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Abstract

Early research on physical human–robot interaction (pHRI) has necessar-
ily focused on device design—the creation of compliant and sensorized
hardware, such as exoskeletons, prostheses, and robot arms, that enables
people to safely come in contact with robotic systems and to communi-
cate about their collaborative intent. As hardware capabilities have become
sufficient for many applications, and as computing has become more pow-
erful, algorithms that support fluent and expressive use of pHRI systems
have begun to play a prominent role in determining the systems’ useful-
ness. In this review, we describe a selection of representative algorithmic
approaches that regulate and interpret pHRI, describing the progression
from algorithms based on physical analogies, such as admittance control,
to computational methods based on higher-level reasoning, which take
advantage of multimodal communication channels. Existing algorithmic
approaches largely enable task-specific pHRI, but they do not general-
ize to versatile human–robot collaboration. Throughout the review and in
our discussion of next steps, we therefore argue that emergent embodied
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dialogue—bidirectional, multimodal communication that can be learned through continuous
interaction—is one of the next frontiers of pHRI.

1. INTRODUCTION

As robots have become more capable over recent decades, physical human–robot interaction
(pHRI; see the sidebar titled Physical Human–Robot Interaction) is no longer a nuisance but in-
stead an opportunity for improved human–machine communication and closer collaboration (1).
A major milestone in pHRI has been the introduction of specialized hardware approaches, in-
cluding series-elastic actuators, cobots, and distributed sensing. Progress in perception has made
robots more situationally aware of people during operation. Improved sensing, both novel (e.g.,
haptic skins) and traditional (e.g., improved force sensing at the joints), has made pHRI practical,
particularly in terms of safety.Progress in interfaces for capturing intent [high-density electromyo-
graphy (EMG), dry electroencephalography (EEG), context-sensitive joysticks, etc.] has made
devices easier to use. In parallel, progress in computing power has enabled real-time execution
of sophisticated algorithms. Although there is still plenty of room for hardware innovations, these
developments have made algorithm design an important next stage in pHRI. With novel algo-
rithmic approaches, available information channels have new potential utility as affordances for
embodied communication—multimodal communication through actions, explicit interfaces, and
physical contact (see the sidebar titled Embodied Communication). Thanks to these advances,
we can start to design for facets of pHRI that were previously impractical, e.g., the subtle ways
in which physical interaction creates an opportunity for dialogue between a robot and a person
during use.

Historically, pHRI methods have focused on one-directional communication, typically a robot
inferring something about a person through observation and providing assistance in response.
Sometimes robots provide feedback about the environment or their internal state. This type of
mostly unidirectional communication can be effective, but it does not take advantage of the col-
laborative potential of the human–robot pair—the ability to negotiate approaches, mutually adapt
to each other and the environment, or coordinate a response to novelty. As a result, this approach
does not generalize well to novel, unstructured interactions and therefore tends to be best suited
to narrow, prespecified applications. If we want robots to be versatile collaborative partners, we
need better communicative capacity (2).

Notably, effective human–human communication relies on a bidirectional, multimodal di-
alogue. In his book Speaking Our Minds (3), Thom Scott-Phillips distinguishes two ways of
describing human communication—code model and ostensive–inferential communication—and
builds a case for why code model communication cannot explain people’s incredibly flexible com-
munication capabilities. Code model communication is achieved through pairs of association: one

PHYSICAL HUMAN–ROBOT INTERACTION

The term pHRI, as used in this review, spans multiple forms of physical interaction, ranging from haptics and
forceful touch to less traditional interfaces, such as vibrotactile sleeves, on-body sensors, and haptic joysticks. As
a consequence, facilitating pHRI plays a key role in the design of any robot that works in close proximity with
its human partners, including tightly coupled exoskeletons that move synchronously with the wearer as well as
stand-alone robot arms that experience intermittent contact with their human collaborators.
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EMBODIED COMMUNICATION

From Unidirectional Human–Machine Communication . . .

Human–robot teams rely on embodied communication—a multimodal exchange of information through actions,
touch, forceful interaction, biometric signals, verbal cues, and more. In its current form, communication is often
unidirectional and static over time: The robot is a passive observer of human intent, providing limited feedback to
its human partner, and the communicative conventions do not evolve over time.The robot’s feedback, if any, usually
does not depend on the human partner’s mental state or the communication history.

. . . Toward Emergent Embodied Dialogue

Effective human–robot collaboration can benefit from flexible, bidirectional dialogue which relies on commu-
nicative conventions that (a) emerge through interaction and (b) account for the partners’ mental states and
communication history. In this viewpoint, the human and the robot are collaborative agents, refining their
communicative capacity over time and using communication to negotiate approaches to physical tasks.

between a state of the world and a signal, and the other between the signal and a response. Morse
code is an example of this type of communication—it is defined by unambiguous symbols that can
be broadcast into the ether and interpreted reliably with a decoder. The code enables an effec-
tive exchange of information, but it does not allow fluent collaboration. Current human–machine
communication at best aspires to code model communication.

Ostensive–inferential communication is different—it relies on people’s ability to express and
recognize intentions (3). Ostensive–inferential communication depends strictly on one agent
influencing the mental state of another agent, and so any behavior can, in principle, be used com-
municatively, so long as it influences the mental state of the other agent in the intended manner.
In this viewpoint, natural languages function to make ostensive–inferential communication more
precise and more expressive than it otherwise would be, but they are only one tool in the commu-
nicative toolbox. In addition to communicating verbally, people rely largely on nonverbal cuing
during joint action, wherein they model each other’s activity and contributions to a shared goal
and enact voluntary nonverbal signaling in service of the shared goal (4–10). Human–machine
collaboration stands to benefit from an ostensive–inferential communication approach.

