
Adaptive Behavior

Article

Adaptive Behavior
2023, Vol. 31(3) 197–211
© The Author(s) 2022

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/10597123221095880
journals.sagepub.com/home/adb

What’s a good prediction? Challenges in
evaluating an agent’s knowledge

Alex Kearney1,2, Anna J Koop1 and Patrick M Pilarski1,2,3,4

Abstract
Constructing general knowledge by learning task-independent models of the world can help agents solve challenging
problems. However, both constructing and evaluating such models remain an open challenge. The most common ap-
proaches to evaluating models is to assess their accuracy with respect to observable values. However, the prevailing
reliance on estimator accuracy as a proxy for the usefulness of the knowledge has the potential to lead us astray. We
demonstrate the conflict between accuracy and usefulness through a series of illustrative examples including both a thought
experiment and an empirical example in Minecraft, using the General Value Function framework (GVF). Having identified
challenges in assessing an agent’s knowledge, we propose an alternate evaluation approach that arises naturally in the online
continual learning setting: we recommend evaluation by examining internal learning processes, specifically the relevance of
a GVF’s features to the prediction task at hand. This paper contributes a first look into evaluation of predictions through
their use, an integral component of predictive knowledge which is as of yet unexplored.

Keywords
Reinforcement learning, general value functions, agent knowledge

Handling Editor: Angel E. Tovar, National Autonomous University of Mexico, Mexico

1. Introduction

A cornerstone of intelligence is knowledge. It is no surprise
that much artificial intelligence research has been focused
on designing algorithms that enable agents to construct
knowledge of their world. In this work, we consider
knowledge to be an agent’s ability to conceptualise aspects
of its environment by forming predictive models of its world
(Koop, 2008). The term model is sometimes restricted to
estimating the probability of state transitions; however,
there are many varied approaches to building world models
that enable agents to better perform on decision-making
tasks (Barreto et al., 2017; Ha & Schmidhuber, 2018;
Jaderberg et al., 2016). In this paper, we take a broad view of
what counts as a model, including predictions that forecast
future input values an agent might experience. In this sense,
agents construct knowledge of their world by learning to
model and forecast aspects of the environment they inhabit.

The benefits of constructing knowledge by forecasting
inputs are evident in computational reinforcement learning
(Sutton & Barto, 2019), where an agent must learn to act
optimally in order to maximize some expected cumulative
future reward. Instead of finding the optimal policy di-
rectly, agents often learn the expected reward, or value, of
states in their environment. By learning the value of a

state, it becomes easier to determine what the optimal
actions are.

Value functions are deeply related to the problem of
control, and the distinction between the main task (finding
the optimal policy) and model (estimating the value of a
state) is subtle. However, modelling the environment need
not end with estimating the value of states: modelling other
aspects of the environment can also support decision-
making (Comanici et al., 2018; Edwards et al., 2016;
Jaderberg et al., 2017; Koop, 2008; Modayil et al., 2014;
White, 2015). For instance, it may be useful for an agent to
estimate how different inputs change in response to its
behaviour (Jaderberg et al., 2017; Sherstan et al., 2020):
how an agent can control what it observes through its

1Department of Computing Science, University of Alberta, Edmonton, AB,
Canada
2DeepMind, Edmonton, AB, Canada
3Department of Medicine, University of Alberta, Edmonton, AB, Canada
4Alberta Machine Intelligence Institute, Edmonton, AB, Canada

Corresponding author:
Alex Kearney, Department of Computing Science, University of Alberta,
8900 114 St NW, Edmonton, AB T6G 2S4, Canada.
Email: hi@alexkearney.com

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/10597123221095880
https://journals.sagepub.com/home/adb
https://orcid.org/0000-0003-1686-2978
mailto:hi@alexkearney.com
http://crossmark.crossref.org/dialog/?doi=10.1177%2F10597123221095880&domain=pdf&date_stamp=2022-06-09

actions. These models of the world that are independent
of a particular task or goal an agent is trying to achieve
can be used flexibly across different problems, including
new and unseen tasks (Barreto et al., 2017; Sherstan
et al., 2018).

Learning models independent of the main task not only
supports agents in solving complex problems, it also forms
general knowledge of the world that can be applied to new
and unseen problems. How well an agent has acquired
knowledge is often measured using quantitative metrics: for
example, by directly measuring accuracy of a model’s es-
timate (Modayil et al., 2014; Pilarski & Sherstan, 2016;
Sutton et al., 2011), or by examining reward received by an
agent on the main task (Jaderberg et al., 2017; Schlegel
et al., 2021). Systems with better quantitative outcomes are
believed to better encode knowledge on a particular task.

As the main contribution of this paper, we argue that
evaluating knowledge is not the same as evaluating task
performance: there are new challenges that need to be
addressed. In particular, a model with higher estimated
accuracy does not imply that the model supports learning to
solve the main problem, or task.

In what follows, we introduce this distinction by con-
structing two examples and related experiments: first, where
traditional evaluation techniques lead to poor model
choices; second, where poor model choices have down-
stream consequences when used to inform decision-making.
Finally, we posit that by examining internal learning pro-
cesses, we can begin to evaluate agent knowledge, and show
an example of how this may indeed be possible.

2. Background: understanding the world
through general value functions

Our arguments apply broadly to evaluating machine
learning models via accuracy and error alone. To focus our
discussion, we ground our arguments in a single learning
problem of interest: learning predictions as an agent in-
teracts with its world. Predictions play an important role in
the construction of knowledge both machines and also
biological intelligence. Humans and animals continually
make many predictions about their sensations (Clark, 2013;
Gilbert, 2009; Nöe, 2004; Pezzulo, 2011; Pezzulo et al.,
2013; Rao & Ballard, 1999; Wolpert et al., 1995). With this
in mind, we use predictions to discuss the challenge of
analysing knowledge in machines.

General Value Functions (GVFs) are a way for machines
to learn and make predictions incrementally and online, as
an agent interacts with the environment (Sutton et al., 2011).
GVFs are entirely self-supervised and can be learned in-
dependent of the task an agent is undertaking through off-
policy learning (Sutton et al., 2011). In this paper, we use
GVFs as a computational tool to enable us to clearly make

our arguments, although our arguments are independent of
GVFs themselves and broadly applicable situations where
models are evaluated independent of their use.

2.1. How GVFs are specified and learned

General Value Functions estimate the value of a signal in a
sequential decision-making process. On each time-step t, an
agent observes inputs ot from the environment and takes an
action at which results in a change in the environment, and
thus a new observation ot+1. GVFs

1 estimate the future
accumulation of a cumulant c, where c is some signal of
interest available to the agent through its subjective stream
of experience. In the simplest case, this might be the ac-
cumulation of some element of an agent’s observation c 2 o.
The accumulation is discounted by a scalar value 0 ≤ γ ≤ 1
and is conditioned on a particular policy π: the probability of
taking action at given ot. The discounted sum of c, is called
the return, and is defined over discrete time-steps t as

Gt ¼ Eπ ½
P∞

k¼0ð∏k
j¼1ðγtþjÞÞCtþkþ1� – the expectation of

how a signal will accumulate over time.

