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Abstract

Artificial limbs are sophisticated devices to assist people with tasks of daily living.
Despite advanced robotic prostheses demonstrating similar motion capabilities to
biological limbs, users report them difficult and non-intuitive to use. Providing
more effective feedback from the device to the user has therefore become a topic
of increased interest. In particular, prediction learning methods from the field of
reinforcement learning—specifically, an approach termed Pavlovian signalling—
have been proposed as one approach for better modulating feedback in prostheses
since they can adapt during continuous use. One challenge identified in these
learning methods is that they can forget previously learned predictions when a
user begins to successfully act upon delivered feedback. The present work directly
addresses this challenge, contributing new evidence on the impact of algorithmic
choices, such as on- or off-policy methods and representation choices, on the
Pavlovian signalling from a machine to a user during their control of a robotic arm.
Two conditions of algorithmic differences were studied using different scenarios
of controlling a robotic arm: an automated motion system and human participant
piloting. Contrary to expectations, off-policy learning did not provide the expected
solution to the forgetting problem. We instead identified beneficial properties of a
look-ahead state representation that made existing approaches able to learn (and
not forget) predictions in support of Pavlovian signalling. This work therefore
contributes new insight into the challenges of providing learned predictive feedback
from a prosthetic device, and demonstrates avenues for more dynamic signalling in
future human-machine interactions.

1 Introduction

There are many sophisticated devices designed for people who have lost an upper limb to assist
them in their daily lives. These devices, prosthetic arms and hands, can take the form of advanced
robotic limbs capable of mimicking many, if not all, of the degrees of freedom of a biological limb.
Despite the potential of these technologies because of difficulties in control and general use they
are sometimes abandoned and therefore unable to fulfill their function [1, 2]. A prosthetic limb is
intended for frequent use and close collaboration with the human user; such devices are attached to
the body and are intended to be considered a part of the user. The intended closeness of the connection
is what makes this particular case of human-machine interaction interesting, and challenging.

Machine learning has been actively pursued for some time as a way of improving the control of
prosthetic upper limbs in various ways, many of which are outlined by Castellini et al. [3]. Pattern
recognition, for example, learns to associate patterns of muscle activation, often read by surface
electromyography (EMG) electrodes, with motions of the prosthesis [3, 4]. Because the connection
between the control signal coming from the user and the motions of the device are learned, pattern
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recognition allows individually tailored solutions for users, which is a highly desirable trait in
rehabilitation medicine [3]. These methods require training offline however, which means that if
there is a change to the user’s body or the way they generate control signals the system needs to be
retrained to resume proper functionality. A more experimental technique is adaptive switching [5],
which learns in real-time to re-order a list of joints that the user has to sequentially switch through
to access different movements on a multi-joint prosthesis. This significantly reduces the amount of
switching effort required compared to the more common approach of using a fixed list.

Machine learning methods like those used for adaptive switching have the potential to improve
upper limb prostheses and rehabilitation in general. Specifically, temporal-difference (TD) learning
approaches [6] learn in real-time as they are used, and are able to approximate general value functions
(GVFs [7])—predictions of signals of interest from a robot, human, or environment [8]. GVFs ability
to be learned via TD in real-time gives them the potential to adapt and grow as the user does [8].
This could allow users to develop their skills and abilities as they more naturally would, rather than
having to learn and compensate around preset capabilities of the device they are using. The ability of
reinforcement learning techniques to adapt also unlocks the potential for personalized user solutions
to be found by the system, rather than having designers customize every device for every user [3].
While machine learning has been studied extensively for control improvement in prostheses, it’s
applications to providing feedback from the prosthesis to the user remain under explored.

Feedback from a limb to the user can be an important aspect of control as well as user experience.
Sensory feedback has been shown in some studies to improve user outcomes, as it closes the loop
between the user’s control and the device’s execution. The comprehensive review by Schofield et
al. [9] covers many methods and modalities of providing feedback. Non-biological feedback, such
as sound relating to direction of motion, can also help with the development of internal models,
which are hypothesized as being what the central nervous system uses feedback to develop and are
potentially responsible for the performance gains when feedback is available [10]. Feedback of this
type can be thought of less as feedback in the sense one might have from a biological limb and more
along the lines of signalling. To date most of the explorations into providing feedback have used a
fixed mapping between the sensor and the feedback device that does not change or adapt over time.