Finally, much research and development effort is spent on making human–machine com-
munication as intuitive as possible. This includes designing the robot to interpret either
anthropomorphic signaling (e.g., hand gestures and natural language) or intuitive intent signal-
ing through biological signals (e.g., EMG and EEG) to influence robot behavior. These forms
of communicative conventions are often insufficient for fluent/expressive device use and may not
even be optimal for human–machine communication—anthropomorphic signaling evolved and
works well for human–human communication, while measurable biological signals are noisy and
only somewhat informative. Importantly, people are good at adapting and developing communi-
cation protocols. How can we put more emphasis on the emergence of embodied communication
through pHRI, rather than replicating familiar communication conventions for pHRI?

In this review, we explore how embodied dialogue can create a path for more natural col-
laborative workflows and how it can facilitate safer, more effective interaction. In Section 2, we
describe existing algorithmic approaches to facilitating human–machine communication, from
algorithms based on physical analogies, such as admittance and impedance control, to compu-
tational methods capable of task-level reasoning and adaptation. In Section 3, we discuss the
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Integral components of existing algorithmic approaches for physical human–robot interaction (pHRI), as discussed in Section 2. At
each time step, the robot predicts intent based on the state of the human—i.e., motion, biometric signals, etc.—and the state of the
environment (Section 2.2). Using a metric of human performance (Section 2.3), a shared control paradigm (Section 2.4), and its
task-based policy, the robot decides on an assistive action. Many approaches undergo an initial period of adaptation (Section 2.5), and
some enable the robot to take additional communicative actions to provide feedback for the human collaborator.

state-of-the-art communication paradigms for different applications of pHRI and comment on
how emergent human–machine dialogue could improve performance. In Section 4, we conclude
with an outline of future directions for developing embodied communication in pHRI systems.We
discuss the need to algorithmically facilitate bidirectional human–robot communication, where
both the human and robot can play a role in shaping the communication protocol. As a key po-
sition statement established by this review, we argue that to achieve versatile human–machine
collaboration, we need algorithmic methods that enable emergent embodied dialogue based on
an ostensive–inferential model of communication.

2. ALGORITHMIC APPROACHES TO EMBODIED COMMUNICATION

Effective robotic assistance depends on successful communication of collaborative intent from
both the human and the machine. In pHRI, the simplest form of embodied communication is
throughmovement and physical contact, which can be regulated on an action-by-action basis (11).
With additional sensing, the robot can more reliably reason about the person’s intent and assess
their performance (1); depending on the goal of the interaction, it can adjust assistance, often
putting its control strategy into the context of a task. The interaction benefits if the robot can
adapt its communication protocol and assistive strategy to its collaborative partner (2, 12, 13). In
this section, we describe the current approaches to embodied communication in pHRI, ranging
from task-agnostic communication based on compliant physical contact to adaptive task-oriented
communication strategies. Figure 1 illustrates how the algorithmic approaches work together to
generate robot actions.

2.1. Admittance and Impedance

Admittance and impedance control were arguably the first algorithmic approaches for regulating
pHRI that enabled reasonably safe human–machine interaction. Admittance control dates back
to the late 1970s (14), when it was used to respond to hard contact in industrial applications.
Impedance control drew academic interest in the 1980s (11) and was one of the first algorithms
used more broadly to control physical interaction with a robot.
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Fundamentally, both admittance and impedance control imitate mechanical properties of con-
tact between nonrigid systems,modulating elasticity in the collision. In impedance control,motion
is detected and converted into interaction forces through an internal model. Impedance control is
good at rendering low inertia but has difficulty with stiff virtual surfaces. In robot-assisted rehabili-
tation, it can be used to implement active assistance or active resistance proportional to participant
movement (15) without the hardware requirement of a force sensor. Admittance control (16), on
the other hand, converts measured forces into motion, requiring sensors to measure the applied
forces. It enables rendering of stiff virtual surfaces but struggles with constrained motion, e.g., in-
teracting with real surfaces (17). In human–robot collaboration, admittance control can be used to
account for unintended collisions (18) or to jointly manipulate an object (19). It is commonly used
to reduce the inertia of bulky devices with a payload (20) or to ease movement during rehabilita-
tion (15). The HapticMaster (21) is an example of a commercially available admittance-controlled
end-effector robot.

Both admittance and impedance control assume a static model that maps human actions to
robot actions based on mechanical analogies. The model’s parameters can be tuned, using intu-
ition about the mechanical analogies as a guide, but given that the robot is not responsible for
any high-level reasoning about a task goal, the complexity of the interaction is limited. Com-
munication is constrained to negotiating real-time actions without the possibility of task-level
coordination of movement. Algorithmically, this is a conservative attitude to facilitating pHRI,
restricting the physical interactions to those that have mechanical properties [even if not always
mechanically plausible, such as in work by Patton et al. (22)]. With richer sensory inputs and on-
board computation, the robot can begin to reason about the task, in terms of both its goal and a
plausible solution. As a result, admittance and impedance control are often combined with online
algorithms that reason about human intent and enable more effective task-oriented assistance, as
described in the sections below.