When humans interact with the environment, they
construct models of the world by constantly forecasting and
anticipating what will happen next (Gilbert, 2009; Rao &
Ballard, 1999; Wolpert et al., 1995). Similarly, an agent can
build up self-supervised models that describe the envi-
ronment predictive questions such as ‘If I do this, I expect
that’ with General Value Functions (Comanici et al., 2018;
Ring, 2021; Sutton et al., 2011). An agent can achieve
greater complexity by beginning with simple, primitive
predictions about future features, and interrelating them –

making forecasts of forecasts. Such primitive predictions can
inform more complex predictions in two ways: one pre-
diction may be used as an input in another; or, one prediction
may be used as a cumulant c of another prediction. We refer
to these predictions of another GVF’s output as higher-order
predictions. By interrelating predictions, we are able to ex-
press abstract concepts that extend beyond the immediate
observation stream (Koop, 2008; Schlegel et al., 2021).

Predictions as knowledge are constructed by starting
with low-level immediate predictions about sensation
(Depicted in Figure 1). For example, an agent may begin to
build a model of spatial awareness by predicting whether
there is something in front of it: if the agent reaches out,
would it be able to touch something? This simple primitive
prediction could be used to informmore abstract models: for
example, if the agent were to turn left or right, would there
be something next to it? How far away is the nearest wall?
By interrelating predictive models, we can express more
abstract, conceptual aspects of the environment (Comanici
et al., 2018; Koop, 2008; Ring, 1997, 2021; Singh et al.,
2005; Sutton et al., 1999) (in this case, spatial awareness) in
a self-supervised way.

198 Adaptive Behavior 31(3)

We can estimate GVFs using Temporal-difference (TD)
learning (Sutton, 1988). In TD learning, we estimate a
value-function v such that vðfðotÞÞ ≈Eπ½Gtjot�: we learn a
function that estimates the return at a given time-step given the
agent’s observations. On each time-step, the agent receives a
vector of observations o2R

m. A function approximator
f : o→R

n – such as a neural net, Kanerva coder, or tile
coder – encodes observations into a feature vector. The es-
timate for each time-step v (f(ot)) function of learned weights
w2R

n, and the current feature vector – v (ot) = wuf(ot).
We call the parameters of the learning methods learning

parameters. Learning parameters change how the value
function is approximated, but do not change what the value
function is about. Learning parameters include the step-size
also know as learning rate, α which scales updates to the
weights, the eligibility trace decay λ and the function ap-
proximator f used to construct state.

2.2. The challenge of constructing knowledge

One challenge for constructing models of the world is
deciding of all the predictions an agent could learn to make,
which subset can inform decision-making best. That is, an
agent must choose from all the possible predictions which it
could make, the subset of predictions that will help it
achieve its goals. Not all predictions are created equally:
two approximate GVFs may have the same question pa-
rameters -γ, π, and c - and yet produce very different es-
timates. Disparity in accuracy can be caused many factors
including: the learning parameters chosen, the distribution
of experience trained on, feature construction, and the step-
size parameter. Each factor contributes to the how well an
estimator can be learned. To be able to compare estimators,
we must have some metric or means of evaluating them.

In this manuscript, we demonstrate how strict measures of
model accuracy can be misleading in assessing an agent’s
knowledge of the world.We argue this over two experiments.
In the first experiment, we demonstrate how common online
evaluation techniques can be misleading when choosing
between two models of the same aspect of an environment.
Selecting between two identically specified models is the
most primitive choice an agent must make when constructing
predictive knowledge: a choice that is surprisingly not
straightforward. In the second experiment we demonstrate
how relying on such evaluation metrics undermine an agent’s
ability to reason about its environment –particularly as the
agent relies on these estimates to further develop abstract
conceptualisations of its world. This presents a further
challenge, as the motivation of constructing knowledge is its
application in decision-making and reasoning. Having
brought to light these two core challenges, we then develop a
method of assessing predictive models of the world, pro-
viding a path to alleviating these barriers to evaluating an
agent’s knowledge of the world.

3. Experiment 1: how poor evaluation
impacts predictive features

In this section we construct and example where tradi-
tional evaluation techniques lead to poor model choices.
To do so, we construct a synthetic prediction problem
and explore how a common online error metrics can be
misleading.

3.1. Evaluation by empirical return error

To choose between models, we need to have a method of
comparing them. We cannot compare GVFs to the true
expected return of their cumulant c: we do not have access to
the true return from the stream of data available to an agent.
Instead, we often assess a GVF’s accuracy based on an
estimate of the true return, the empirical return error: the
difference between the current estimate v (f(ot)) with an
approximation of the true return (Edwards et al., 2016;
Günther et al., 2016; Pilarski et al., 2012). The return is
estimated by maintaining a buffer of length b of previous

cumulants c, such that eGt ¼
Pb

k¼0ð∏k
j¼1ðγtþjÞÞCtþkþ1Þ. We

may then construct an error for time-step t given the agent’s

experience by eGt � VtðfðotÞ. The empirical return error is
not objective. Note, it depends on what the agent happens to
experience – it can only express the error for observations
represented in the buffer. It does not capture error for all
possible observations or states of the world.

In simple Markov Reward Processes, this may not be an
issue: maintaining a large enough buffer bwill yield an error
relatively unbiased over states. However, in many domains
of interest, this is not possible: that is, in robotics the state-
space is often so immense that maintaining a buffer of
observations would be a time-intensive and impractical
demand. Instead, applications often settle for an empirical
return error that covers only a portion of the state-space
(Edwards et al., 2016; Günther et al., 2016; 2020; Pilarski &
Sherstan, 2016). In doing so, some states are inherently
prioritized over others, as they are gerrymandered into two
categories: the portions of state-space that are evaluated, and
the portions that are not. When evaluating methods in this
way, it is implicit that some of the states are privileged over
others: that error matters more in one set of states over
another (Sutton et al., 2009).

3.2. A synthetic example

We present two hypothetical estimators of the same value-
function in Figure 2 as an example of how empirical error
can be gerrymandered by state. A binary square pulse is
the cumulant c for which two hypothetical value functions
estimate the discounted return. The dotted line is the
scaled return Gt of the cumulant c with a discount factor of
γ = 0.3 that is being estimated. A perfect prediction will

Kearney et al. 199

match the return G of the signal: rising before the signal of
interest c rises, and falling before the pulse returns to 0.
Such a value estimate is predictive – it forecasts the signal
of interest.

Two hypothetical value functions are presented: (1) In
orange, an estimator that tracks the cumulant by returning
the last observed cumulant value; (2) in green, an imperfect
but predictive estimate. The tracking estimator is not
predictive: it rises and falls after the signal of interest. The
predictive estimate does not exactly match the return being
estimated, but rises and falls prior to changes in the un-
derlying cumulant being estimated. While the tracking
estimate fails to anticipate the square pulse, it has a lower
empirical return error for the time period presented. If we
were evaluating the two predictions and choosing between
these two estimators using prediction error alone, we
would be led to believe that the tracking estimator is
superior to the predictive estimator: it has a lower cu-
mulative error. This becomes an issue when these esti-
mates are intended to inform decision-making. For
instance, if an agent is predicting a collision, identifying
the collision has occurred after the fact is not useful in
supporting decision-making.

3.3. Experimental summary

While this synthetic example is contrived, there are many
situations in which we would want to make such a pre-
diction; being able to detect the onset of events is often
useful in decision-making (Modayil & Sutton, 2014; Ring,
2021; Schlegel et al., 2021). For example, in the previous
section, we worked out an example where an agent built a
sense of spatial awareness (Figure 1) by predicting whether

it could touch something in front of itself; In the spatial
awareness example, touch is a binary signal that rises and
falls, similar to this simple synthetic example. Such pre-
dictions are not made in a vacuum: the motivation for
learning models is to use them to inform decision-making.

