, as shown in Figure 3D. Five motion capture 
markers were placed on the cart, three on the task base, and 

one on each clothespin. Participants performed a total of 10 Up 
trials and 10 Down trials. If participants dropped a clothespin, 
placed it incorrectly, or performed an incorrect movement 
sequence, the trial was labelled as an error and not analyzed.  

I. Experimental Data Analysis 

Motion capture data analysis in this study was conducted 
in accordance with Valevicius et al. [18]: the marker trajectory 
data were cleaned and filtered; for each task, the data from 
each trial were divided into distinct movements based on hand 
velocity and the velocity of the pasta box/clothespins; the data 
from each movement were further segmented into the phases 
of Reach, Grasp, Transport, Release, and Home (the Home 
phase was not used for data analysis); and movement segments 
of Reach-Grasp and Transport-Release were used in hand 
movement analysis. 

Commonly used task performance metrics were calculated 
as per Valevicius et al. [18]: task success rate (the percentage 
of trials that were error-free) was calculated for each task; trial 
duration was calculated for each trial; phase duration and 
relative phase duration were calculated for each phase; and 
peak hand velocity, hand distance travelled, and hand 
trajectory variability were calculated for each movement 
segment.  

To investigate task performance differences between 
RCNN-TL and LDA-Baseline, the following statistical 
analyses were performed: 
Task success rate—Pairwise comparisons (t-test or Wilcoxon 
sign rank test) were conducted and deemed significant when 
the p value was less than 0.05. 
Trial duration—Participants’ results were averaged across 
trials, after which pairwise comparisons between the 
controllers were conducted. 
All other metrics—Participants’ results were averaged across 
trials and movements. If results were normally-distributed, a 
two-factor repeated-measures analysis of variance 
(RMANOVA) was conducted using the factors of controller 
and phase/movement segment. When the resulting controller 
effects or controller-phase/movement segment interactions 
were deemed significant (that is, when the Greenhouse-
Geisser corrected p value was less than 0.05), pairwise 
comparisons between the controllers were conducted. If results 
were not normally-distributed, the Friedman test was 
conducted. When the resulting p value was less than 0.05, 
pairwise comparisons between the controllers were conducted.  

III. RESULTS 

The functional task performance metrics for RCNN-TL 
versus LDA-Baseline are shown in Figure 4. Significant 
differences are indicated with above-bar asterisks. 
Improvements in task performance are characterized by high 
success rates, low trial durations, low phase durations, high 
Reach and Transport relative phase durations, low Grasp and 
Release relative phase durations, high peak hand velocities, 
low hand distances travelled, and low hand trajectory 
variability, as per Valevicius et al. [18]. 

A. Significant Differences Between Controllers  

Significant differences between RCNN-TL and LDA-
Baseline were evident in 4 out of 48 total metrics. RCNN-TL 
outperformed LDA-Baseline in 2 metrics: Pasta Release 

 
Figure 3.  (A) Pasta Box Task trial movement order; and Refined 
Clothespin Relocation Test (B) Up trial movement order, and (C) Down 
trial movement order, and (D) adjustable cart setup. 
 
 



 

 

phase duration (Figure 4B1) and RCRT Down Grasp relative 
phase duration (Figure 4D3). LDA-Baseline outperformed 
RCNN-TL in 2 metrics: RCRT Up success rate (Figure 4A2) 
and RCRT Down Release relative phase duration (Figure 
4D3).  

B. Task-Specific Observations Between Controllers 

When considering all 48 task performance metrics (not 
simply those that exhibited significant differences) trends were 
evident for each of the three functional tasks (with 16 metrics 
per task). Pasta: 12 of 16 metrics showed that RCNN-TL 
performed better (indicated by left arrows in Figure 4B1–D1, 
F1, G1); 3 of 16 metrics showed that LDA-Baseline performed 
better (right arrows in Figure 4D1, E1); and success rate 
showed no change (Figure 4A1). RCRT Up: 2 of 16 metrics 
showed that RCNN-TL performed better (left arrows in Figure 
4E2, G2); 14 of 16 metrics showed that LDA-Baseline 
performed better (right arrows in Figure 4A2–G2). RCRT 
Down: 11 of 16 metrics showed that RCNN-TL performed 
better (left arrows in Figure 4A3–E3, G3); 3 of 16 metrics 
showed that LDA-Baseline performed better (right arrows in 
Figure 4B3, D3); and hand distances travelled showed only 
small changes (both less than 6 mm differences, Figure 4F3).  

IV. DISCUSSION 

This real-time study confirmed that TL reduces training 
burden when used with an RCNN-based classification 
controller [10]. Statistically, the functional task performance 
between RCNN-TL and LDA-Baseline was similar. However, 
compelling non-significant performance trends were 
identified, and many lessons were learned to direct future 
prosthesis control studies.  