2.2. Predicting Intent

In human–robot collaboration, the human and the robot often have complementary roles: The
person has a high-level understanding of the task, while the robot has physical capabilities that can
help the person accomplish the task. One way of framing the communication that occurs between
a person and a robot is to view the robot as an observer, tasked with inferring the person’s intent.
Once the autonomy has an understanding of high-level intent, it can provide assistance that is not
simply proportional to a person’s motion or forces (as is the case in admittance and impedance con-
trol). Below, we describe different ways of inferring intent based on available sensory information.
Example sensors for pHRI are shown in Figure 2.

a b c dd e

Figure 2

Example devices for capturing human intent: (a) motion-capture suit from Motion Workshop, (b) high-density electromyograph from
OT Bioelettronica, (c) wet electroencephalography cap from TMSi, (d) joystick from MERU, and (e) sip-n-puff from Therafin
Corporation. All panels reproduced with permission from their respective companies.
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2.2.1. Frombodymotion and eye gaze. Motion data can be captured passively (without requir-
ing explicit human input) through a range of sensors on the body, including inertial measurement
units, motion-capture markers, cameras, or encoders on back-drivable electric motors. With re-
cent advances in computer vision, it is possible to reliably estimate pose from RGB images (23), as
well as to track eye gaze during real-time interactions (24). For stand-alone robots, camera-based
monitoring of motion offers a significant advantage over most alternatives, because it does not
require sensors to be placed on the human body.

However, even with information about motion history, it is challenging to anticipate intended
human motion. Over the years, many methods have been proposed for recognizing motion (25).
One type of reasoning classifies motion into primitives or modes, where the mode sequences can
be predicted based on a task objective (26, 27), while motion trajectories within modes can be
anticipated based on an approximation of motion dynamics (28). Other studies have proposed
velocity-based position projection (29), general value functions trained using temporal-difference
learning (30), or a combination of multiple approaches (29). Inferring intent frommotion assumes
that the kinematics of motion are sufficiently rich to capture a person’s goals. In most scenarios,
motion trajectories are dependent on contextual information, and therefore improving predictions
requires inferring the situational context and/or obtaining additional sensory inputs. As an exam-
ple, some studies augment kinematics data with EMG signals to improve predictions of motor
intent (13, 30).

Motion can also be used to purposefully communicate intent, e.g., through gestures (31), mo-
tion cues (32), facial movements (33), shoulder shrugs (170), or gaze (34, 35). Substantial progress
has beenmade in sign language recognition that could be used in human–robot collaboration (36).
While these studies offer promising results, it is important to note that explicitly prescribing a set
of communicative conventions for each motion type is difficult and impractical because of the
scope of possible communicative symbols. In Section 4.3, we describe the need for algorithmic
solutions that would enable communicative conventions to emerge from interaction.

2.2.2. From electromyography. Electrical activity from skeletal muscles, known as EMG, is
an appealing source of intent prediction, particularly for assistive devices that are directly cou-
pled with the human body, such as prosthetics and exoskeletons. There are many documented
approaches to EMG-based control (13, 30, 37, 38), including a growing body of work on the use
of advanced machine learning methods (37). Even so, two of the most commonly studied control
methods continue to be (a) proportional control, where the EMG signals are directly mapped onto
low-level trajectories (39, 40), and (b) mode-based control, where the EMG signals are classified
into modes based on pattern recognition techniques and used in combination with an autonomous
low-level controller (41, 42). Proportional control gives the user direct control over robot motion
but requires precise decoding of EMG signals. As a result,multijoint motions are typically difficult
to achieve. Mode-based control expects sparser high-level commands from the human operator
and has been shown to achieve better performance (43). However, studies highlight the need for
more research on the benefits of pattern recognition for mode-based control (44, 45). Combining
EMG signals with other control inputs has been noted by the community as a promising path
forward (13). One example is EMG combined with EEG (46, 47), which has shown encouraging
initial potential.

A significant appeal of using EMG signals is their intuitiveness. However, while people have
some control over the EMG signal by voluntarily generating muscle contractions, they are limited
by their physiology in the variety and expressivity of patterns that they can generate. As a result,
some work has explored EMG control using nonbiological mappings, where the person generates
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maximally differentiated muscle contractions (e.g., internal/external rotation of the forearm) and
these contractions are mapped onto useful configurations of a robot (e.g., different grips of a hand
prosthesis) (48). These approaches show promising performance but can be difficult for a person
to learn. Emergent interfaces, discussed in Section 4.3, might offer a solution.

EMG-based methods are in many ways similar to motion-based approaches, in that they infer
intent based on a planned execution of motion.They have the advantage of being able to anticipate
motion before it happens or, as in the case of amputees, detect motion intent. However, neither
motion-based nor EMG-based methods attempt to infer the cognitive intent of a person. EEG-
based techniques, discussed next, try to use high-level signaling in the brain to infer cognitive
aspects of intent.

2.2.3. From electroencephalography. Reliably capturing and interpreting electrical activity of
the brain would enable thought-controlled devices, or at least devices that are explicitly dependent
on what a person is thinking. If successful, EEG paves the path for intuitive interfaces to control
multidimensional robots. Thus far, however, surface EEG (sEEG) has proven difficult to use as
a control interface for robots (49) because of the noisiness and low spatial resolution of sEEG
signals. Electrical brain signals are much stronger when measured inside the brain through an
implant, rather than noninvasively on the surface of the skin; this is a promising avenue of research
but has received limited attention because of the risks associated with its invasiveness (50, 51).

