
S. I : HUMAN-ALIGNED REINFORCEMENT LEARNING FOR AUTONOMOUS AGENTS

AND ROBOTS

Communicative capital: a key resource for human–machine shared
agency and collaborative capacity

Kory W. Mathewson1,2 • Adam S. R. Parker2,3 • Craig Sherstan4 • Ann L. Edwards2 • Richard S. Sutton1,2,3,5 •

Patrick M. Pilarski1,2,3,5

Received: 25 February 2022 / Accepted: 12 October 2022 / Published online: 14 November 2022
� The Author(s) 2022

Abstract
In this work, we present a perspective on the role machine intelligence can play in supporting human abilities. In particular,

we consider research in rehabilitation technologies such as prosthetic devices, as this domain requires tight coupling

between human and machine. Taking an agent-based view of such devices, we propose that human–machine collaborations

have a capacity to perform tasks which is a result of the combined agency of the human and the machine. We introduce

communicative capital as a resource developed by a human and a machine working together in ongoing interactions.

Development of this resource enables the partnership to eventually perform tasks at a capacity greater than either individual

could achieve alone. We then examine the benefits and challenges of increasing the agency of prostheses by surveying

literature which demonstrates that building communicative resources enables more complex, task-directed interactions.

The viewpoint developed in this article extends current thinking on how best to support the functional use of increasingly

complex prostheses, and establishes insight toward creating more fruitful interactions between humans and supportive,

assistive, and augmentative technologies.

Keywords Communicative capital � Machine intelligence � Prostheses � Prosthetic devices � Human–machine interaction �
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1 Introduction

Technology can be used to amplify natural human abilities,

provide access to new abilities, and supplement abilities

changed due to injury or illness [1–6]. Various tools and

technological interventions are well known to support

humans in physically interacting with their world,

improving perceptual abilities, and supporting decision-

making and memory [1, 7–9]. Interventions to provide

people with the functions they require for daily life are a

core area of interest in rehabilitation, as outlined by the

International Classification of Functioning, Disability and

Health (ICF) [10, 11]. For example, Geary [1] describes

ways that technology is used to enhance sight, touch,

hearing, taste, smell, and mental processes. Millán et al.

[12], Castellini et al. [13], and Carmena [14] further pre-

sent views on the use of technology to supplement and

enhance motor and sensory abilities for people who have

lost body parts or body functions. Of interest to this work

are technological advances in assistive or augmentative

technology involving tight coupling [15] between a person

and a machine with the capacity to learn. This coupling

affects the ability of the combined human–machine part-

nership to have, seek, and achieve goals.

We present the perspective that a human’s ability to

have, seek, and achieve goals can be supported using
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machine intelligence, specifically by combining human

ability with reinforcement learning agents [16]. We term

this human–machine shared agency. This perspective

suggests that a human and their machine counterpart

should be viewed as partners attempting to accomplish a

shared task, where the agency of each partner combines to

allow for greater potential capacity to accomplish tasks.

As a main contribution, we introduce communicative

capital: a resource that is built up over time in a human–

machine partnership that allows the partners to eventually

perform tasks at a capacity greater than either individual

could achieve alone. The resource can consist of accu-

mulated propositional or procedural knowledge, conven-

tions, beliefs, models, and predictions of the other agent.

Communicative capital is represented within each agent

and is stored within the individual memory of both agents.

Communicative capital directly affects the behavioural

collaborative capacity of the human–machine partnership.

In this paper, we specifically consider the case where the

resource is in the form of predictions learned over time

from interaction between human and prosthetic devices.

While our setting of interest is human–machine interaction,

a helpful motivating example is a human-guide dog part-

nership that allows both independent agents—human and

canine—to accomplish a greater range and complexity of

shared tasks (discussed in Sect. 6.1).

2 Robotic upper-limb prostheses

Robotic prostheses and other examples from the field of

rehabilitation technology help us focus our thinking on

direct human–machine interactions that can be well sup-

ported by machine intelligence. The rehabilitation tech-

nology setting is appealing in that it involves a direct,

immediate, tightly coupled collaboration between a human

and their technology to achieve a goal [15, 17]. Examples

of assistive rehabilitation devices include semi-autonomous

wheelchairs [12, 18], robotic manipulators and locomotors

[13, 19], exoskeletons [20], smart living environ-

ments [21], and socially assistive robotic coaches [22]. The

representative example of assistive rehabilitation technol-

ogy we focus on in the present work is robotic upper-limb

prostheses: assistive electromechanical devices attached to

the body of individuals with amputations [23] (Fig. 1).

Despite the evolution of prosthetic devices from iron hands

to more dexterous mechanical manipulators, and

improvements in quality of life for some users, state-of-the-

art devices have yet to create a satisfactory solution for

many individuals [13, 24–27].