4. Experiment 2: how performance is
impacted by poor predictive features

With a simple example, we demonstrated how accuracy can be
misleading in differentiating between forecasts. Such forecasts
are motivated by their use: using the learned estimates as either
(1) predictive input features to another learning process, or (2)
a signal of interest for further abstract predictions. We now
discuss how dependence on accuracy negatively impacts
down-stream learning processes that use these learned esti-
mates, and can critically undermine representation learning. To
this end, we construct a network of interrelated predictions: a
collection of predictions where a learned estimate is used to
inform other learning processes.

The core motivation of learning models of the environ-
ment is to use such models to improve decision-making. The
appeal of learning GVFs is the ability to build modular, and
hierarchical forecasts about the world – forecasts that can be
used as predictive features for other learning processes. This
is achieved by (1) using an estimate as an input feature when
making a higher-order GVF, or (2) using a learned estimate as
a cumulant for another GVF. In this section, we demonstrate
that poor evaluation in lower-order GVFs has consequences
for the performance of higher-order GVFs. In order to
demonstrate these challenges in evaluation, we turn our at-
tention to the off-policy prediction setting.

Figure 1. Using the limited senses available to the agent, it must construct an abstraction such that it can understand a world it can never
completely see. One way of constructing an agent’s knowledge of the world is by predicting what would happen if the agent behaved a
certain way. (a) Often an agent cannot observe the true state of the environment; e.g., an agent in a room may only observe what it can
see in front of itself and whether the agent bumped into something. (b) Using limited sight and touch sensation, we can phrase basic spatial
awareness as making predictions about moving around the room: e.g., “can I touch something in front of me?”, or “how far is the
nearest wall to my left”? (c) A prediction about bumping is used toconstruct a touch prediction, the output of which is used as the target
for the touch-left and touch-right predictions. Adapted from Ring (2021).

200 Adaptive Behavior 31(3)

4.1. Estimating error for off-policy learning

Off-policy predictions are conditioned on a particular be-
haviour. While conditioned on a specific policy, off-policy
GVFs can be learned while engaging in behaviours that do
not strictly match the target policies of the prediction.
Because the behaviour an agent is engaging in may not
precisely match the policy an off-policy prediction is on, we
cannot accurately compute the empirical return error (Sutton
et al., 2009). The buffer b collected from the agent’s ex-
perience may represent experience induced by a policy
different from the policy which a prediction is specified;
therefore, the return calculated from the buffer will not be
representative of the off-policy return.

An off-policy error metric which can be calculated incre-
mentally online, is RUPEE: the Recent Unsigned Projected
Error Estimate (White, 2015). RUPEE estimates the mean
squared projected Bellman error of a single GVF.2 Intuitively,
RUPEE is an estimate of learning progress with respect to the
input features used by the agent in learning.While RUPEE does
not imply prediction accuracy, RUPEE provides a computa-
tionally efficient way to determine when a forecast learned off-
policy is approaching its best estimate (White, 2015).

RUPEE requires an additional parameter β0 > 0 which
specifies a decay rate for the exponential moving average of
both τ and δe – an exponential moving average of the TD
error and eligibility traces.3 A higher β value results in a
longer horizon for the moving average. Where e is the
forecast’s eligibility traces, δ is the TD error, and h is the same
as the update in GTD (λ); RUPEE is estimated as follows

τ←ð1� β0Þτ þ β0

β←
β0
τ

δe←ð1� βÞδeþ βδe

RUPEE←

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����bhuδeβ����
s

As was the case when evaluating on-policy predictions
via empirical return error, by estimating off-policy learning
progress using RUPEE, we are unable to differentiate be-
tween useful and useless estimators.

4.2. Predictions estimated

In the previous experiment we demonstrated how using
prediction error as a direct proxy for model quality can
mislead. We now demonstrate how mis-evaluating the quality
of GVFs can lead to poor performance in general. To do so, we
introduce a network of predictions adapted from Ring’s
thought experiment on spatial knowledge (Ring, 2021), de-
picted in Figure 2. In this setting, the most basic GVF is touch:
in plain terms, predict whether the agent would feel a surface if
it extended its hand. Two natural higher-order predictions can
be based on this: touch-left and touch-right (predict whether
the touch GVF would activate if the agent turned left or right,
respectively). Further higher-order predictions can build up to

Figure 2. Two estimates of the same signal: one in green and one in orange. The cumulant c is indicated by the grey square pulse. The
return of Gt of the cumulant is presented as a dotted line. Two hypothetical estimates of the return are presented in green and orange.

Kearney et al. 201

basic navigation and spatial awareness (Ring, 2021). However,
in order to successfully build these concepts, we must first get
the simple, primary prediction right.

4.3. Experimental environment

These predictions are made in aMineCraft (Johnson et al., 2016)
grid-world that reflects the spatial awareness task we previously
introduced (Figure 2).4 The world is a square pen which is 30 ×
30 and two blocks high. Themid-section of eachwall has a silver
column, and the base of each wall is a unique colour. On every
time-step, the agent receives observations ot which contain: (1)
the pixel input from the environment (Figure 3(a)), and (2)
whether or not the agent is touching something.

5. Results

Similar to the previous synthetic example, we have two sets
of value functions: one that predicts, and one that tracks. We

construct two GVF networks that are specified with the
same question parameters, but differ in answer parameters
used. Both sets of GVFs are approximating the same values;
however, the way they learn their approximation differs.
One touch prediction uses a Tile Coder (Sherstov & Stone,
2005; Sutton & Barto, 2019) as a function approximator,
and the tracking GVF uses only a single bias bit as a
representation. We choose this representation, as it is clear
that a bias bit is insufficient to inform any of the chosen
predictions: we cannot predict whether the agent can touch a
wall using a single bit to represent our MineCraft world.

This experimental setup directly parallels our on-policy
synthetic example in a more complex environment. As was
the case in the previous thought experiment, by comparing
the two touch predictions based on their error (Figure 4(a)),
we would be lead to conclude that the bias bit GVF is
superior to the tile-coded GVF –we would conclude that the
prediction that does not predict is superior. When we ex-
amine the actual predictions made by each GVF, we see that
the predictive estimate with a greater RUPEE more closely
anticipates the signal of interest (Figure 5(a)). The reason
why the bias bit prediction is poor is because it tracks. An
architect designing a system understands this prediction is
poor because it is redundant: the immediate sensation of
touch tells us whether or not an agent is touching something.
The intent of the prediction is to compactly express whether
or not an agent can touch a wall without needing to engage
in the behaviour. When the agent does touch a wall, the
prediction is updated and stored in the weights of the GVF.
Only when the agent is touching a wall will the bias bit GVF
predict that it can touch a wall. By looking at RUPEE alone,
we miss this critical shortcoming.

These predictions are not learned in a vacuum: the
purpose of making the touch prediction, is to enable the
higher-order predictions to be learned. In systems that use
GVFs to construct an agent’s knowledge of the world, these
predictions are intended to inform further learning pro-
cesses: either other value functions that describe more
abstract aspects of the world, or the behaviours an agent
uses to accomplish its goals. Low RUPEE or low return
error in an estimator does not necessarily equate to more
useful predictions for these further decision-making pur-
poses. The challenges of differentiating between a good and
bad touch prediction have an impact which extends beyond
the single prediction and influences the touch-left and
touch-right predictions.