There are other domains where interactions between a human and a device have shown adaptive
feedback to be helpful to the human [11]. These domains are beginning to include machine learning,
and explore how it might signal a human user to assist in accomplishing a task the human would
otherwise struggle with [11, 12]. Early explorations of this kind used what has been recently termed
as Pavlovian signalling: a fixed signalling response (a token) emitted by one agent—or part of an
agent—to another in response to the magnitude of a learned prediction about the environment or
a task [13] (Fig. 1). Studies have been done where a machine agent is learning about a task and
providing the human user with a signal they then use to successfully complete the task [12, 13, 14]. In
this way the human and the machine can be seen as partners in accomplishing the task, and effective,
reliable, communication is key.

Figure 1: Schematic of the human-machine-environment interaction loop and photo of the physical
system: a person interacts with a partially observable environment by way of an assistive machine,
wherein their ability to perceive relevant decision-making information is limited in both time and
space; as part of their interactions with the environment via the device, a continual prediction learning
machine provides signals that allow timely action based on impending changes in the environment,
with enough time for the person to process and act on these signals and their current state.
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An earlier study by Parker et al. took a very simple approach to Pavlovian signalling in human
machine interaction, specifically the task of navigating a robot arm in a confined workspace without
touching the walls [14]. The paper used TD learning—an on-policy method, i.e., one that learns
about the actual policy or behaviour being followed—to acquire GVF predictions, but found that
learning had to be done during a training session and frozen during a trial. This was because when the
machine agent was succeeding at helping the human avoid contacts with the work space, the machine
agent was also avoiding those contacts and so unlearning them or “forgetting" they were there. While
the results showed that the machine agent could learn something that assisted the human users in
accomplishing the task, being unable to learn continually in real-time undermines the benefits of
using continual learning techniques like TD learning. It was theorized that off-policy learning would
overcome this limitation, i.e., that forgetting during continual learning could be mitigated by the use of
learning algorithms that learn about a target policy different from the policy being followed, capturing
“what if” style predictions [7] about user behaviour even when the user is performing well in a task
or setting. In this study, we extend prior work to contribute a detailed examination of hypothesized
differences between on- and off-policy TD learning in the context of forgetting during Pavlovian
signalling in ongoing robotic control. As this work is interested in exploring the application of
machine reinforcement learning techniques in a rehabilitation setting in order to investigate solutions
that adapt with the user over time to become individual, personalized, user experiences, the findings
on the single human participant are not meant to be generalized. They are, however, worth bearing in
mind as if something doesn’t work for even one person, then this impacts the ability of the technique
to become a personal solution for at least that individual [15].

2 Methods

2.1 Experimental Setup

The robot arm used for these experiments was the Bento Arm [16]. This arm is a 5-degree-of-freedom
open-source 3D printed device that uses servo motors for actuation at the shoulder, elbow, wrist, and
hand as shown in Fig. 1. For this work, the Bento Arm hand was replaced with a rod wrapped in
conductive tape. The work space for the arm was a square interaction region constructed of wood
and lined with conductive tape, which is also shown in Fig. 1, with these conductive elements
all connected to analog inputs of an Arduino Leonardo. For human-participant interaction, the
thumb-stick of an Xbox 360 controller was used to control the shoulder joint of the arm; built-in
vibration of the controller was used to signal the participant that a trial was complete. Contact, or the
prediction of contact, between the conductive rod and the workspace was signalled to the participant
using a sound effect delivered over a set of noise-cancelling headphones with ambient white noise
playing in them. The Bento Arm, Xbox 360 controller, and Arduino were connected to a laptop via
USB. The laptop ran a modified version of the control software brachI/Oplexus [17]. This software
package designed for use with the Bento Arm with built-in functionality for multiple control sources,
as well as the ability to map control inputs to the Bento Arm.