In the prosthetic setting, movement control contribu-

tions from both human and machine must combine effec-

tively in order for the device to benefit the human user. In

this setting challenges result from the limited number of

degrees of human control and the lack of feedback from the

device [13, 30]. The coupling of human and device is

further complicated by the dynamic, non-stationary nature

of human environments [31]. This coupling has been

improved by muscular, neural, and osseointegration

allowing for a more direct, high-bandwidth connection

between human and machine [13, 19, 27, 32, 33]. To

provide a bidirectional flow of information between pros-

theses and their users, cameras have been used to augment

perception [34], microphones and speakers have been used

to facilitate natural language interactions [35], and both

surgical practices and prosthetic feedback approaches have

evolved [30, 36]. Prosthetic devices of the future will

receive an unprecedented density of data about human

users and their environment, and they should be well

equipped to translate such data into actions which support

the goals of the users.

Despite the potential of advanced prostheses to support

human abilities, current neuroprosthetic literature describes

that one remaining limitation on the interaction between

human and machine is the number of independent signals

flowing between human and machine partners [13]. This

constrains control strategy design of upper-limb prostheses

to a small number of degrees of freedom, actuated by

classification or regression algorithms for real-time control.

Giving the upper-limb prostheses some autonomy in their

control mechanism has been shown to allow for simulta-

neous control of multiple degrees of freedom while still

using the same number of independent human generated

control signals [13]. For example, pattern recognition-

based controllers have provided an improvement over

conventional controllers in standardized tasks in random-

ized clinical trials in part because of their ability to learn to

interpret and act upon diverse collections of signals pro-

vided by a human user [37, 38]. Importantly, these systems

therefore require upfront investment on the part of both the

device and the user in the form of initial training and

subsequent adjustments in order to see the autonomy-re-

lated improvements they offer. Increasing the autonomy of

a prosthetic device has been shown in many specific cases

to significantly increase the capacity of the human-pros-

thesis partnership to efficiently and effectively accomplish

functional tasks [13]. Perhaps surprisingly then, given the

diverse data streams and automation capabilities noted

above, the specific consequences of prostheses themselves

being considered to have and share in agency during

human prosthesis interaction has remained relatively

under-explored. We now examine the relationship between

agency and capabilities in human-prosthesis partnerships.
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3 Prostheses as agents

In this section, we consider the implications of treating a

prosthetic device as an agent—an autonomous goal-seek-

ing system. This is not a common perspective—it suggests

both sides of a tightly coupled human–machine interface

should be thought of as agents with goals. Drawing insight

from relationships found in human-human joint action and

interaction [39–42], treating a human-prosthesis interaction

in this way is in fact not as unfamiliar as it might first seem;

with an agent-centric view, each agent would be expected,

within its capability, to grow to understand the capabilities

of the other and predict how to act accordingly. That is,

each agent would naturally and, to the best of its ability,

explicitly model the agency of the other to increase the

capacity of the partnership in a continual and incrementally

increasing fashion. This form of model building and

adaptation is present in rather constrained ways in existing

state-of-the-art upper-limb prostheses, and something the

community hopes to enhance within future prosthetic sys-

tems [13].

We first delineate degrees of agency and the resulting

capabilities that each side of the prosthetic human–machine

partnership may obtain. Here, the human and the machine

are considered analogous to co-actors in a joint action

task [39–42] or the leader and follower in a two-agent

partnership [43]; this collective shared agency is coopera-

tion between a natural and an artificial system [44]. We

define agency as the degree to which an autonomous sys-

tem has the ability to have, seek, and achieve goals. This

definition is inspired by the Belmont Report [45], wherein a

system assumes agency if it is ‘‘capable of deliberation

about personal goals and of acting under the direction of

such deliberation’’. Hallmarks of agency include the ability

to take actions, have sensation, persist over time, and

improve with respect to a goal. These hallmarks give rise to

an agent’s ability to predict, control, and model its envi-

ronment and other agents. By taking prior perspectives on

agency into consideration [46], along with the nuances of

the prosthetic setting of interest, we focus on five attributes

of agency that may be present in the human or machine

agent.

3.1 Be a mechanism

The agent acts in a predetermined way in response to

stimulus. For example, a myoelectric controller that pro-

cesses electromyographic (EMG) signals via a fixed linear

proportional mapping to create control commands for

prosthetic actuators [47].

3.2 Adapt over time

In addition to being a mechanism, the agent has the

capacity to adapt in response to the signals perceived.

Through adaptation, the agent may acquire knowledge

about its situation (e.g. by modelling and adapting to per-

ceived signals). Adaptation can occur during training, as in

the supervised learning of a pattern recognition classifier,

or during ongoing experience [13, 48].

3.3 Pursue a goal

The agent has defined goals and an intent to optimize some

measure of its own situation. One example of the pursuit of

a goal is the maximization of a scalar reward signal, as in

computational and biological reinforcement learning [16].