We want not only an accurate touch prediction, but one
which is capable of informing Touch-Left and Touch-Right
predictions. In Figure 5, we display the RUPEE of Touch-
Left and Touch-Right. There are two sets of these predic-
tions: the first, using the bias bit GVF’s prediction as its
cumulant; the second, using the tile-coded GVF as its cu-
mulant. In this layer, the GVFs all share the same function
approximator: they both use sufficient representations to

Figure 3. A visual representation of our agent approximating the
visual input by sub-sampling 100 random pixels. (a) The visual
input the agent totaling 320×480 pixels (b) Visualization of the
image subsampled to 100 random pixels.

202 Adaptive Behavior 31(3)

learn a reasonable estimate. In this case, a random sub-
sampling of the pixel input, binary touch signal, and touch
prediction are all tiled together to construct the state for each
GVF. The only differentiating factor is which cumulant is
used: the prediction from either the tracking touch GVF, or
the anticipatory touch GVF.

When we examined the first layer’s Touch predictions,
the tracking GVF seemed superior based on RUPEE. When
we examine the RUPEE of the second set of predictions
(Figure 4(b)), we catch a glimpse of the down-stream effects
of this misunderstanding. Although only slight, the GVFs
dependent on the tracking Touch prediction have a higher
RUPEE than those using the predictive Touch GVF. This
point is brought into focus when we examine the predictions
made by each touch-left and touch-right prediction (Figures
5(b) and 5(c)). When we examine average trajectories where
the agent approaches a wall and turns left, the touch-right
prediction using the tracking touch GVF as a cumulant
(Figure 5(b), in orange) rises and falls with its underlying
GVF. The touch-right prediction with a tracking cumulant
predicts wall even before turning such that the wall is to its
right, while the touch-right prediction with a predictive
cumulant is able to better match the ground-truth. This
disparity is further exacerbated in Figure 5(c), where we see
that the touch-left prediction dependent on the tracking
touch GVF as a cumulant incorrectly anticipates a wall is on
its left, even as it turns away from it. Through examining the
error – the metric used to inform predictive knowledge
architectures – we miss this. The use of a prediction tells us
more about the quality of that prediction than error alone.

By using a poor underlying touch prediction, the higher-
order GVFs become un-learnable.

5.1. Experimental summary

We demonstrated that poor behaviour of estimates can be
hidden by commonly used error metrics. This kind of in-
quiry into the structure of predictions is not easily auto-
mated: it relies on inspection by system designers.
Moreover, these precise comparison are limited to simple
domains. The room our agent inhabits is so simple that we
can acquire the ground-truth in order to examine the pre-
dictions as is done in Figure 5. In many domains of interest,
this ease of comparison is simply impossible. Each of these
factors further frustrates the problem of determining what to
learn, and whether particular GVFs are useful for informing
decision-making.

There is no metric the automate the analysis of prediction
usefulness for decision-making. Consequently, system de-
signers rely on the metrics currently available: namely,
prediction error; designers are missing metrics that sum-
marize and evaluate the usefulness of features. In the fol-
lowing section, we propose a metric to fill this gap:
evaluation of prediction usefulness by examining a value
function’s internal learning process.

6. Proposal: evaluate feature relevance

We demonstrated that error in isolation of any additional
information is misleading: empirical return error and

Figure 4. Cumulative Recent Unsigned Projected Error Estimate (RUPEE over 250,000 time-steps for the ‘touch-left’ and ‘touch-right’
predictions averaged over 30 independent trials. (a) Cumulative RUPEE for tile-coded touch estimate (green) and bias-bit touch
estimate (orange).The tracking estimate accumulates error at a slower rate than the anticipatory prediction. Evaluating based on RUPEE
alone, we would be led to believe that the tracking model is best, despite leading to catastrophic prediction error when used to inform
touch-left and touch-right (c.f. Figure 5). The anticipatory touch estimate has a greater accumulation of error throughout the
experiment despite being a better estimator for informing touch-left and touch-right predictions (b) Cumulative RUPEE for touch-left
and touch-right estimates which use as a cumulant the tile-coded (green) and bias bit (orange) touch estimate. Estimates dependent on the
tracking GVF for learning have a greater cumulative error than the GVFs dependent on the Tile Coder GVF. Error as accumulated at
roughly the same rate as the anticipatory GVFs, making it challenging to distinguish which of the prediction is better, despite wildly
different outcomes when comparing prediction to ground-truth (c.f. Figure 5). The error of the lower-order models does not always
determine their effectiveness in informing further learning.

Kearney et al. 203

RUPEE are insufficient to determine whether a model is
useful for informing down-stream decision-making by an
agent. This inability to assess the usefulness of predictions
is a major hurdle, the purpose of constructing knowledge is
its use in supporting decision-making. If measures of

accuracy verified using data available to the agent are not
enough to assess the usefulness of a model, what should a
designer do?

We need not only look at signals external to the agent
for clues about performance: we can also look inwards
and examine the learning process to assess an agent’s
knowledge – how the agent is modifying its parameters.
Examining an agent’s parameters is not unusual. For
example, Unexpected Demon Error (UDE), can be used
to gauge how ‘surprising’ a given observation is to an
agent (White, 2015). By examining the surprise, we can
gauge how current experience relates to past
experiences – for example, detecting faults in a system
(Günther et al., 2018).

Similarly, there are many such parameters that an agent
can modify during learning, and that modification can be
monitored. Of particular interest are meta-learning
methods: higher-order learning processes that modify
the learning parameters of an agent (e.g. IDBD (Sutton,
1992)). One notable example is step-size (learning rate)
adaptation.

More broadly, we can view these forms of step-size
adaptation as the most basic form of representation
learning. Representation learning describes (Bengio et al.,
2013) how an agent encodes data or experience in order to
support decision-making. By assigning each individual
input a specific step-size, an input is weighted proportional
to its relevance to some down-stream learning task. For
instance, TD Incremental Delta-Bar-Delta (TIDBD)
(Kearney et al., 2019) assigns a step-size αi to each weight
wi, adjusting the step-size based on the correlation of recent
weight updates. If many weight updates are made in the
same direction, then a more efficient use of data would have
been to make one large update with a larger αi. If an update
has over-shot, then the weight updates will be uncorrelated,
and thus the step-size should be smaller.

All else being equal, a good model is one whose features
are well aligned with the prediction problem at hand. Even
in early-learning where an agent is adjusting its model, or
in situations where non-stationarity in the environment may
introduce unexpected error, if the features are relevant to the
prediction task we can expect a reasonable model to be
learned. One way to determine the relevance of features is
by learning step-sizes.

6.1. Derivation of off-policy TIDBD

To demonstrate how step-sizes as feature relevance can be
informative, we generalize TIDBD (Kearney et al., 2019) to
GTD (λ), creating a step-size adaptation method suited for
the off-policy touch, touch-left, and touch-right predictions
we previously introduced. Off-policy AutoStep for GTD
adds a few additional memory parameters to perform step-
size adaptation.

Figure 5. Each sub-figure depicts estimates of each of the GVFs in
our networks for 150 examples of the agent approaching a wall
and then turning left. Five examples of the trajectory are drawn
from 30 independent trials: results presented are averaged over
150 examples of the same trajectory. (a) Tile-coded touch
estimate (green) and bias-bit touch estimate (orange) (b) touch-
right estimates which use as a cumulant the tile-coded (green) and
bias bit (orange) touch estimate (c) touch-left estimates which
use as a cumulant the tile-coded (green) and bias bit (orange)
touch estimate.