A. TL Impact on Training Burden 

The General Participant Group members executed RCNN-
TL’s full pre-training routine, which took 3.33 minutes. The 
SP Participant Group members, however, simply executed 
RCNN-TL’s 1-minute retraining routine prior to device 
control testing—a 70% decrease in duration. This research 
demonstrated that TL is a valuable adjunct to RCNN-based 
classification control, as it offers a model starting point that 
needs only to be calibrated using a smaller amount of 
individual-specific data. Notably, a TL solution is not possible 
with LDA-based control. To further investigate the influence 
of TL, we will examine an RCNN-based controller without TL 
in future work (using this study’s model architecture). 

B. Pre-Training Conditions 

Despite our promising TL-based training burden reduction 
results, most task performance metrics did not yield significant 
control improvements. A realization from this outcome points 
to the principle that pre-training data should be captured under 
conditions that closely resemble those during use. The General 
Participant Group members performed wrist/hand movements 
while not wearing a simulated prosthesis for RCNN-TL pre-
training. The SP Participant Group members, however, wore a 
simulated prosthesis when retraining RCNN-TL and training 
LDA-Baseline. The training conditions between the 
participant groups were somewhat dissimilar, as the donned 
prosthesis introduced weight, and co-activation of muscles 
resulted [20]. Consequently, patterns learned from the muscle 
signals of participants without the donned simulated prosthesis 
may not have optimally transferred to conditions for device 
use. Future research should investigate whether prosthesis 
weight does, in fact, play a significant role in TL-based 
control. A fundamental lesson learned in this study is that pre-

 
Figure 4.  Task performance metrics results with RCNN-TL (orange) and LDA-Baseline (grey) during Pasta, RCRT Up, and RCRT Down tasks are shown 
for: (A) success rate, (B) phase duration, (C) trial duration, (D) relative phase duration, (E) peak hand velocity, (F) hand distance travelled, and (G) hand 
trajectory variability. Panels B and D present results in phases (Reach, Grasp, Transport [Transp.], Release) and Panels E–G present results in movement 
segments (Reach-Grasp [R-G], Transport-Release [T-RL]). Medians are indicated with thick lines, interquartile ranges are indicated with boxes, and 
significant differences between RCNN-TL and LDA-Baseline are indicated with asterisks (*: p < 0.05, **: p < 0.01). Arrows indicate which controller 
performed better for each metric, with orange left arrows indicating RCNN-TL and grey right arrows indicating LDA-Baseline. 

 



 

 

training data should ideally be collected under physical 
conditions that will create the same muscle co-activation 
patterns exhibited during device use. 

C. Comprehensive Metrics Needed  

In our earlier offline research, RCNN-TL’s model 
achieved a classification accuracy of 95% [10] and LDA-
Baseline’s model achieved a classification accuracy of 85%  
[6], when tested in all limb positions. In this current real-time 
research, only two of the 48 task performance metrics showed 
RCNN-TL performing significantly better than LDA-
Baseline—in Pasta Release phase duration and in RCRT 
Down Grasp relative phase duration. At first glance, these 
results might seem underwhelming and may simply point 
towards the notion that offline results are not always indicative 
of real-time control performance [11]. However, interesting 
limb position-related findings can be surmised from this work, 
all pointing to a need for more comprehensive control metrics 
for their verification: 

(1) RCNN-TL might offer improved position-aware control: 
RCNN-TL tended to perform better than LDA-Baseline in 
tasks that required high limb position Grasps—instances 
where control expectedly deteriorates due to the limb 
position effect. 

(2) A large phase duration interquartile range (IQR) might 
indicate a limb position effect occurrence: An instance 
where the limb position effect probably occurred was 
during RCRT Down Grasp phases, as evidenced by a large 
phase duration IQR under LDA-Baseline control (3.19 s, 
as shown in Figure 4B3). This large IQR was likely due to 
control difficulties introduced when clothespins were 
grasped from the vertical bar over increasing heights. 
Moreover, as the same IQR was considerably smaller 
under RCNN-TL control (1.33 s, shown in Figure 4B3), 
the limb position effect was seemingly mitigated by TL.  

(3) More conclusive control metrics are needed: The metrics 
analyzed in this work could not definitively confirm the 
limb position effect instances suspected in (1) and (2) 
above. An examination of control characteristic metrics, 
such as number of grip aperture adjustments [14] and grip 
aperture plateau time [21], however, would offer a richer 
understanding of what occurred during Grasp phases and 
why. Furthermore, a clearer understanding of user-reported 
experiences would improve overall assessments of control. 

V. CONCLUSION 

The goal of position-aware myoelectric prosthesis control is 
to provide users with reliable device operation across all limb 
positions. As pattern recognition-based control solutions 
require the user to execute a training routine to inform the 
controller, solutions attempting to mitigate the limb position 
effect need lengthy and therefore burdensome routines. This 
research confirmed that TL can reduce such training burden. 
As a primary contribution, this paper offered important 
considerations for implementation of an RCNN-based 
classification controller with TL, be it for simulated or actual 
myoelectric prosthesis user research. It suggested that TL 
should work better when the physical conditions for pre-
training and training are similar, particularly as a prosthetic 
device introduces muscle coactivation patterns. This work also 
identified the need for comprehensive metrics—to uncover 
control characteristics that can be mapped to user reported 

control experiences. Ultimately, this work offered insights 
towards feasible position-aware prosthesis control. 
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