3.4 Model the other agent as adapting

The agent views the other agent as adapting during ongoing

interaction. This can alter the way one agent presents sig-

nals to the other. For example, a human user trains a pattern

recognizing prosthetic with knowledge that the device is

adapting to their signals.

Fig. 1 Prostheses examples:

a Robotic upper-limb prosthetic,

b Human using a research

prosthesis [28], c Human using

a supernumerary limb [29]
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3.5 Model the other agent as pursuing a goal

The agent views the other agent as not only changing in

response to received signals, but also as pursuing its own

objectives. This preliminary theory of mind further alters

the way that the one agent presents signals to the other

agent.

We present this list of attributes with the caveat that it is

likely not exhaustive. We can imagine that there may be

higher order attributes of agency which mirror the recur-

sive theory of mind. Additional attributes may parallel high

order intentionality and reasoning, as in research in animal

ethology, machine theory of mind, and cultural intelligence

[49–52]. This line of thinking is discussed further in

Sect. 5.3.

We now outline a schema (Fig. 2) for considering

degrees of agency and relate agency to the combined

capacity of a human–machine partnership. Capacity and

agency in this schema are agnostic to the units of mea-

surement and the exact attributes of agency, so as to be

compatible with, and still helpful across, multiple defini-

tions of agency.Capacity is a measure of task performance

accomplished by the human–machine partnership as

quantified by some metric. Maximum capacity is the opti-

mal performance that could be achieved by the partnership,

illustrated and labelled ‘max partnership capacity’ in

Fig. 2a. This maximum capacity can be realized or unre-

alized. Realized capacity is the actual achieved capacity of

the partnership, shown as a solid red bar in Fig. 2a.

3.6 Agency

Agency is the summation of contributions from individual

degrees of agency, either discrete or continuous in nature.

Multiple degrees combine to increase agency of the agent

and shared agency of the partnership (Fig. 2).

3.7 Capacity function

Agency is related to capacity by a capacity function. By

finding the point on a capacity function corresponding to a

given level of agency, we can visualize the maximum

capacity of partnership. A system that is a mechanism has

less agency and less capacity than a system that is a

mechanism, adapts over time, and pursues a goal. A part-

nership may result in greater capacity than the sum of the

two individual systems if both partners model each other

and how to effectively utilize the capabilities of both

agents. A partnership can also result in a capacity less than

the sum of the two individual systems if, for example, the

partners interfere with each other.

As an illustrative example, Fig. 2 uses this agency-ca-

pacity schema to compare a human-mechanism partnership

(without shaded rectangles) to a partnership where the

machine is able to adapt (with shaded rectangles). Note

how the maximum capacity of the partnership is greater

than either could achieve on their own. That capacity may

be initially unrealized and change over time, or it might

only be realized if both agents can model the other as

pursuing a goal.

The way that the goals of the human and machine align

is a problem related to team formation in human-human

and human-animal partnerships [53]. Such alignment can

occur during normal sensorimotor interactions between

agents [41, 42, 54, 55]. To examine the process by which

such alignment might occur during human–machine inter-

action, we now introduce the idea of communicative cap-

ital. Communicative capital is a resource built up through

Fig. 2 The capacity function (dashed grey line) is the relationship

between capacity and agency. a The capacity of the partnership (red)

is a function of the contributions from the machine agent (green) and

the human agent (blue). b Illustrative example of how attributes of

human and machine agency can relate to maximum partnership

capacity. The light green shaded rectangle represents the capacity

increase when a machine agent adapts over time versus when it acts

only as a mechanism. The light blue shaded rectangle represents the

increase in capacity when a human pursues a goal versus when it also

models a machine partner as adapting (Color figure online)

16808 Neural Computing and Applications (2023) 35:16805–16819

123



ongoing interactions between a human and their machine

counterpart that correspond to how well both agents

understand each other and the partnership [56].

4 Communicative capital

As depicted in Figs. 2 and 3, the agency of the human and

the machine contribute to the capacity of the partnership.

Communicative capital is a resource built through inter-

action between both sides of the partnership. It enables a

partnership to eventually perform a task at a capacity

greater than either individual could achieve alone. Accu-

mulating communicative capital requires investment to

establish and maintain (see the ‘cost of signalling’ descri-

bed by Pezzulo and Dindo [41]). The cost of investing in

communicative capital may be incurred passively during

the interactions of a partnership, or, in many cases, through

dedicated effort tangentially related to the ultimate goals of

the partnership. For example, users of prosthetic devices

learn about the use of their prosthesis before they take it

home for use in activities of daily living. In advanced

devices that use pattern recognition, teaching both sides of

a partnership to engage in a system of meaning-by-con-

vention [57] (e.g., a series of commands to a prosthesis

phrased in terms of patterns of myoelectric signals) may

require significant additional time and energy but lead to

increased future efficiency.