2.2 Procedure

Two different settings were used to study the impacts of the algorithmic decisions made in this
work: machine-machine control interactions and single case of human-in-the-loop control. For
machine-machine interactions which provided a clear baseline for algorithmic comparison, we used
a version of brachI/Oplexus that included a motion sequencer feature that allowed users to program
step-by-step arm motions, where upon reaching a set position the arm automatically transitions to
the next movement in a list. This was modified for the autonomous trials to use the signal from the
Arduino’s analog inputs to move on to the next motion on the list. After a contact or prediction were
observed to be above a threshold, the next motion was to back-off a pre-determined amount, and
then move in the opposite direction. One complete motion involved moving to the right, backing
off the pre-determined amount, moving to the left, then backing off again. For human-in-the-loop
comparisons, a single human participant was recruited, who provided informed consent and the study
was approved by the Research Ethics Board of the University of Alberta (Pro00085727).

The goal in both settings was to control the robot arm to move from side-to-side without making
contact with the workspace edge, following the protocol established in Parker et al. [14]. Both the
human participant and automotion sequence moved the robot’s shoulder actuator from left to right
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and back again within the workspace. Signalling tokens relating to contact with the workspace and
predicted contact (described below) were provided as feedback in both the human and machine case
(Fig. 1). For the human participant, the task was made partially observable for them by having
them face away from the workspace while being sound isolated in noise-cancelling headphones
with background white noise—they needed to rely completely on the feedback system to perceive
the outcomes of their robot control commands. Similarly, the automotion controller was given no
information about the workspace other than the tokens provided through feedback signalling. One
trial consisted of 50 back-and-forth motions. Each learning technique was run for five trials by
automotion and the human participant did three trials of each of the algorithms they tested.

2.3 Prediction Learning Algorithms

Algorithm 1 presents the main loop of the Pavlovian signalling process that occurred during user-
robot interaction: observations from the robot and workspace were sampled and used to generate
predictions; should these predictions rise above a threshold (or actual contact be made), a token was
generated and sent to the user of the robot (automotion or human) that informed and/or changed
their control of the system (c.f., [13]). For the human participant, this took the form of an audio cue
proactively alerting them to contact with the workspace; for the automotion case, this took the form
of the robot arm backing slightly away and changing direction. all predictions were then updated
according to the information obtained during the time step. The threshold empirically chosen (400)
and constant across all conditions.

Predictions themselves were learned via temporal-difference (TD) reinforcement learning techniques
[6, 7, 18] to generate predictions about the expectation of future contact [14]. These learning
algorithms learned from experienced data in real time during each trial; there was no training period
before any of the trials. Three different implementations of GVF learning approaches were examined
and compared for their ability to avoid contact events, and continue to avoid contact events over
repeated motions: TD(λ), GTD(λ)[18], and a variant we term look-ahead TD(λ). All three approaches
used the same representation which consisted of the shoulder position, shoulder velocity, elbow
position, and elbow velocity as reported by the servos responsible for motion of the Bento Arm. To
construct the representation the allowed range of motion and velocities of the shoulder and elbow
were normalized to produce a value between zero and one with zero being the left-most limit of the
shoulder and bottom-most limit of the elbow, and one being the right-most limit of the shoulder and
upper-most limit of the elbow. This was then divided into 32 evenly spaced sections, or bins, on
two axes, one for position and one for velocity—an implementation of the function approximation
method know as tile coding [18].

Algorithm 1 Pavlovian Signalling

set thresh for Pavlovian signalling
loop

observe contact
observe GVF prediction value
if contact or prediction > thresh then

generate signalling token
if signalling token then

if human trial then
signal with audible feedback

if automated motion then
back-off motion
change direction

clear signalling token
update all predictions

Following on work by Parker et al. [14], the first
GVF-learning used was the TD(λ) algorithm, which
was tested using two different λ values, 0 and 0.9.
In this algorithm, a temporal-difference error δ is
computed based on an observed cumulant C, and
the difference between the learned expected value
for the present state (the inner product of a weight
vector ~w and the function approximated state ~x(S)
based on robot arm measurements S as noted above,
discounted by γ) and the value of the last state
~wT~x(SLast). This error is used alongside a step size
α and replacing eligibility traces ~e with decay rate λγ
to update ~w. Parker et al. [14] used a TD algorithm
with λ = 0, so this was re-examined here to compare
to using a λ value above zero.