Algorithmic approaches for interpreting EEG signals are ample, ranging from using combi-
nations of prespecified features (e.g., amplitudes of signal within frequency bands in the motor
cortices) (52) to training deep neural networks on the raw signal (53). State-of-the-art algorithms
enable reaching a target in a 2D plane by interpreting the sEEG signal as one of a handful of
mental states, corresponding to possible target locations of the robot’s end effector (49). As an
example, EEG-predicted mental states in combination with a context-aware controller enabled
a person to navigate a mobile robot through a network of connected rooms (54). Given the low
spatial resolution of sEEG signals, researchers have had difficulty identifying more than three
classes of distinct mental activities (49). In more recent studies, the error potential has been used
to successfully correct the 3D motion of a robot arm (47, 55). This is an interesting approach that
takes advantage of a biological interpretation of sEEG signals—the error potential is detectable
when a person perceives error.

The key outcome of these studies is that sEEG provides a way to record an array of signals
from the brain and, for now, to interpret them in a small number of ways. One of the points we
make later is that these interpretations are prespecified—e.g., they are trained tomean right, left, or
straight—when they could be an unlabeled range of mental states that the robot learns to interpret
over time.

2.2.4. From controller signals. There are a range of designated interfaces that can pro-
vide human-generated input for an assistive robot. The most common are control devices that
can be operated by the hand, such as a joystick or remote controller with a range of buttons.
Hand-operated control devices are currently in commercial use, and although they require effort
(compared with passively measured biological signals), their control signal is more informative and
less noisy—they already achieve adequate performance for the control of powered wheelchairs to
warrant wide adoption.

In addition to hand-operated devices, there exist a range of control interfaces that are designed
to be used by individuals who are paralyzed below the neck. These include a head array (which
enables button presses with the head) and a sip-n-puff (which records a 1D continuous signal
from the person exhaling and inhaling air into a sensorized straw) (56). Like the hand-operated
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controllers, these interfaces are already in use outside of research laboratories. However, signals
from these interfaces are lower-dimensional, posing a challenge even when controlling a 2D
powered wheelchair.

In commercially available products, the control interfaces (i.e., joysticks, head arrays, and sip-n-
puff devices) are treated like many interfaces used in nonrobotic applications (e.g., video games)—
the interface mapping of control inputs onto the action space is designed ahead of time, and it is up
to the person to learn and adjust to the prespecifiedmapping.Notably, research has shown that the
physical interaction with the control interface is nonnegligible and should be taken into account
when designing the mapping from interface inputs to control outputs (57). Although intentionally
generated, the signal is often imperfect; recent work has highlighted the effects of impairment and
interface type on the acquired control signal, including the timing, transient noise, and accuracy
of a signal (58). When designing mappings for these control interfaces, there is a need to enable
adaptation to the person’s unique physical and cognitive capabilities—effective communication
can give the person increased agency over their interaction with the robot.

2.2.5. Through natural language. With recent progress in natural language processing (59,
60), researchers have incorporated voice commands into human–robot interaction (61). Verbal
communication can be a useful tool for high-level task alignment and will likely remain an im-
portant research direction. However, control using natural language has three main limitations
in pHRI: (a) It is nonpragmatic for many applications (e.g., a robot assisting with eating), (b) it
is socially inconvenient (e.g., walking in a prosthesis and talking), and (c) it requires high levels
of effort for continuous control (i.e., guiding low-level movement). In the context of pHRI, the
most that voice commands can do is align the robot with the person’s high-level intent; actual
robot actions need to be planned in the context of the body, environment, and continuous-time,
continuous-space decision-making.Voice commands will likely be used in combination with other
interfaces to provide high-level directions or corrective feedback.

2.3. Metrics of Motion for Adjusting Assistance

Given a prediction of high-level intent, a robot requires a mathematical specification of perfor-
mance that enables continuous evaluation of human actions. In combination with decision-making
techniques (e.g., linear control, optimal control, or reinforcement learning), metrics of motion
enable computational synthesis of real-time assistance.

2.3.1. Motion quality. One way to assess performance is by quantifying motion quality. As an
example, energy minimization has been shown to explain the dynamics of human motion, and
so energy is a universally used assessment of motion quality (62). Motion has also been assessed
in a task-independent manner using the norm of mechanical jerk—the third time derivative of
state (63). Jerk is a way to quantify motion smoothness, with the underlying assumption that
smooth motion is desirable.

2.3.2. Task performance. Another intuitive way to assess human actions is with respect to
a reference solution to a task goal. If one defines a task solution as a trajectory in time, one
can use error with respect to a predefined trajectory to provide real-time assistance (63). This
approach works well if there exists an optimal solution to a given task but overspecifies the task so-
lution when many trajectories can, for practical purposes, be considered equally correct. For most
tasks, there exist many correct ways to execute an action sequence and achieve a high-level goal
(64).
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As an alternative, new metrics of task performance have been proposed based on decomposing
trajectories in ways that ignore the solution’s evolution in the time domain. Solution quality can be
assessed based on the relative positioning of joints with respect to one another (65). It can also be
measured using distribution-based metrics that evaluate the state statistics of a motion trajectory
relative to the statistics of a task (64, 66), or using frequency-domain assessments that quantify
motion bandwidth (67, 68). Trajectory-independent ways of quantifying task performance allow
one to equally evaluate multiple approaches to solving a task and do not constrain the solution as
a function of time.