Building communicative capital can also be viewed as a

process of compression and decompression, or via the lens

of Scott-Phillips et al. [58, 59], one related to ostension and

inference. One agent takes an action and thereby encodes

information into a signal. The other agent must decode the

signal as it arrives, and thereby recover the associated

information. To begin to form communicative capital, at

least one of the two agents must be able to adapt. Further,

we expect the greatest opportunities to build communica-

tive capital will exist when both the human and the

machine exhibit the highest possible degrees of agency. We

now discuss how communicative capital can be built and

used to progressively realize more capacity in prosthetic

human–machine partnerships.

5 Building capital through interaction

So far we have considered settings where a communication

channel exists between the human and the machine. While

this channel can be either unidirectional or bidirectional,

two-way communication is often beneficial for interactions

between multiple goal-seeking agents. If the agent’s goals

are not furthered by the information received, then it may

ignore the received information. If one agent’s goals are

not furthered by what the other agent does with received

information, it will choose to not send such information in

the future. The agent can send many possible things, and

can therefore choose how to balance the cost of sending

information with the expected outcomes for itself and the

partnership [41]. It follows that both agents should vary

their communication to send information that results in

both improving with respect to their goals. The variation of

communication could be independent, or guided by other

parties—e.g., the work of clinical staff to train a patient for

prosthesis use, or an instructor helping someone collabo-

rate with a guide dog [60].

In effect, the processes of building communicative

capital toward the attainment of goals is about the speci-

fication and identification of things each agent cares about,

as in ‘‘when I do this it means this’’. There can then be a

natural progression in the interaction as the two sides get to

know each other better. For example, in the progression

shown in Fig. 3, improved predictions represent one form

Fig. 3 Communicative capital is acquired by the partnership over the

course of ongoing interaction. Prior to the partnership interacting, the

human (blue) and machine (green) have acquired no communicative

capital and thus have no realized capacity. Then, over the course of

ongoing interaction (from top to bottom) through modelling,

improved predictions, and understanding of the signals of one

another, the partnership acquires communicative capital which leads

to increased realized capacity (dark red) (Color figure online)
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of communicative capital. Beneficial collaboration often

requires that at least one agent model and predict infor-

mation about the other. This modelling of the other enables

the partnership to achieve tasks with less effort and less

explicit communication. This viewpoint is compatible with

perspectives on human-human motor coordination [43] and

with prosthetic control approaches like pattern recogni-

tion [61, 62] as discussed below.

In the following sections, we use the idea of commu-

nicative capital and the agency-capacity schema defined in

Sect. 3 to examine experimental work where prosthetic

control has been improved by ongoing interactions

between the device and the user. First, we explore human

interactions with adaptive mechanisms like pattern recog-

nition systems in commercially available prostheses, and

then we detail interactions with goal-seeking prosthetic

agents.

5.1 Adaptation: prediction enhanced control

First, we consider communicative capital in adaptive con-

trol paradigms—specifically, machine learning based

prosthetic controllers. There are multiple examples where

the human views the machine as adapting and where the

machine models and predicts information about the human

to better fulfill the human’s intentions [13, 48, 63, 64].

In commercial prostheses with pattern recognition, the

human engages in a training phase to inform the device

about the preferred motions to perform in response to

complex patterns of myoelectric activity recorded from the

human’s body [13, 62]. The use of pattern recognition can

provide users with more intuitive control of their prosthe-

sis [13]. The human becomes more skilled at providing

clear training commands, in part because of their knowl-

edge that the machine is learning and adapting from the

ongoing interaction. The result is improved capacity due to

an increase in communicative capital: the number of

human controllable functions can now exceed the number

of available degrees of control available in conventional

myoelectric control which depends on antagonistic muscle

pairs for each degree of freedom [65].

A second example is adaptive and autonomous switch-

ing [63, 64, 66]. In this setting, a machine learns to make

ongoing predictions about how and when a human will

decide to switch between controlling one functional joint of

a prosthetic device (e.g. the wrist, elbow, or shoulder) and

another (Fig. 4). In manual switching, the human uses a

separate biophysical control interface to send a ‘change

currently controlled joint to the next in a fixed list’ signal to

the device. In adaptive switching, the device adapts to the

human by suggesting which joint it predicts the user might

want to control next. The human’s ability to quickly per-

form tasks is improved by these suggestions. The device

improves its suggestions based on ongoing observations

about the human’s actions and preferences. The adaptive

nature of the machine, and the increased agency of expert

humans to model the machine, lead to increased capacity to

successfully complete the task efficiently in terms of

reducing both total task time and total switches needed by a

human user to complete a task (Fig. 4a,b). In autonomous

switching, the device automatically switches which joint is

currently controlled. This is done by making and using

predictions to automatically switch between the functional

control of different prosthetic device joints (see Fig. 5)

[63, 66]. Predictions are an acquirable form of commu-

nicative capital built up by a machine learning agent during

its interactions with a human and the environment.