204 Adaptive Behavior 31(3)

Here, we derive the relevant updates as follows. TIDBD
minimizes δ2 the squared TD error with respect to meta-weights
β that specify the agent’s step-size on each time-step

βi,tþ1 ¼ βi,t �
1

2
θ
∂δ2t
∂βi

¼ βi,t �
1

2
θ
X
j

∂δ2t
∂wj,t

∂wj

∂βi

(1)

We expand ∂δ2t
∂βi

using the chain-rule. As in (Sutton, 1992),
we make the assumption that the effect of changing the step
size αi = exp (βi) for some feature fi,t will predominantly be
on the weight wi

βi,tþ1 ≈ βi,t �
1

2
θ
∂δ2t
∂wi,t

∂wi,t

∂βi
(2)

We are minimizing the TD error δ = ct+1 + γV (ft+1 �
V(f)), where c is the cumulant, γ is the discount factor, and
V is our value function, and f is the state as constructed by a
function approximator. Given δ is a biased estimate of the
error, dependent on our value function V, we take the semi-
gradient � V (ft)

�1

2

∂δ2t
∂wi,t

¼ �δ
∂
�� V

�
fi,t

��
∂wi,t

¼ δtfi,t

(3)

βi,tþ1 ≈ βi,t þδtfi,t

∂wi,t

∂βi
(4)

We then describe ∂wi,t

∂βi
as ω. GTD(λ) updates the weights

as w ← w + α[δe � γ(1 � λ) (euh)ft+1]. We can then write
the update to ω recursively as follows

ωtþ1 ¼ ∂
∂β

�
wþ α

�
δe� γð1� λÞftþ1e

u
t ht

��
¼ ωt þ αδeþ αe

∂
∂β

½δ� þ αδ
∂
∂β

½e�

�αγð1� λÞftþ1e
uh� αγð1� λÞftþ1

∂
∂β

½euh�

≈ωt þ αδe� αωtfte� αγð1� λÞftþ1e
uh

�αγð1� λÞftþ1e
u ∂
∂β

½h�

¼ ωt þ α
�
δe� ωtfte� γð1� λÞftþ1ðeuhþ euηtÞ

�
(5)

In GTD (λ), the bias-correction updated update is h ←
h + α(δe� (huft)ft). Similar to ω, we define ∂ht

∂β as η. The η
update is as follows

ηtþ1 ¼
∂
∂β

�
ht þ α

�
δe� �

huft

�
ft

��
¼ ηt þ αδeþ α

∂
∂β

½δ�eþ αδ
∂
∂β

½e� � α
�
huft

�
ft

�α
∂
∂β

�
huft

�
ft

≈ ηt þ αδe� αωtfte� α
�
huft

�
ft � α

�
huft

�
ft

(6)

We now have our three additional updates defined for
GTD (λ) IDBD. This results in our GTD IDBD. We now
have all the features for a GTD version of IDBD

β←β þ θδftωt (7)

η←ηþ α
��
eðδ� ωtÞ � ðhþ ηÞuft

�
ft

�
(8)

ω←ωþ α
�
eðδ� ωtftÞ � γftþ1ð1� λÞeuðhþ ηÞ� (9)

To generalize AutoStep (Mahmood et al., 2012) to GTD(λ),
we need twomore additions toGTD(λ): (1) a running average of
meta-weight updates to prevent instability in our meta-
weights caused by dramatic changes in the target of the
underlying learning method, and (2) a normalization by the
effective step size to prevent over-shooting on an indi-
vidual example.

The effective step size describes the amount by which the
error has been reduced on a particular example after a
weight update. If the effective step-size is greater than one,
then we have over-shot on a particular example. To prevent
over-shooting, we divide the step-size on each time-step by

max

�
1,δtðtÞ�δtþ1ðtÞ

δtðtÞ

	
To find the effective step-size, we

simplify the following

δtðtÞ � δtþ1ðtÞ
δtðtÞ ¼ 1

δtðtÞ �
��
Ctþ1 þ γVt

�
ftþ1

�
� VtðftÞ

��
Ctþ1 þ γVtþ1

�
ftþ1

�� Vtþ1ðftÞ
��

¼ 1

δtðtÞ
��
γVt

�
ftþ1

�� VtðfðtÞÞ
�

� �
γVtþ1

�
ftþ1

�� Vtþ1ðftÞ
��

(10)

We simplify to the resulting effective step size

αe� γð1� λÞftþ1e

uh

δ

�u�
ft � γftþ1

�
(11)

Kearney et al. 205

Having found the effective step-size, we must define an
update normalizer. On each time-step, IDBD updates the
step-sizes by δfω. We take a decaying trace of the maximum

weight update, ξ←max

�
jδfωj,ξ þ 1

τ αfeðjδfωj �ξÞ
	
,

where τ is a parameter that specifies how quickly ξ decays.
This has the effect of maintaining a decaying trace of the
maximum update such that a large change in the underlying
learning target does not lead to instability in the step-size
parameter update.

These updates can then be combined with the underlying
GTD(λ) updates to produce and Autostep GTD (λ) (Al-
gorithm 1).

7. Experiment 3: analysing
feature relevance

7.1. Experimental Setup

Having generalized TIDBD to GTD (λ), we now return to
the MineCraft domain and perform the same experi-
ments, now using step-size adaptation. In Figure 6, the
average active5 step-size value for the duration of the
experiment is depicted. As was the case in the prior
experiments, we have two agents each learning three pre-
dictions: touch, touch-right and touch-left. One agent has a
representation sufficient to learn the underlying touch pre-
diction with reasonable accuracy (green), while the other
does not (orange).

7.2. Results: examining feature relevance

By examining the step-size values, we are able to dis-
criminate between the tracking and predictive touch-left and
touch-right predictions (Figure 6(b)); however, we find that
the tracking and predictive touch predictions are not ap-
preciably different when examining their step sizes late in
learning progress (as shown in Figure 6(a)). Independent of
learned weights, step-sizes do not tell the full story; our step-
sizes α are a weighting of our featuresfwhen learning some
weights w. The learned step-sizes α in combination with the
learned weights w give us greater insight into the perfor-
mance of our GVFs. In Figure 7, a combination of the
absolute value of the learned weights and step-sizes are

plotted: 1
αjwj. We take 1

α, as the magnitude of the step-size
describes progress in learning. Intuitively, a feature which is
stable, and thus has a small αi, and has a relatively large
weight wi is preferable.

By examining the learned step-sizes and weights 1
αjwj, we

are finally able to separate the tracking and anticipatory
touch predictions using an easily calculated metric
(Figure 7(b)). As the step-sizes decrease, the value of both
the tracking and anticipatory predictions rises; however,
since the magnitude of the weight w is low for the bias bit,
its weighted feature value remains low. This clarity in
comparison carries over to the touch-left and touch-right
predictions (Figure 7(b)). From Figure 6(b), we know that
the tracking-based touch-left and touch-right predictions’
step-sizes never decay – the tracking predictions’ step-sizes
maintain an average value of approximately 0.25 for the
duration of the trials, while the anticipatory predictions’
step-sizes decay as the predictions are learnt. This results in
a pronounced bifurcation between the two predictions. By
looking at weighted features, we are able see and interpret
what has been lost in our error estimates.

Algorithm 1. GTD (λ) with AutoStep step-size tuning.