2.3.3. Motion predictability. Learned forecasts of movement and movement anomalies can
also be used as a metric to modulate pHRI. As one key example, researchers have shown that
general value functions can be used to build predictions of anticipated motion and to make con-
trol decisions based on the motion’s deviation from the learned prediction (69, 70). Similarly,
researchers have introduced and made use of metrics that quantify surprise. As an example, a study
illustrated that unexpected perturbations can be characterized through the process of continual
temporal-difference learning, and that the resulting metrics, such as the unexpected demon error,
can be used to effectively modulate assistance (71).

2.3.4. Effort. Lastly, in physical assistance, there is often interest in assessing effort exerted by
the individual (72). Effort can be measured directly using EMG (73), heart rate variability (74),
or respiratory data on the flow rates of oxygen and carbon dioxide (75, 76). As an example, one
can adjust the parameters of an admittance or impedance controller based on EMG readings to
maintain a desired level of physical effort (77).

Task effort can also be approximated via cognitive load.Researchers have attempted tomeasure
cognitive load directly through EEG signal (78); other studies have quantified cognitive effort
via proxy metrics, such as gaze trajectory and pupil size (79), or a combination of physiological
data, such as heart rate, breathing frequency, skin conductance, and skin temperature (80). As with
metrics of physical effort, metrics of cognitive load can be used in closed loop to provide real-time
adjustments to the provided assistance (80) and maintain patient engagement.

While it is challenging to quantitatively assess task performance in real time and to mathe-
matically specify motion quality or effort with enough generality, flexible specifications of motion
can improve the adjustability of robotic assistance as well as enable the development of provable
safety guarantees for pHRI systems.

2.4. Task-Based Shared Control Paradigms

Once a task goal and performance metric have been established, a consideration for the autonomy
is when and howmuch assistance to provide. Shared control paradigms distribute control between
the human and robot to improve overall performance and/or safety.

Performance-based shared control schemes rely on an estimate of the user’s intent, as described
in Section 2.2. Intent could be a high-level goal, such as a navigation landmark to drive a wheelchair
toward or an object to grasp using an assistive robot arm (81). Intent could also involve avoiding
obstacles, in which case distance to obstacles could be a metric for allocating control between the
human and robot (82).

Once a task goal has been identified, user control inputs can be directly modified by the auton-
omy in a variety of ways. User input can be blended with the assumed optimal action, obtaining
an average action at every time step (83). User input can be filtered using a task-based criterion,
and if sufficiently suboptimal, it can be either ignored or replaced with an assumed optimal ac-
tion (84). Intervention could be conditioned on the certainty of the autonomy in its prediction of
the task goal (85, 86). If the robot is operated through mode switching (explained in more detail
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in Section 3.5), a shared control paradigm may be designed to assist with toggling between modes
based on a prediction of the most likely mode (69, 87).

While many approaches vary assistance to optimize performance, others provide assistance
based solely on safety. The latter strategy has two significant advantages: (a) It limits interference,
relinquishing control to the human operator, and (b) it is often easier to define—in a human–
machine system, there are usually fewer safety constraints compared with all possible task goals.
Even so, the optimal shared control paradigm is often unique to the person and the applica-
tion (88), highlighting the need for solutions that enable adaptation. Bidirectional communication
can help a person and a robot to most flexibly agree on an optimal shared control strategy and to
renegotiate that agreement throughout the course of use. We discuss this idea in more detail in
Section 4.

2.5. Adaptation

Adaptable control interfaces show promise in their ability to improve performance and safety, as
well as to increase user satisfaction. The robot can adapt (a) its predictions or model of its human
partner, (b) the mapping (or interpretation) of human-generated signals onto predicted intent, and
(c) the shared control paradigm, adjusting its intervention strategy based on user capabilities and
individual preferences. Unlike the majority of work described above, adaptation assumes that how
people start using a device will not necessarily be the same across individuals and that how they
use the device will change over the course of use.

Many researchers have investigated options to personalize algorithms for pHRI to accom-
modate biomechanical and physiological differences between individuals. A common example is
the customization of gait in an exoskeleton (89, 90), usually through an initial calibration pe-
riod of walking without assistance. Another example is the calibration of EMG (13, 37, 38, 43,
91) or EEG (92, 93) mappings to an individual’s signal pattern or to the specific placement of
the electrodes on the body. A personalized remapping has also been shown to be beneficial for
more established input devices, such as a joystick, when the human operator suffers from physical
limitations due to a neuromotor impairment (94).

In addition to personalization based on physiology, biomechanics, and physical capabilities,
users value the ability to customize an interface based on preferences. As an example, individuals
might exhibit preferences for different shared control paradigms (e.g., those that are less aggres-
sive) irrespective of the objective performance benefits (e.g., time to task completion) (95). As
a result, some work utilizes the user’s control behavior to automatically vary parameters of the
shared control paradigm (13, 96). While preferences vary between participants, there is a gen-
eral trend favoring paradigms that retain stronger autonomy for the human operator (95). People
prefer interfaces that are intuitive to use and transparent in how they work (97).

Initial adaptation to the individual is important, but it is also important to recognize that in-
dividuals’ performance and capabilities change over time, due to factors such as learning, fatigue,
or disease progression. In particular, in a study with a smart wheelchair, people’s performance
improved significantly between just two experimental sessions (95), a trend that was observed
across different control interfaces and shared autonomy paradigms. Another study showed that
novices and experts prefer different shared control paradigms (58). These results suggest that
the shared control approach should not be static over time and that continual adaptation of the
communication paradigm can benefit the human–machine system. While few research studies
have evaluated the adaptation of pHRI interfaces over time, continual adaptation is an important
research direction for pHRI, as discussed in Section 4.