Observations from both adaptive and autonomous

switching suggest that the human begins to model the

device as an agent that makes predictions [66]. As human

subjects became more familiar, both with their execution of

a task and with the role of machine learning as it adapted to

a task, they reported greater trust in the autonomy of the

device. In these experiments, certain regions of task spaces

were observed where the learning system performed with

close to 100% prediction accuracy. In these regions, sub-

jects’ behaviour suggested they needed to monitor the

prosthetic arm less (e.g., the reduced number of manual

switches in Fig. 5).

In the autonomous switching experiments of Edwards

et al. [66], users began to predict autonomous switches,

often moving the next functional prosthetic actuator prior

to hearing a cue alerting them to the machine’s automatic

switching behaviour. Increased capacity in terms of

reduced manual switching, and the communicative capital

that supports it, is evident in users who have extensive prior

experience operating adaptive prosthetic devices (see

Fig. 5c,d). Users who had a greater understanding of the

prosthetic learning system tended to perform actions that

benefited learning, allowing the prosthetic arm to build up

expectations about their behaviour more swiftly.

Another related example is the work of Sherstan et al.

[67]. In this work, a human and a machine learning system

share agency in controlling the movement of a robotic arm.

The user is only able to control a single joint of the arm at a

time and must switch between joints as needed in order to

complete a task. The machine agent observes the human’s

behaviour and learns to predict the expected joint angles of

the robot arm. These predictions are then used to move the

arm in collaboration with the human’s own actions [42].

As a final example of adaptive assistive technology

related to the upper-limb prosthetic setting, Xu et al. [68]

describe a walking-aid robot designed to autonomously

adapt to different users. The robot uses reinforcement

learning to adjust the relative control of the human in real-

time for smoother, faster movement. Smoothness of
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motion, system safety, and intuitive control can all be

viewed as different capacity functions that are improved by

the adaptive nature of the machine.

5.2 Goals: reward-based control

Goal-seeking behaviour on the part of both the human and

the machine—behaviour driven by processes of reinforce-

ment learning—enables a more detailed progression of

interactions than is possible with an adaptive, but not goal-

seeking, machine. What follows is one hypothetical pro-

gression of the training of an assistive machine, where both

the human and the machine are goal-seeking agents, and

where the human starts to model the device as a goal-

seeking agent. This modelling and adaptation can be

observed behaviourally as in the previous section.

1. At the outset, the human can only provide positive

feedback (i.e. reward) signals indicating their approval;

no other signals have any agreed upon meaning.

Fig. 4 a An illustrative example of how adaptive switching enables a

prosthetic device to model the way a human uses the functions of a

prosthesis and thereby increase agency when compared to the manual

switching condition. The increase in shared agency from the manual

to adaptive mode of interaction corresponds to increased capacity in

terms of (red) time to complete a task, and (purple) the number of

switches required to complete a task. This plot shows data approx-

imated from Edwards et al. [66] for illustrative purposes, and (b) their

participant using the device [63, 64, 66] (Color figure online)

(a) (b)

(c) (d)

Fig. 5 Measured capacity for autonomous and adaptive switching for

(a) expert and (b) non-expert humans (plots adapted from Edwards

et al. [66]), summarized in capacity functions relating to (c) the

number of manual interactions and (d) the total number of switches

required to complete a control task, expert humans realized more

capacity than non-experts
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2. Using these rewards, the machine can learn a function

that maps signals from the human, or other environ-

mental cues, to a valuation that is grounded in

cumulative reward (a value function, as detailed by

Sutton and Barto [16], and used in face valuing by

Veeriah et al. [69]).

3. Using this value function, the human teaches the

machine a convention that may be used to interact at a

low level—e.g., simple commands, body language,

cues like pointing, and the basics of shifting between

different functions of a system. The human begins to

model how their behaviour affects the learning and

adaptation of the machine.

4. Using these developed conventions, higher-level

abstractions can be established between the human

and the machine. These built-up conventions are one

component of communicative capital which enable the

realization of additional partnership capacity.

With this progression in mind, there are a variety of

compatible ways to incorporate human knowledge into a

learning system [70–73]. Starting with the idea of training

based on primary reward, as in the progression described

above, Knox and Stone [74] introduced the Interactive

Shaping Problem, wherein an agent is acting in an envi-

ronment and a human is observing the agent’s performance

and providing feedback to the agent such that the agent

must learn the best possible way to act based on that

feedback. The interactive shaping problem is related to

communicative capital, as it is a readily observable case of

information sharing between two goal-seeking systems

with a limited channel of communication.