As our second approach, we introduced a compari-
son with gradient temporal-difference learning (GTD)
methods [18]. GTD(λ) is an off-policy algorithm; an
off-policy algorithm learns about a target policy πt from samples generated by a possibly unrelated
behavior policy. The observed overlap between target and behaviour policies is specified by a param-
eter ρ, and is able to learn stably in this setting thanks to a separate set of weights ~u and learning rate
β. For the off-policy comparison, the system learned two GVFs: one for each direction of motion

4



of the shoulder actuator. For this study, ρ was always either zero or one; ρ was one for the GVF
responsible for learning the direction the servo was currently moving in, and 0 for the other direction.

The final approach we explored was TD(λ) but utilizing a fixed look-ahead in the computation of
the observation S, and is therefore termed “look-ahead TD". Rather than learning and acting on
the same time step, this method learned on the active time step but used the prediction for a fixed
number of tilecoding bins ahead of where the arm actively was learning to use to signal either the
human participant or the automated motion controller. Algorithms for both TD(λ) and GTD(λ) are
according to the standard implementation and can be found in the supplementary materials.

3 Results

Figure 2: Contacts in the automatic motion case
over time for all 5 trials for different algorithm
settings: (black top) TD(0) (teal, middle) TD(0.9)
(orange, bottom) GTD. Large ticks indicate con-
tact, small ticks indicate generation of signalling
tokens based on learned predictions.

(a)

(b)

Figure 3: Contacts (black diamonds), motion (top)
and prediction (bottom) for exemplar trials of (a)
TD-lambda and (b) GTD to show the motion get-
ting closer to the contact positions, marked by the
dashed lines around the position, and the predic-
tions diminishing, and spiking when a new position
extreme is moved into.

Figure 2 shows the contact events, the dark lines,
and the prediction going above the threshold
value, the light lines. The three initial algo-
rithms for the study, TD(0), TD(0.9) and GTD.
TD(0) requires the most contacts to learn the
boundaries of the workspace in the first place,
and continues to make contact frequently. GTD
initially learns fast, but continues to make fre-
quent, though less frequent, contact. TD(0.9)
also learns to avoid contact quickly, but makes
contact much less frequently over the duration
of each trial. In Fig. 3, we can see the contacts
as they relate to the position of the shoulder for
TD(0.9) and GTD. The position, shown in the
top part of each plot is the location where the ser-
vos reported stopping, which typically occurred
during changes of direction. Primarily of note
is how the extremes of position can be seen ex-
panding by bin sizes of position until contact,
the location of which is shown by the dashed
envelope around the position. After a contact is
made the motion extremes then retract and the
prediction, shown on the bottom part of each
plot spikes. This spike is also visible when the
position extremes expand, and is likely the re-
sult of visiting a new bin that has already learned
about contact and not been visited in recent mo-
tions. This is more shown in more detail the
supplementary material Fig. S1, where the pre-
diction can be seen diminishing over repeated
motions until it drops below the threshold and
contact occurs.

TD(0.9) compared with look-ahead TD is shown
in Fig. 4. Figure 4a specifically compares con-
tacts over the duration of trials between TD(0.9)
alone and TD(0.9) with a look-ahead TD of one
and two bins. The one bin look-ahead TD did
occasionally make contact, which should not be
possible since the predictions on the timesteps
being used to signal are not being updated on
the same timestep they are used. It can be seen
in Fig. 4b that the one bin look-ahead TD pre-
diction does not diminish, but a contact happens
anyway. This causes the prediction to increase
and motion to restrict further. This happens again on the other extreme of motion. Figure 4c shows the
prediction and motion for two bin look-ahead TD. We can still see the shoulder position at reported

5



(a)

(b)

(c)

Figure 4: (a) Contacts as in Fig. 2, but for
TD(0.9), 1 bin look-ahead (LA1TD), and 2 bin
look-ahead (LA2TD). Contacts, position, and
predictions for (b) LA1TD and (c) LA2TD.

(a)

(b)

(c)

Figure 5: Participant data for (a) contacts as Fig.
2 all three cases tested with the human partic-
ipant, and contacts, motion, and prediction(b)
LA4TD and (c) LA2TD.

motion stops not being perfectly steady as we would expect from robotic motion, but drifting slightly
in both extremes. The additional bin prevents these drifts from making contact.