For a summary of the key points regarding algorithmic approaches, see the sidebar titled
Algorithmic Approaches: A Summary.
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ALGORITHMIC APPROACHES: A SUMMARY

1. Over the past decades, algorithmic approaches that facilitate pHRI have progressed from algorithms based
on physical analogies, such as admittance and impedance control, to computational methods based on higher-
level reasoning.

2. Intent inference is often multisensory, taking advantage of technologies that measure biomechanical and
bioelectrical activity as well as explicit human commands to inform robot actions.

3. Existing algorithmic paradigms (signal processing, optimal control, machine learning, and more) can be cus-
tomized to the robotic systems and personalized to the individual, but most do not adapt beyond an initial
calibration, limiting the human–robot collaborative potential.

4. While current algorithms successfully enable task-specific interactions, future progress can expand robotic
applications from, e.g., semiautomated manufacturing and precision surgery to versatile at-home assistance.

3. APPLICATIONS OF PHYSICAL HUMAN–ROBOT INTERACTION

pHRI plays an important role in a number of applications, ranging from robot-assisted rehabil-
itation to collaborative assembly during manufacturing. Here, we describe how physical robotic
assistance is being used in different settings. We comment on state-of-the-art performance and
discuss the current challenges associated with human–machine communication in each applica-
tion area. Example robotic platforms that have been developed for these applications are shown
in Figure 3.

3.1. Robot-Assisted Rehabilitation

One of the major applications of pHRI focuses on robot-assisted physical therapy (98, 99). Robot-
assisted rehabilitation offers the promise of therapeutic regimens that are more effective, more
accessible, and more engaging than traditional therapy. To date, results have been mixed on the
impact of robot-assisted training on clinical outcome measures. While some studies have shown
benefits of adaptive robot-assisted training compared with conventional therapy (100, 101), others
have shown no statistically significant differences in clinical outcomes (102). However, the evi-
dence is strong that there are benefits from patients’ active participation in therapy (103). These
positive findings encourage research that promotes patient engagement through reliable detection
of intent and real-time metrics of performance and effort.

a b c dd e f

Figure 3

Example robotic platforms: (a) Kinova MICO arm, (b) Quickie Q500 M powered wheelchair, (c) Ekso Bionics lower-limb exoskeleton,
(d) Shirley Ryan AbilityLab upper-limb prosthesis, (e) Open-Source Leg, and ( f ) ACT3D (a modified HapticMaster end-effector
robot). Panel c reproduced with permission from Ekso Bionics.
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Research solutions attempt to maximize patient engagement using two approaches: (a) assist-
as-needed paradigms and (b) measures of patient intent that guide robotic assistance (99). Assist-
as-needed strategies use adaptive controllers that estimate patient effort and assess performance
in real time, enabling adjustments to the level of assistance even during a single movement (104).
As an example, in 2017, the HAL (Hybrid Assistive Limb) rehabilitation exoskeleton, which uses
EMG signals to adjust assistance,was officially approved by theUSFood andDrugAdministration
to enter the USmedical rehabilitation market. In parallel, intent detection—e.g., using biometrics
from EMG or EEG—can further involve the patient by providing them agency over generating
movement trajectories (105). Intent prediction methods are particularly important for engaging
more severely impaired patients in robotic training, because these patients have difficulty with
independently generating voluntary movement (106).

Work has also been done on developing impairment-specific assessments of motor abili-
ties (107–109), with some metrics showing potential for real-time use (67).With new algorithmic
solutions, it should be possible to design patient-specific training protocols, dependent upon each
patient’s type of injury, level of impairment, and phase of recovery. Embodied communication
could play a role in designing interactive paradigms for robot-assisted assessment of physical
deficits. Consequently, interactive methods could enable more accurate diagnosis of motor
capabilities and lead to improved therapeutic efficacy through adaptive, impairment-specific
rehabilitation protocols.

For individuals with physical limitations, the ultimate goal is for robotic devices to provide
both therapy and assistance (110). Some devices are already attempting to show efficacy for
combined assistance and at-home rehabilitation (111). With robot-based continuous metrics of
impairment, person-specific rehabilitation protocols can be more effectively incorporated into
activities of daily living.

3.2. Physical Assistance with Exoskeletons

Exoskeletons—portable devices that are physically coupled with an individual—are the most com-
monly considered type of robot for physically assisting with humanmovement.Many exoskeletons
have been developed to augment people’s physical capabilities for both impaired and able-bodied
individuals (75, 112, 113). Most rigid exoskeletons are controlled in admittance mode using force
amplification, and for some applications, such as level-ground walking, this control mode works
reasonably well (112). In fact, for level-ground walking, it is challenging to do better than ad-
mittance control in terms of movement freedom and flexibility. However, while task-agnostic
assistance performs well for walking, it does not provide helpful support during unexpected events
(e.g., tripping) or changing activities (e.g., climbing stairs or transitioning to sitting) (112). Alter-
natively, exoskeletons rely on a state-machine controller, where an initiation event—e.g., a button
press or a specific motion—is used to communicate movement intent (114).Other task-based con-
trollers provide assistance through a sequence of learned movement trajectories, giving the person
little control over motion execution (114).