Goal-seeking behaviour in a machine, and developing

communicative capital through the human’s modelling of

the machine as goal-seeking agent, increases the maximum

capacity of a partnership. A human’s interactions with a

machine are supported by a channel of communication

with defined semantics (e.g., the reward channel in rein-

forcement learning [16]) that allows the human to shape

the machine’s behaviour in ways that are not possible for

an adaptive, non-goal-seeking machine. This communica-

tion channel is integral to realizing the goal-seeking agent’s

capacity to deal with non-stationary tasks, changing prob-

lem domains, and novel environments, in a way that aligns

with the human’s goals. Providing the means by which to

shape behaviour can also reduce the amount of pretraining

for the system, as interactions are now accompanied by

online, real-time human feedback. Reward allows the

human to shape the machine learning agent to perform the

task in a personalized, and situation-specific way—an

adaptive goal-seeking agent has the ability to incorporate

engineered knowledge, but also move beyond it.

Previous work has demonstrated how both predefined

and human-delivered reward could be provided to a goal-

seeking agent to gradually improve the control capabilities

of a myoelectric control interface [48, 75]. By using a goal-

seeking reinforcement learning agent to control the joints

of a prosthesis, informed by predictions about future

movement, the human–machine partnership was found to

be able to progressively refine the simultaneous multi-joint

myoelectric control of a robotic arm. In these studies,

human approval and disapproval was delivered to the

machine with full knowledge of the machine’s learning

capabilities. These initial results have been extended to

more complex settings which informs how mutual, goal-

seeking behaviour supports myoelectric control [76].

These results demonstrate the value of developing com-

municative capital through the explicit incorporation of

human feedback signals. In this representative work com-

municative capital led to an increased partnership capacity.

5.3 Models, shared agency, and feedback

Beliefs about the nature of internal and external signals are

a kind of knowledge that we broadly denote as models.

Models are required for the higher level attributes of

agency; it is useful for a machine to represent, or construct

a model, of its partner and the world, in order to achieve

more effective interaction. Agent models, as they apply to a

human-prosthetic partnerships, may take many forms. They

may include, for instance, a collection of learned, tempo-

rally extended predictions about the dynamics of the world

and the behaviour of the human [16, 77, 78].

As described by Pezzulo and Dindo [54] shared repre-

sentations may be a critical part of communication during

human–machine interaction, and central to the formation of

more effective models in terms of beliefs, actions, and

intentions. This moves us towards developing a theory of

mind—an agent predicting the internal beliefs, motiva-

tions, and thoughts of another especially as applied to

observable sensorimotor interactions [41, 43, 54]. Recur-

sive theory of mind might imply higher levels of agency, as

presented in Sect. 4, and parallel higher order intentionality

[49–52]. Future work may explore this other-modelling and

how it can be leveraged to build shared knowledge.

As one example of how models can impact a human–

machine partnership, Bicho et al. [79] describe a shared

construction task in which a robot and a human must work

together to assemble a toy. Completion of the assembly

task required actions from both agents. The robot infers the

goal of the human from contextual clues and acts accord-

ingly, communicating its intention at each point during the

task using a speech synthesizer. This allows the human to

further model the internal processes of the machine.

Another example of a joint task in which a robot infers the
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goal of the human comes from Liu and Hedrick [80]. In

their work, participants and virtual robots collaborate to

accomplish a task, and the robot infers the human’s goal

based on motion. This research suggests that goal inference

(i.e., the modelling goals) decreased the time required to

finish tasks and improved other measures of performance,

including human–machine trust.

The impact of feedback from an adaptive prosthetic is

quantified in work by Parker et al. [81]. In their work, three

different kinds of feedback were used to supply a human

with information about how best to control the movements

of a wearable robot in the form of a supernumerary limb

(see Fig. 1c)—no feedback, mechanistic feedback, and

adaptive feedback in the form of predictions. The human

needed to move the robot in a confined work space, coming

as close as possible to the work space’s walls without

making physical contact. The human was blindfolded and

was acoustically isolated by way of noise-cancelling

headphones, so that they only received information about

the world via the machine’s feedback.

The two capacity functions of interest in Parker et al.

[81] measured: the current drawn by the motors due to

impacts with the work space walls, and the number of

times the human was able to use the arm to fully traverse

the work space in the given time. On different trials,

feedback from the device was either absent, delivered

mechanistically upon contact with the walls, or delivered

proportional to learned predictions about impacts with the

walls. Realized capacity in terms of current draw was

found to increase for the case where the human was paired

with the adaptive machine, but was found to approach a

reduced maximum capacity for the case of mechanistic

feedback from the device (see Fig. 6). This work provides

insight into how developing communicative capital,

specifically through explicitly modelling and increased

agency in the delivery of feedback, can influence the

maximum capacity possible for a human-prosthetic

partnership.

6 Discussion

This article has discussed the setting of human–machine

interaction, specifically the interactions between a human

and their prosthetic technology. However, the ideas pre-

sented above regarding agency and communicative capital

can be identified and analyzed in the interactions between

any two or more intelligent systems. In this section, we

provide supporting context from both biological and non-

biological examples of how agency plays a role in the

interactions of multiple agents to achieve a goal.