Human participant data is show in Fig. 5. The contacts over the trials for TD(0.9) shown in Fig. 5a
show that TD(0.9) made repeated contacts after over the course of the trials. TD(0.9) with a two bin
look ahead also struggled. This is likely a result of additional delays in the human-machine system
from the sound used to signal the human having a delay in its onset and the reaction time of the
participant. Figure 5b shows the predictions for TD(0.9) with the look ahead increased to four bins
remains high over the course of the trial, but a single contact was still made in the 50 motions of the
trial despite this. The motion that this happened on is one straight shot; it doesn’t have any of the
pauses before the extreme that some of the motions exhibit. The two bin look-ahead TD shown in Fig.
5c shows more passing through the bin where the signal is initially triggered by the prediction and
into bins beyond—despite the prediction at the extremes of motion being high, contacts are made.

4 Discussion

TD Compared to GTD: In a previous study it was found that a machine learning agent using
reinforcement learning techniques can learn something that is of value to the more sophisticated
sensorimotor decision making of a human user [14]. In that study, however, one of the primary
advantages of reinforcement learning techniques was not utilized in the trials—the system was not
learning while the task was being done. This was because there is a particular challenge involved
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when success on the task involves no longer encountering the event in the signal space that is trying
to be avoided. It was proposed in Parker et al. [14] that off-policy learning would overcome this. That
proposal was the first algorithm examined in our present study. Surprisingly, Fig. 2 clearly shows
that the off-policy learning algorithm, GTD in particular, did not overcome the forgetting seen in
Parker et al. The closest algorithm to that of the original study used here was TD(0), and Fig. 2 does
show how this method struggles. However it is also clear that GTD did worse than TD(0.9). This was
with robotic auto-motion, which is relatively consistent when compared to a human interacting with
the device. This indicates that a human user would not find the expected success using an off-policy
algorithm while the agent is learning online in real time as is the goal.

In order to determine what is happening further exploration of the data was required. Figure 3
suggests some of the challenges faced by GTD. It seems that part of what was supposed to be the
benefit of the off-policy algorithm becomes a challenge; when the system motion stops or changes
direction the observations do not impact learning about motion in the direction it was previously
travelling. In this case, the agent gets less experience on each motion and learns more slowly. The
pattern of diminishing predictions and increasing extremes of position until contact is visible here as
well but occur more frequently. This strongly suggests that the benefit we were expecting to see from
off-policy learning, not forgetting about where contacts were made when it no longer encountered
them, is being at least in part overridden by the lower number of samples seen by each GVF as they
are learned. more detail of the contact events can be seen in supplementary material Fig. S1. In
particular closer examination of the predictions shows the prediction gradually diminishing over
repeated motions in both directions until it is below the threshold and contact is made.

It is important that the machine learning agent tasked with assisting the human does not “forget" about
a feature when success involves avoiding that feature. This places the machine agent in a position
where it is at best not providing anything useful to the human other than perhaps some initial priming
of the human’s expectations of a task, after which the human must ignore the signals from the agent.
At worst the agent is damaging the interaction between the human and the device by being unreliable
and untrustworthy [19, 12]. At the same time, the machine agent should be able to forget when it is
appropriate to do so, or it risks becoming specialized to a very specific set of circumstances and is
not fulfilling a primary advantage of reinforcement learning methods in continual human-machine
interaction of real-time adaptability. If the human chooses to ignore a signal from the machine agent,
and the workspace shape had changed so that contact was further out, the system should be able to
adapt to this change in how the human is doing the task. For these reasons it is worthwhile to pursue
reinforcement learning methods to improve human-machine interaction.