While lower-limb exoskeletons have received substantial academic and commercial attention,
their practical adoption has been limited. Traditional rigid exoskeletons (75, 115) are bulky and
expensive.While they offer assistance with generation of gait, even for individuals with full paral-
ysis (114), they do not guarantee assistance with balance and hence require crutches or therapist
assistance during use. More recently, lightweight designs have shown promising results for able-
bodied individuals, reducing the physical effort required to walk long distances (116) or increasing
the ability to carry heavy loads (117).

In parallel, there is ongoing research on the design of upper-limb exoskeletons (118). Although
upper-limb devices do not have to assist with balance, their task space is larger and more varied.
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The hardware requirements (e.g., weight, ergonomics, and biomechanical compatibility) are more
rigorous than those of lower-limb exoskeletons, and the application areas are broad.As a result, the
research is at an earlier stage, focusing largely on the hardware design of these devices (118).Most
of the commercially available exoskeletons are application specific and offer limited assistance. For
example, the SKELEX exoskeleton from GOBIO can nullify the weight of a tool while working
on the shop floor.

In an exoskeleton, the physical coupling of a human and a machine brings both a unique
opportunity for continuous communication [as in partner dancing (119)] and the challenge of arbi-
tration between human intent and robotic assistance. Communication takes place through subtle
haptic cues and concurrent negotiation of movement. Interestingly, human–human physical cou-
pling can reliably lead to improved performance even if one of the partners is less adept at the
task (120). Studies on human–robot coupling show that forceful interaction can lead to improved
task performance even after the robot coupling is removed and the person performs the task in-
dependently (121). These pieces of evidence illustrate the potential of communication through
physically coupled motion. However, while physical interaction is a natural part of joint activity
between people, how humans control motor interaction with peers is still largely unknown (122).
Human–robot interaction (e.g., via exoskeletons) can help us discover the potential of physical
communication and in turn help improve algorithms for human–machine collaboration.

3.3. Physical Augmentation Through Prosthetics

Powered prostheses offer the promise of restoring lost functionality to individuals with a missing
limb. With recent progress in reducing the weight of the physical devices, the prostheses’ us-
ability depends largely on the effectiveness of the algorithmic solutions. Commercially available
lower-limb powered prostheses (e.g., the Empower prosthetic foot from Ottobock) use onboard
sensing (e.g., a load cell or motion sensor) to drive autonomous controllers for preprogrammed
activities (32). Transitions between gait phases can be triggered by sensor measurements, while
transitions between locomotion modes (e.g., overground walking or stair climbing) often require
input from the human user (e.g., specific body motions measured by sensors) (32). Some research
solutions consider incorporating contextual information (e.g., a laser distance meter) (123) to im-
prove decision-making by detecting terrain, and some explore incorporating EMG signals to
improve prediction of user intent (32). Existing control techniques can already achieve decent
performance; for example, most lower-limb amputees feel confident walking forward on level
ground (124), although maintaining balance while walking on uneven terrain or on slopes remains
a concern (124).

For the upper limb, the task space is more varied and open-ended, increasing the difficulty of
control. The main challenge is obtaining a rich enough control signal from the human partner to
infer their movement intent without interrupting the person’s workflow. Intent prediction using
EMG has received the most attention (13, 38, 125), with EEG being a close second.While EMG
signals are usually stronger and more discernible than EEG signals, amputees might have limited
muscle fibers in their residual limb to provide a robust EMG readout. To increase the strength
and clarity of the EMG signals in the residual limb, two clinical procedures have shown promising
results. The first is targeted motor and sensory reinnervation (126, 127). During this type of pro-
cedure, a surgeon reroutes nerves from the residual limb to a large muscle group, such as pectoral
muscles, restoring the number of intuitive EMG channels and sensory inputs available to the in-
dividual. The second and more recent procedure is to implant electrodes into the muscle and add
a metal anchor into the bone of an amputated limb, which then enable control of osseointegrated
prosthetics via intramuscular EMG (128). These surgical advancements significantly increase the
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capacity of the human–prosthesis communication channel, improving usability. Even so, control
of a powered upper-limb prosthesis is for now limited, and outside of laboratory settings, the pros-
thetic arm is usually used passively as a support arm in bimanual tasks (e.g., holding a bowl while
stirring with the other hand) (129).

A relatively new research effort focuses on restoring sensing capabilities to the individual
through additional feedback.Currently, there are almost no commercially available powered pros-
theses that transfer sensations to the user (124). Interestingly, some amputees find mechanical
prostheses more intuitive to use because the more rigid devices mechanically transmit hap-
tic feedback from the prosthesis tip to the residual limb. Osseointegrated prostheses share this
benefit (128). In socket-based powered prostheses, researchers are considering alternatives for
providing sensory feedback (13, 130, 131). As an example, pressure stimulation in a prosthetic
socket is being used to communicate forces perceived by the hand (131). Systems leveraging tar-
geted sensory reinnervation (127) can increase the amputee’s capacity for sensory feedback as well
as make the sensory feedback more intuitive.

The human–prosthesis interaction can also benefit from communication to the user about the
current state or movement intent of the prosthesis (70). As an example, haptic feedback about the
opening or closing of a prosthetic hand has been shown to lead to a lesser need for visual attention
and improved task performance (132). Rich sensing and reciprocal communication of both the de-
vice’s perception and its intent are expected to improve the effectiveness of the human–prosthesis
interaction. While powered prostheses are meant to be natural extensions of the human body,
there is a desire to seamlessly integrate the artificial limb into the person’s workflow without the
need for explicit, cognitively taxing communication of intent. In this viewpoint, powered pros-
theses remain a challenging domain for inferring intent, especially in contextually rich settings
during activities of daily living. Emergent multimodal dialogue for pHRI is an important area of
research that could improve performance, as we discuss in Section 4.