1: Initialise:
2: Initialize vectors ω, η, α, e, ξ, and w of size n

(number of features).
3: Set τ as a decay value, for example, 104 and θ as a

meta step-size (e.g. 10�2).
4: begin:
5: Observe initial state f
6: Take initial action a
7: repeat interaction with environment:
8: Observe next state f0 and cumulant c
9: δ ← c + γwuφ0 � wuφt

10: ξ ← max:
|δφω|,
ξ þ 1

τ αfeðjδfωj � ξÞ
11: for i = 1, 2, …, n: do
12: if ξ i ≠ 0: then

13: αi←αi exp θ δfω
ξ i

�
14: end if
15: end for
16: M ← max:

1,

αe� γð1�λÞftþ1e

uh
δ

�u
½ft � γ,ftþ1�

17: α← α
M

18: ρ←πðf,aÞ
μðf,aÞ

19: w ← w + α(δe � γ(1 � λ)euhf0)
20: h ← h + α(δe � (huφ)φ)
21: e ← ρ(eγλ + φ)
22: ω←ωþαðeðδ�ωfÞ� γf0ð1� λÞeuðhþηÞÞ
23: η← ηþ αððeðδ� ωtÞ � ðhþ ηÞufÞfÞ
24: φ ← φ0

25: until termination

206 Adaptive Behavior 31(3)

7.3. Final thoughts

The practice of using step-sizes to inform other aspects of
learning is a well-established practice. For instance, learned
step-sizes have been used for feature discovery (Mahmood
& Sutton, 2013), and exploration methods (Linke et al.,
2020). Recent work has suggested that step-sizes can be
used to monitor the status of robots and indicate when physical
damage has occurred in a system (Günther et al., 2019, 2020).
Prior work in biological systems has consistently found
there is more to representation learning than error min-
imization: for example, attention plays an important role
in shaping how humans cognitively map their environ-
ment (Radulescu et al., 2019). This provides a suggestive
interpretation of the benefits of adaptive step-sizes.
Moreover, using internal learning measurements to
evaluate predictive knowledge systems has been sug-
gested in other works (Sherstan et al., 2016), although no
existing applications of predictive knowledge use step-
sizes for evaluation.

Using the learning method we generalized, AutoStep
for GTD (λ), we can learn step-sizes online and incre-
mentally as the agent is interacting with the environment.
In situations where traditional prediction error metrics fail,
the magnitude of learned weights and step-sizes enables
differentiation between GVFs that are useful in informing
further predictions, and GVFs which are not. In brief, we
show that GVFs can be evaluated in a meaningful, scalable
way using feature relevance.

8. Relevance and related work

In this manuscript, we focused our arguments on a par-
ticular set of predictions in two experiments; however, the
conclusions drawn apply to real-world applications of
GVFs as well. From industrial lazer welding (Günther
et al., 2020) to autonomous vehicle navigation (Graves
et al., 2021), error estimation is the means by which
model quality is estimated prior to and during deploy-
ment. In situations like these where we evaluate models

Figure 7. The average weighted feature relevance 1
αjwj for each layer of both the prediction and tracking networks. Each is run over 30

independent trials. Error bars are standard error of the mean. (a) Average weighted feature relevance 1
αjwj for touch predictions. (b)

Average weighted feature relevance 1
αjwj for the touch-left and touch-right predictions. Anticipatory predictions in green; tracking-based

predictions in orange.

Figure 6. The average active step-sizes for each layer of both the prediction and tracking networks averaged over 30 independent trials.
Error bars are standard error of the mean. (a) The average active step-size for both touch predictions. Anticipatory prediction in
green; tracking based prediction in orange. (b) Average active step-size for the touch-left and touch-right predictions. Anticipatory
predictions in green; tracking-based predictions in orange.

Kearney et al. 207

based on strict measures of accuracy, further decisions
based on computed results are susceptible the evaluation
and performance issues raised in this manuscript. While
we focus on machine intelligence, similar observations
about the primacy of prediction error have been made in
cognitive neuroscience. For example, accuracy is not all
that informs internal representations of location; addi-
tional factors such as attention also shape human spatial
models (Radulescu et al., 2019). Moreover, attention has
been used successfully to augment explainability when
ML models are used for decision-making (Xu et al.,
2015). We proposed that in general, solely considering
the error a model is insufficient. While our discussion has
focused in particular on applications of General Value
Functions, we believe the conclusions drawn are not
dependent on the learning methods themselves. The is-
sues raised with respect to the use of models in decision-
making transcend the learning methods discussed, and
are relevant across all discussions of modelling in ma-
chine learning.

9. Conclusion

Agents often benefit from constructing general knowledge
of their world. How the models that compose this knowl-
edge are constructed and evaluated is a challenging open
problem. In this paper, we critically discussed a common
way of evaluating an agent’s knowledge: model accuracy
with respect to observed values. As a first primary contri-
bution of this work, we demonstrated how strict measures of
accuracy can be misleading. We further showed how
critical areas of performance can be hidden by biased
measures of error, leading to a poor choice of model.
Building on this observation, we next demonstrated how
poor evaluation in learned models can lead to more
serious errors in down-stream learning tasks (e.g. pre-
diction) which depend on these models. As a final
contribution, we proposed an alternative evaluation
approach that instead examines an agent’s learned pa-
rameters as a basis for certifying learned knowledge,
specifically focussing on learned weights and step-size
values. Using these additional sources of information,
we showed that we are able to differentiate between
useful and useless model in a setting that was indis-
tinguishable when using standard error or accuracy-
based assessments. This paper therefore contributes a
first look into how predictive models evaluation and use
are related. Decoupling the evaluation of predictions
from strict measures of accuracy is a key step towards
building general, modular representations of
knowledge.

Acknowledgements

The authors thank Joseph Modayil, Jaden Travnik, Johannes
Gunther, Brian Tanner, and Katya Kudashkina for detailed reading
of this manuscript and a number of valuable suggestions and
discussions. This research was undertaken, in part, thanks to
funding from the Canada Research Chairs program, the Canada
CIFAR AI Chairs program, the Canada Foundation for Innovation,
the Alberta Machine Intelligence Institute, Alberta Innovates, and
the Natural Sciences and Engineering Research Council.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
work was supported by the Borealis AI grant Borealis AI Fel-
lowship, Alberta Innovates grant Graduate Science Scholarship,
Canada Research Chairs grant number 230958, Alberta Machine
Intelligence Institute grant numbers APP-KT3, APP-PPP1, Ca-
nadian Institute for Advanced Research grant Canada CIFAR AI
Chairs (Amii) and the Natural Sciences and Engineering Research
Council of Canada grant numbers PGS-D, RGPIN-2015-03646.
AKK was supported by scholarships and awards from NSERC,
Alberta Innovates, and Borealis AI.

ORCID iD

Patrick M Pilarski https://orcid.org/0000-0003-1686-2978

Notes

1. General Value Functions are a generalization of ordinary value
functions: a central component of computational reinforcement
learning. Value functions are used to estimate the value of a
given state of the environment. General Value Functions are a
generalization of traditional Value Functions to not just reward,
but any signal accessible to the agent through its experience.

2. See (White, 2015) for an explanation ofRUPEEon pages 119–122.
3. See Sutton and Barto (2019) for a discussion of eligibility traces

and TD(λ).
4. This example is a simplification of the thought experiment

introduced in Ring (2021).
5. For our function approximator, we use a tile coder. The tile

coder outputs a binary feature vector – only a portion of all
features are active on a given time-step. We multiple the av-
erage absolute step-size by the number of active features so that
two function approximators with differing active feature sizes
will have equivalent scale and can be compared.