TD Compared to Look-Ahead TD: There are several challenges to this task that necessitated the use
of a simple domain to attempt to isolate the effects algorithmic differences on learning to avoid some
part of a workspace or task, and doing so to reliably generate predictions to aid this avoidance. The
avoidance itself poses a challenge for the TD learners. Since these algorithms learn from experience,
when they no longer experience something they not only stop learning about it but the experience that
is avoided is replaced with more recent experiences. GTD, an off-policy algorithm, was thought to be
the solution to this problem, however it encounters challenges as well. It is very possible that some of
these challenges are based in the nature of physical systems; the play in the servos, inertia from the
motion, and time synchronicity challenges that arise in part as a result of running each part of the
system as fast as it is able in order to not miss events of interest. It should be noted that the servos
used in the Bento Arm are durable, high precision servos, so while there may be hardware that would
assist in overcoming the physical challenges the expense becomes significant. Therefore, instead of
physical modifications to the arm, we changed how the predictions were being accessed. Until now,
the timestep that was being learned on was also being used to generate the prediction token to instruct
the system to change directions in order to avoid contact. This was the purpose of the look-ahead TD
method; by using the prediction a specified number of bins ahead of the active bin in the state space,
this method should make it impossible for the predictions being used to signal to diminish since they
are not physically visited by the system.

TD(0.9) was used as the learning algorithm with look-ahead TD, as it learned quickly. Of particular
note in Fig. 4a, the two bin look-ahead made no contacts after an initial one per side. The one
bin look-ahead did, on occasion make contact after initial contacts. It is clear in Fig. 4c that the
motion is stable; the extremes of position don’t change substantially for the most part, except in
a few places where motion stopped in a further bin, but no contact was made. The predictions
remain undiminished, at least in their peaks. Interestingly, upon close inspection what happens to the
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predictions is they decay in the bins being visited, but not the ones being used. This gives them the
appearance of a spike, rather than a gradual increase. The appearance of the motion and prediction in
Fig. 4b and Fig. 4c is very similar until the contacts, at which point Fig. 4b subsequent motions in
that direction stay further from the previous extreme as the prediction value of all relevant bins, as
configured in the GVFs, increases. It is interesting that look-ahead of any number made contact at
all. This strengthens the implication that there are more issues facing the system than unlearning the
events it stops observing. It is likely the contacts made by the one bin look-ahead can be attributed to
previously mentioned physical challenges of the system. That there seems to be no regularity to the
contacts caused by this is an extra challenge, that seems as though it can be avoided by increasing the
number of bins of look-ahead.

Human Participant Outcome: In order to begin to explore the impact that these algorithmic choices
have on the ability of the system to adapt and become an individualized solution in human-machine
interaction, a case study was done with a single participant using TD(0.9) and look ahead. The
originally pursued off-policy GTD was not included in the human controlled setting as it’s problems
would only be exacerbated by human use. Figure 5a shows that TD(0.9) does not fare as well at
reducing the number of contacts with the human participant as it did with automated motion. The
two bin look-ahead had fewer repeated contacts, but with the ideal goal being zero contacts after the
initial motions it is not performing adequately. Even increasing the look-ahead to four bins resulted
in a single contact. This contact happened on a trial that took longer to complete than the other two,
which implies that it was covering more distance between extremes and thus was closer to contact the
entire trial. The motion of the human shown in Figs. 5b and 5c is, predictably, less regular than that
of automated motion. This, coupled with delays in reaction caused by the participants reaction time
and a software delay in the onset of the sound signalling the participant of an event, increased the
difficulty of the task for the learning agent. Even with four bins of look-ahead there was a contact
late into one of the trials. The look-ahead technique, if nothing else, adds an extra parameter that
can be adjusted to assist the success of the learning agent. While look-ahead TD should completely
prevent forgetting, even using on-policy algorithms such as TD(λ), the physical factors of the system
make it not so simple. If the number of look-ahead bins is not correctly set, over extended periods
of time the slippage into adjacent, closer, bins would still lead to forgetting. It is possible, in fact
likely, that different representations and even reward functions could be used to accomplish this
specific task. However, the choice of representation and cumulant here were made because of they
do not use designer knowledge of the task, but rather are grounded in the construction of the robot,
specifically the information available from the servos, and signals from the environment alone. By
grounding the representation and cumulants in the construction of the robot in this way, the system
must learn about the environment and task by way of it’s own motions and signals. This is important
because, if successful, it allows the system to learn about the world in terms that will always be
available to it even with different users, tasks, and environments. The use of a single participant for
the human portion of these trials is a significant limitation to statements about the generality of this
work. However, in this domain, the driving rational of using RL techniques is that they can adapt to
an individual user, therefore any single participant where this is found to be not true (as in the present
experiment) is worth bearing in mind for future work. For the interested reader, a more advanced
proposal for learning predictive look-ahead can be found in the supplementary material (Fig. S2).