6.1 Guide dogs and intelligent assistants

A guide dog could be the oldest documented example of an

assistive technology with agency, with an early depiction

on the wall of a house excavated in Pompeii dated from c.

79 CE [53, 60]. A guide dog needs to be part of an active

partnership—it must have the capability to willingly dis-

obey an instruction when it perceives a danger. The agent

in charge of the interaction, human or dog, needs to be able

to change from moment-to-moment in order for the part-

nership to be effective. Because of these desired and

atypical behaviours, both the dog and the future owner

must be explicitly trained. The human must be taught not

only the precise vocabulary understood by the guide dog,

but what to expect in response. This requires both parties,

human and dog, to invest in communicative capital and

learn each others’ idiosyncrasies in order to approach an

effective partnership [82].

Computers, whether desktops, tablets, or smartphones,

all augment our cognitive abilities. At present, there is

significant effort to develop virtual assistants on such

devices. Such assistants may have some level of agency;

these assistants may be adaptive, changing their behaviour

and suggestions to meet the user’s needs [83]. To date,

existing computer interfaces have largely remained fixed

and unadaptive. However, thanks in part to increases in

available computation, computers are now improving in

their ability to predict user needs and to provide users with

the information and interfaces that are most needed at any

given moment [83, 84]. With increased agency, these

systems now begin to demonstrate some of the hallmarks

of human-human joint action established by the related

literature [39, 40, 85].

6.2 Interactive approaches to instruction,
communication, and control

There are multiple ways that a human and a machine—e.g.,

an assistive robot like a prosthesis—can beneficially

interact to achieve the human’s objectives [70, 72, 86]. A

pertinent family of methods, broadly classified as interac-

tive machine learning (IML), has demonstrated the

potential to increase the capabilities of decision making

systems in complex, dynamic, and novel environments.1 In

much of the existing IML literature, feedback channels are

used as a means by which a non-expert can train, teach, and

interact with a system without explicitly programming it.

Shaping allows for the human to learn how the system

1 Though, some argue that all machine learning is interactive
machine learning because humans interact with machines through

every step of the design, development, deployment, and dissemination

of such systems [87].
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accepts and interprets feedback and for the system to learn

the goals of the human [70].

IML has produced a number of important milestones.

With respect to goal-driven systems, trial-and-error

machine learning has been shown to be accelerated through

the presentation of human-delivered reward and forms of

intermediate reinforcement. Examples include the use of

shaping signals [88], the delivery of reward from both a

human and the environment [74], multi-signal reinforce-

ment [70], and combinations of both direct control and

reward-based feedback [48, 75, 76]. As described in

Sect. 5.2 above, an agent’s learning can be facilitated by a

human host through interactive reinforcement learn-

ing [74, 89, 90]. Griffith et al. [91] built on the earlier work

of Knox and Stone [89] with a framework to maximize the

information gained from human feedback. Loftin et al. [92]

expanded the space of human interaction through detailed

investigation of human teaching strategies and developed

systems which model the human feedback. Their systems

have been shown to learn faster and with less feedback than

other approaches. Interactive learning from demonstrations

and instructions have also been shown to help teach dif-

ferent ways of behaving to a learning

machine [86, 88, 93–97].

Humans can utilize a number of different approaches to

effectively communicate their goals to machine learning

agents. Through interactive learning, information from a

human can help a machine learner to achieve arbitrary

user-centric goals, can improve a system’s learning speed,

and can increase the overall performance of a learning

system. Advances in IML provide a basis for increasing the

rate with which a human-prosthetic partnership may

develop communicative capital and thereby realize

capacity, and, in certain cases, can also be expected to

increase the maximum capacity of a partnership.

6.3 Limitations

There are challenges and limitations in creating machine

agents that can build up communicative capital to collab-

orate more effectively with their human partners. In this

section, we highlight several critical areas of focus that

should be addressed in future work. Of particular note are

challenges related to safely deploying machine learning

algorithms in the real-world, especially when deployed on

robots tightly coupled to human users. Future work on

these algorithms is needed to empirically demonstrate how

they are provably robust to a wide variety of environmental

factors. As well, mechanisms to align the goals of the

human and the machine are critical in shared agency set-

tings. It has been shown in previous research how

increasing agency of the machine increases the cognitive

demands placed upon the human [76]. Human’s often

expect machines to function as mechanisms, unaffected by

adaptation. There can be significant implications on their

cognitive load once they are required to carry out their own

actions as well as model the learning agent [98]. Finally,

algorithms deployed in human–machine partnerships will

need to adapt quickly to information and signals from the

human. Both for reasons of safety, but also because a lack

of quick adaptation could lead to human disengagement if

the human doesn’t perceive the machine as learning fast

enough. Future work on safety, alignment, rapid adapta-

tion, understanding human expectations, and making con-

nections between these systems and modern theories of

agency is needed as human–machine partnerships move

from the laboratory and into the world. This is true for both

(a) (b)

Fig. 6 The difference between learned and mechanistic feedback

during control of a supernumerary limb (Fig. 1c). a Adaptive machine

significantly reduced current drawn by the motors of the robot arm

(adapted from Parker et al. [81]). b Increased machine agency

increase realized capacity of the partnership through an investment of

communicative capital
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prosthetic devices and for collaborative machines more

generally.