208 Adaptive Behavior 31(3)

https://orcid.org/0000-0003-1686-2978
https://orcid.org/0000-0003-1686-2978

References

Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul, T., van
Hasselt, H. P., & Silver, D. (2017). Successor features for
transfer in reinforcement learning. Advances in Neural In-
formation Processing Systems, 30, 4055–4065.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation
learning: A review and new perspectives. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 35(8),
1798–1828. https://doi.org/10.1109/TPAMI.2013.50

Clark, A. (2013). Whatever next? Predictive brains, situated
agents, and the future of cognitive science. Behavioral and
brain sciences, 36(3), 181–204. https://doi.org/10.1017/
S0140525X12000477

Comanici, G., Precup, D., Barreto, A., Toyama, D. K., Aygün, E.,
Hamel, P., Vezhnevets, S., Hou, S., & Mourad, S. (2018)
Knowledge representation for reinforcement learning using
general value functions. Technical report.

Edwards, A. L., Hebert, J. S., & Pilarski, P. M. (2016). Machine
learning and unlearning to autonomously switch between the
functions of a myoelectric arm. In 2016 6th IEEE Interna-
tional Conference on Biomedical Robotics and Bio-
mechatronics (BioRob), Singapore, 26–29 June 2016
(pp. 514–521). Piscataway, NJ: IEEE. https://doi.org/10.
1109/biorob.2016.7523678

Gilbert, D. (2009). Stumbling on happiness. New York: Vintage
Canada.

Graves, D., Günther, J., & Luo, J. (2021). Affordance as general
value function: A computational model. Artificial Intelli-
gence, 1059712321999421.

Günther, J., Ady, N. M., Kearney, A., Dawson, M. R., & Pilarski,
P. M. (2020). Examining the use of temporal-difference in-
cremental delta-bar-delta for real-world predictive knowledge
architectures. Frontiers in Robotics and AI, 7, 34. https://doi.
org/10.3389/frobt.2020.00034

Günther, J., Kearney, A., Ady, N., Dawson, M. R., & Pilarski,
P. M. (2019). Meta-learning for predictive knowledge
architectures: A case study using TIDBD on a sensor-rich
robotic arm. In Proceedings of the 18th International
Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2019), Montreal, Canada, 13–17 May 2019
(pp. 1967).

Günther, J., Kearney, A., Dawson, M. R., Sherstan, C., & Pilarski,
P. M. (2018). Predictions, surprise, and predictions of surprise
in general value function architectures. In AAAI 2018 Fall
Symposium on Reasoning and Learning in Real-World
Systems for Long-Term Autonomy, Arlington, VA, 18–19
October 2018 (pp. 22–29).

Günther, J., Pilarski, P. M., Helfrich, G., Shen, H., & Diepold, K.
(2016). Intelligent laser welding through representation,
prediction, and control learning: An architecture with deep
neural networks and reinforcement learning. Mechatronics,
34, 1–11. https://doi.org/10.1016/j.mechatronics.2015.09.
004

Ha, D. & Schmidhuber, J. (2018). Recurrent world models fa-
cilitate policy evolution. Advances in Neural Information
Processing Systems, 31, 2450–2462.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T., Leibo, J. Z.,
Silver, D., & Kavukcuoglu, K. (2017). Reinforcement
learning with unsupervised auxiliary tasks. In 5th Interna-
tional Conference on Learning Representations, ICLR 2017,
Toulon, France, 24–26 April 2017.

Johnson, M., Hofmann, K., Hutton, T., & Bignell, D. (2016). The
malmo platform for artificial intelligence experimentation
(pp. 4246–4247). Montreal, Canada: IJCAI Citeseer.

Kearney, A., Veeriah, V., Travnik, J., Pilarski, P. M., & Sutton,
R. S. (2019). Learning feature relevance through step size
adaptation in temporal-difference learning. arXiv preprint
arXiv:1903.03252.

Koop, A (2008). Investigating experience: Temporal coherence
and empirical knowledge representation (Msc Thesis).
University of Alberta, Edmonton, AB.

Linke, C., Ady, N. M., White, M., Degris, T., & White, A. (2020).
Adapting behavior via intrinsic reward: A survey and em-
pirical study. Journal of Artificial Intelligence Research, 69,
1287–1332. https://doi.org/10.1613/jair.1.12087

Mahmood, AR & Sutton, RS (2013). Representation search
through generate and test. In AAAIWorkshop: Learning Rich
Representations from Low-Level Sensors, Bellevue, WA, 15
July 2013.

Mahmood, A. R., Sutton, R. S., Degris, T., & Pilarski, P. M. (2012).
Tuning-free step-size adaptation. In Acoustics, Speech and
Signal Processing (ICASSP), 2012, Kyoto, Japan, 25–30
March 2012 (pp. 2121–2124). Piscataway, NJ: IEEE. https://
doi.org/10.1109/icassp.2012.6288330

Modayil, J & Sutton, RS (2014). Prediction driven behavior:
Learning predictions that drive fixed responses. In The
AAAI-14 Workshop on Artificial Intelligence and Robotics,
Quebec City, Quebec, 27–28 July 2014.

Modayil, J., White, A., & Sutton, R. S. (2014). Multi-
timescale nexting in a reinforcement learning robot.
Adaptive Behavior, 22(2), 146–160. https://doi.org/10.
1177/1059712313511648

Nöe, A (2004). Action in perception. Cambridge, MA: MIT
press.

Pezzulo, G. (2011). Grounding procedural and declarative
knowledge in sensorimotor anticipation. Mind & Language,
26(1), 78–114. https://doi.org/10.1111/j.1468-0017.2010.
01411.x

Pezzulo, G., Donnarumma, F., & Dindo, H. (2013). Human
sensorimotor communication: A theory of signaling in online
social interactions. PLoS One, 8(11), e79876. https://doi.org/
10.1371/journal.pone.0079876

Pilarski, P. M., Dawson, M. R., Degris, T., Carey, J. P., & Sutton,
R. S. (2012). Dynamic switching and real-time machine
learning for improved human control of assistive biomedical
robots. In Biomedical Robotics and Biomechatronics

Kearney et al. 209

https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1017/S0140525X12000477
https://doi.org/10.1017/S0140525X12000477
https://doi.org/10.1109/biorob.2016.7523678
https://doi.org/10.1109/biorob.2016.7523678
https://doi.org/10.3389/frobt.2020.00034
https://doi.org/10.3389/frobt.2020.00034
https://doi.org/10.1016/j.mechatronics.2015.09.004
https://doi.org/10.1016/j.mechatronics.2015.09.004
https://doi.org/10.1613/jair.1.12087
https://doi.org/10.1109/icassp.2012.6288330
https://doi.org/10.1109/icassp.2012.6288330
https://doi.org/10.1177/1059712313511648
https://doi.org/10.1177/1059712313511648
https://doi.org/10.1111/j.1468-0017.2010.01411.x
https://doi.org/10.1111/j.1468-0017.2010.01411.x
https://doi.org/10.1371/journal.pone.0079876
https://doi.org/10.1371/journal.pone.0079876

(BioRob), 2012 4th IEEE RAS & EMBS International
Conference On, Rome, Italy, 24–27 June 2012 (pp. 296–302).
Piscataway, NJ: IEEE. https://doi.org/10.1109/biorob.2012.
6290309

Pilarski, P. M. & Sherstan, C. (2016). Steps toward knowledgeable
neuroprostheses. In Biomedical Robotics and Bio-
mechatronics (BioRob), 2016 6th IEEE International Con-
ference On, Singapore, Singapore, 26–29 June 2016
(pp. 220–220). Piscataway, NJ: IEEE. https://doi.org/10.
1109/biorob.2016.7523626