5 Conclusions
In this work we investigated a clear prosthetics-motivated example of one of many settings where
agents interact with other agents in uncertain via signals that they adapt in real time and through
ongoing experience. In addition to its specific contributions to improving feedback from prosthetic
limbs by demonstrating the use of Pavlovian signalling in a human-robot arm interaction, this paper
provides concrete evidence on how algorithmic differences impact continual temporal-difference
learning of approximate general value functions used in feedback and signalling; this work contributed
new insight into the importance of on- and off-policy learning choices, predictive representations
of state, and function approximation, and how these factors act differently on real-world platforms
with and without a human in the loop. As this work is intended to further methods for reinforcement
learning techniques to adapt to individual users and provide specific solutions, the findings on the
inability of the selected off-policy method to reliably provide signals the human could use is worth
keeping in mind moving forward. We therefore expect these findings to support the development of
next-generation neuroprostheses and other assistive technology, and more broadly a range of diverse
applications where multiagent interaction occurs in complex domains in concert with or as mediated
by prediction learning machines that continually learn during ongoing human-in-the-loop interaction.
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6 Supplementary Material

S1 Temporal-Difference Learning Algorithms

Algorithm S1 TD(λ) Update

set α← 0.1, γ ← 0.9, λ← 0 or 0.9
init ~w, S, SLast, ~e← 0
on update call

observe C, S
δ ← C + γ ~wT~x(S)− ~wT~x(SLast)
~e← min(1, ~x(SLast) + γλ~e)
~w ← ~w + αδ~e
SLast ← S

Algorithm S2 GTD(λ) Update

set α← 0.2, γ ← 0.9, λ← 0.9, β ← 0.01
init ~w, ~u, S, SLast, ~e← 0
on update call

observe C, S
ρ← 0
if behaviour aligns with πt then

ρ← 1

δ ← C + γ ~wT~x(S)− ~wT~x(SLast)
~e← ρ ·min(1, ~x(SLast) + γλ~e)
~w ← ~w + α[δ~e− γ(1− λ)(~eT~u)~x(S)]
~u← ~u+ β[δ~e− (~x(SLast)

T~u)~x(SLast)]
SLast ← S
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S2 Extended Results

Figure S1: Contacts (black), motion (top), and prediction (bottom) for TD-lambda zoomed in to
show the point where contact occurs. Dashed line across the prediction is the threshold for token
generation. Here the position is as reported by the servo on each timestep.

S3 Future Directions: Learning the Predictive Look-ahead

Figure S2: Schematic of more advanced learned predictive architecture. Multiple prediction learners
responsible for different parts of the task and the controller combines them for use in signalling the
user.

Three different look-ahead values were used in this study, which were manually chosen. One of those
values worked with automated motion, but in the human trials further look-ahead, or perhaps adjusting
the learning parameters, is required. It is not out of the question to think that different participants, or
methods of delivery of the signal to the participant, would necessitate different amounts of look-ahead.
In the vein of having the system learn about the world in terms referential to itself rather than having
the designer impart specific task, or partner, knowledge upon it, a system that also learns the amount
of look-ahead required may perform better and more generally. This could be done with multiple or
layered predictions. An example of an architecture for such an interaction of prediction learners can
be found in Figure n the supplementary material. In this proposed architecture, the robot interacting
with the environment to generate predictions about contact remains the same. Following methods
from Sherstan et al. [20], a second set of GFVs would learn about the way the arm is moving, and
make predictions about what position the arm is expected to be in. These predictions can be combined
in the controller to determine if the predicted position is in a predicted contact area, and this is in turn
used to signal the user. This could enable a learned value in place of what here is a designer-specified
look ahead, and increase the success of the learning agent in assisting the human to avoid all contacts
in future.

12


	1 Introduction
	2 Methods
	2.1 Experimental Setup
	2.2 Procedure
	2.3 Prediction Learning Algorithms

	3 Results
	4 Discussion
	5 Conclusions
	6 Supplementary Material