7 Paradigms for evaluation

We expect that increasing the agency of a prosthetic device

and investing in communicative capital will allow a col-

laborative partnership to accomplish tasks faster, easier,

more safely, and more efficiently. Work is now needed to

test this hypothesis and identify the contributions and

practical utility of agency and goal-seeking behaviour on

the part of machine learning partner agents. It is our rec-

ommendation that researchers design experiments varying

the level of agency of both human and the machine in a

controlled fashion to assess the contributions from each

component of agency. As described in Sect. 5.2, increased

agency on the part of the machine enables increased shared

agency. This increase is depicted as relative changes in the

agency and capacity of both agents.

One means by which to test agent contributions is

through the conventional outcome measures used to assess

the impact of rehabilitation interventions [99–102]. Out-

come measures provide a clearly defined notion of capac-

ity. Further, prosthetic outcome measures are already used

to study the benefits of pairing patients to systems with

different mechanistic levels of agency (e.g., during pros-

thetic fitting and patient assessment). In the majority of

clinically deployed prostheses, the control approach and

system design of the device is fixed. The communicative

capital of the mechanism—how it interprets body signals

and maps them to actuators—provides immediate realized

capacity at a level determined by the mechanism’s

designers. Measures like the Southampton Hand Assess-

ment Procedure, the Box-and-Blocks Task, and others are

used to provide a quantitative assessment of the impact of

these prosthetic mechanisms [102, 103]. Recent develop-

ments in the assessment of gaze and movement have fur-

ther shown concrete, capacity-related metrics that evaluate

user-prosthesis abilities via changes in the relationship

between biomechanics and visual attention, as well as other

measurable correlates of perceived control and

agency [104–107]. Some of these measures have been

shown to serve as proxies for the state of human predictive

models of their machine partner, and thus may provide a

way to quantify communicative capital as it is built by the

human side of a human–machine partnership [104]. Rig-

orous, incremental testing of agency is therefore highly

compatible with existing approaches, and will be signifi-

cantly extended as more comprehensive motor, sensory,

and cognitive outcome measures are developed.

One fruitful avenue for experimentation, as explored in

Parker et al. [29], is to deliberately reduce the agency of the

human by removing control options and/or sensory inputs

as they complete a task. In this way, the authors were able

to elucidate how different levels of agency in the machine

contribute to the performance of the partnership. A second,

complementary paradigm is to dramatically increase the

agency of the machine beyond what is technically possible,

so as to study the outcomes and conditions that support

shared agency. One way to do this is a type of sham trial

known as a Wizard-of-Oz experiment (e.g. Viswanathan

et al. [18]). Paradigms for evaluating human–machine

partnerships will continue to develop as technology sup-

porting shared agency evolves. We now conclude with

several brief reflections.

8 Conclusions

We argue that tightly coupled human–machine partner-

ships, such as humans and prostheses, should be thought of

as adaptive multi-agent systems where the agency of

human and machine combine to achieve more capacity

than either could independently. We present an agency-

capacity schema that relates shared agency to the capacity

of human–machine partnerships, and we show how com-

municative capital is the key resource that a partnership

needs to invest in to access the full capacity of the com-

bined agency of the pairing. Using examples from the lit-

erature, we illustrate how increases in the agency of a

prosthesis can tangibly improve the capabilities of its

human user. We highlight three main conclusions from this

work as novel contributions supporting human-prosthesis

interaction: (1) we propose that designing assistive devices

as goal-seeking agents improves the range of possibilities

for robust and flexible interaction, (2) we argue that an

agent-based viewpoint of human–machine interaction

enables a structured progression toward more capable

partnerships between people and devices, and (3) we

describe how communicative capital is a resource built

through ongoing human–machine interaction which

enables a partnership to eventually perform tasks at a

capacity greater than either could individually. Machine

intelligence enables the acquisition and use of commu-

nicative capital in human-prosthesis partnerships to more

effectively and more efficiently accomplish tasks. We

believe the agency-based viewpoint on assistive technol-

ogy proposed in this work contributes unique and com-

plementary ideas to the development of highly functional

human–machine partnerships. Designers and developers

should construct systems which actively invest in com-

municative capital as such investment will lead to increases

in shared agency to achieve more capacity than they would

be able to otherwise.
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