Radulescu, A., Niv, Y., & Ballard, I. (2019). Holistic reinforcement
learning: The role of structure and attention. Trends in
Cognitive Sciences, 23(4), 278–292. https://doi.org/10.1016/
j.tics.2019.01.010

Rao, R. P. & Ballard, D. H. (1999). Predictive coding in the visual
cortex: A functional interpretation of some extra-classical
receptive-field effects. Nature Neuroscience, 2(1), 79–87.
https://doi.org/10.1038/4580

Ring, M. B. (1997). CHILD: A first step towards continual
learning. Machine Learning, 28(1), 77–104. https://doi.org/
10.1023/a:1007331723572

Ring,M. (2021). Representing knowledge as predictions (and state
as knowledge). arXiv 2112.06336 [cs.AI]. https://arxiv.org/
abs/2112.06336

Schlegel, M., Jacobsen, A., Abbas, Z., Patterson, A., White, A., &
White, M. (2021). General value function networks. Journal of
Artificial Intelligence Research, 70, 497–543 https://doi.org/
10.1613/jair.1.12105

Sherstan, C., Dohare, S., MacGlashan, J., Günther, J., & Pilarski,
P. M. (2020). Gamma-nets: Generalizing value estimation
over timescale. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(04), 5717–5725. https://doi.org/10.
1609/aaai.v34i04.6027

Sherstan, C., Machado, M. C., & Pilarski, P. M. (2018). Accelerating
learning in constructive predictive frameworks with the successor
representation. arXiv preprint arXiv:1803.09001.

Sherstan, C., White, A., Machado, M. C., & Pilarski, P. M.
(2016). Introspective agents: Confidence measures for
general value functions. In International Conference on
Artificial General Intelligence, New York, NY, 16–19 July
2016 (pp. 258–261). Springer. https://doi.org/10.1007/978-
3-319-41649-6_26

Sherstov, A. A. & Stone, P. (2005). Function approximation via tile
coding: Automating parameter choice. In International

Symposium on Abstraction, Reformulation, and Approxi-
mation, Scotland, UK, 26–29 July 2005 (pp. 194–205).
Berlin, Germany: Springer. https://doi.org/10.1007/
11527862_14

Singh, S., Barto, A. G., & Chentanez, N. (2005). Intrinsically
motivated reinforcement learning. Technical report. Amherst,
MA: Massachusetts University Amherst Dept Of Computer
Science.

Sutton, R. S. (1988). Learning to predict by the methods of
temporal differences. Machine Learning, 3(1), 9–44. https://
doi.org/10.1007/BF00115009

Sutton, R. S. (1992). Adapting bias by gradient descent: An in-
cremental version of delta-bar-delta. In AAAI, San Jose, CA,
12–16 July 1992 (pp. 171–176).

Sutton, R. S. & Barto, A. G. (2019). Reinforcement learning: An
introduction. Cambridge, MA: MIT press.

Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Silver, D.,
Szepesvári, C., & Wiewiora, E. (2009). Fast gradient-
descent methods for temporal-difference learning with
linear function approximation. In Proceedings of the 26th
Annual International Conference on Machine Learning,
Montreal, QB, 14–18 June 2009 (pp. 993–1000). https://
doi.org/10.1145/1553374.1553501

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M.,
White, A., & Precup, D. (2011). Horde: A scalable real-time
architecture for learning knowledge from unsupervised
sensorimotor interaction. In International Foundation for
Autonomous Agents and Multiagent Systems 2011, Taipei,
Taiwan, 2–6 May 2011 (pp. 761–768).

Sutton, R. S., Precup, D., & Singh, S. (1999). Between mdps and
semi-mdps: A framework for temporal abstraction in rein-
forcement learning. Artificial Intelligence, 112(1), 181–211.
https://doi.org/10.1016/s0004-3702(99)00052-1

White, A (2015). Developing a predictive approach to knowledge
(PhD Thesis). University of Alberta, Edmonton, AB.

Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An
internal model for sensorimotor integration. Science,
269(5232), 1880–1882. https://doi.org/10.1126/science.
7569931

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R.,
Zemel, R., & Bengio, Y. (2015). Show, attend and tell: Neural
image caption generation with visual attention. In Interna-
tional Conference on Machine Learning, France, 6–11 July
2005. London, UK: PMLR.

About the Authors

Alex Kearney is a PhD candidate in the Department of Computing Science at the University of Alberta, and
is a member of the Reinforcement Learning and Artificial Intelligence lab.

210 Adaptive Behavior 31(3)

https://doi.org/10.1109/biorob.2012.6290309
https://doi.org/10.1109/biorob.2012.6290309
https://doi.org/10.1109/biorob.2016.7523626
https://doi.org/10.1109/biorob.2016.7523626
https://doi.org/10.1016/j.tics.2019.01.010
https://doi.org/10.1016/j.tics.2019.01.010
https://doi.org/10.1038/4580
https://doi.org/10.1023/a:1007331723572
https://doi.org/10.1023/a:1007331723572
https://arxiv.org/abs/2112.06336
https://arxiv.org/abs/2112.06336
https://doi.org/10.1613/jair.1.12105
https://doi.org/10.1613/jair.1.12105
https://doi.org/10.1609/aaai.v34i04.6027
https://doi.org/10.1609/aaai.v34i04.6027
https://doi.org/10.1007/978-3-319-41649-6_26
https://doi.org/10.1007/978-3-319-41649-6_26
https://doi.org/10.1007/11527862_14
https://doi.org/10.1007/11527862_14
https://doi.org/10.1007/BF00115009
https://doi.org/10.1007/BF00115009
https://doi.org/10.1145/1553374.1553501
https://doi.org/10.1145/1553374.1553501
https://doi.org/10.1016/s0004-3702(99)00052-1
https://doi.org/10.1126/science.7569931
https://doi.org/10.1126/science.7569931

Anna J. Koop is a PhD candidate in the Department of Computing Science at the University of Alberta.
Previously, Anna was the managing director of applied machine learning at the Alberta Machine Intel-
ligence Institute.

Patrick M. Pilarski is a Canada CIFAR Artificial Intelligence Chair, past Canada Research Chair in Machine
Intelligence for Rehabilitation, and an Associate Professor in the Department of Medicine, University of
Alberta. In 2017, Dr Pilarski co-founded DeepMind’s Alberta office, where he continues as a team lead and
Senior Staff Research Scientist.

Kearney et al. 211

	What’s a good prediction? Challenges in evaluating an agent’s knowledge
	1. Introduction
	2. Background: understanding the world through general value functions
	2.1. How GVFs are specified and learned
	2.2. The challenge of constructing knowledge

	3. Experiment 1: how poor evaluation impacts predictive features
	3.1. Evaluation by empirical return error
	3.2. A synthetic example
	3.3. Experimental summary

	4. Experiment 2: how performance is impacted by poor predictive features
	4.1. Estimating error for off-policy learning
	4.2. Predictions estimated
	4.3. Experimental environment

	5. Results
	5.1. Experimental summary

	6. Proposal: evaluate feature relevance
	6.1. Derivation of off-policy TIDBD

	7. Experiment 3: analysing feature relevance
	7.1. Experimental Setup
	7.2. Results: examining feature relevance
	7.3. Final thoughts

	8. Relevance and related work
	9. Conclusion
	Acknowledgements
	Declaration of Conflicting Interests
	Funding
	ORCID iD
	Notes
	References
	About the Authors