3.4. Collaboration in Close Proximity with an Autonomous Robot

Some assistive robots are stand-alone devices that operate autonomously in close proximity to a
human partner. Physical interaction during this type of collaboration is arguably one of the more
difficult pHRI scenarios, because the human and robot must be able to work together while
(a) mostly avoiding each other and (b) intermittently seeking out safe physical contact. In the
first scenario, physical contact is an unintended by-product of working in close proximity. A large
body of research focuses on intent prediction for avoiding accidental interaction while working
in close proximity with a human partner (133, 134) or for avoiding collisions when navigating in
crowded environments (135, 136). In the second scenario, a common focus area is interacting with
a robot by jointly manipulating objects in the workspace. This can involve collaboratively moving
a table (137, 138) or handing objects between the human and the robot (139). These studies
have made progress on relevant pHRI challenges, yet they often explicitly separate the periods
of physical interaction and autonomous operation. Incorporating intermittent pHRI as a natural
component of collaborative interaction will be key to the emergence of complex, rich, and flexible
collaboration.

A commonly studied form of prescribed human–robot contact involves kinesthetic demon-
strations, where the human physically manipulates the robot to demonstrate desired movements.
Kinesthetic demonstrations provide an intuitive avenue for people to teach robots new skills or
customize assistance without having to program reward functions or low-level behaviors (140).
As an example, learning-from-demonstration paradigms have been successfully used for teaching
a robot arm how to perform manipulation tasks (141), such as drinking or pouring liquids and
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moving objects. Many studies have shown that a learned policy can generalize to new envi-
ronmental conditions (142, 143), such as new locations of objects, similar objects, and clutter.
However, fewer works have demonstrated a generalization of learned skills between different
tasks. Without the ability to reuse motor skills for novel goal-oriented activities, the learning
solutions are less applicable to a versatile assistive robot. The question remains of how to
algorithmically structure the robot’s interaction with a person to enable the robot to effectively
extract task-relevant information from demonstrations (140).

New research is exploring interactive learning, with the goal of improving learning of salient
task elements by actively soliciting clarifying input from the human teacher. Some approaches ask
users to rank demonstrations (144, 145) or provide corrective input on the learned task execu-
tions (146, 147). Other studies incorporate demonstrations of what not to do, enabling the robot
to extract information from failed attempts at a task (148). Additional feedback often increases
task performance, but it does so at the cost of an individual’s time and effort. Even though in their
current implementation the interactive paradigms might be inefficient, they are a step toward
bidirectional communication that will enable more versatile human–robot collaboration.

3.5. Teleoperation of a Semiautonomous Robot

Robotic teleoperation has enabled robotic surgery, space exploration, assistance for physically im-
paired individuals, and more. Here, we focus on teleoperation as a way to control a colocated
collaborative device (e.g., a powered wheelchair or wheelchair-mounted robot arm) rather than a
remote robot (e.g., a Mars rover or the da Vinci surgical system).

A semiautonomous assistive device, such as a smart powered wheelchair, can be successfully
controlled by a handheld joystick (56). In this case, control is near trivial because a 2D joystick
intuitively maps to a 2D control space. Direct control of the robot is more difficult when the con-
troller is lower-dimensional (e.g., a sip-n-puff, as described in Section 2.2.4) or the robot is more
complex (e.g., a robot arm with multiple degrees of freedom), because low-dimensional input
must be used to control high-dimensional motion. Mode switching—toggling between indepen-
dent and typically orthogonal control directions, which usually span translation and rotation in
the xy- or xyz-coordinate space—has been proposed as a possible solution (149). Autonomous
switching of modes can speed up task performance (87). However, control via single degrees of
freedom in a Cartesian coordinate space is an unintuitive approach to specifying robot movement,
because people do not think about motion in terms of 1D adjustments. Instead, they tend to plan
trajectories in terms of functional movements or motion primitives (150).

In recent work, researchers have proposed using latent variables to map control inputs onto
task-specific movement trajectories (86, 151). These approaches offer a way to map control inputs
ontomore natural and functionally relevant movements of the robot. In their current implementa-
tion, these approaches require a task library and a high-level controller to determine the applicable
latent space for the task, but this is a promising research direction as it enables learning a com-
munication manifold from human–robot interaction. Algorithmically structuring the interaction,
in a way that will effectively enable these mappings to emerge, is an important future research
direction.

4. FUTURE DIRECTIONS FOR EMBODIED COMMUNICATION
IN PHYSICAL HUMAN–ROBOT INTERACTION

Future work on pHRI will benefit from greater emphasis on embodied communication to exploit
the richness of the available communication channels both for human–robot communication
and, increasingly, reciprocal robot–human communication. Aspirations for future pHRI systems
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Future directions (orange) for embodied communication during effective human–robot collaboration. In
existing human–robot partnerships, the robot infers a person’s intent and interacts with them through
assistive actions, sometimes providing limited feedback through additional signaling. Even though the
person changes over time—due to learning, fatigue, etc.—the communicative conventions remain the same
throughout use. Developing new algorithmic tools to facilitate human–machine dialogue and enable the
emergence of communicative conventions without compromising safety is one of the next frontiers for the
field of physical human–robot interaction (pHRI).

include safe operation enforced by the autonomy while allowing continual adaptation, multi-
modal dialogue, and support for emergent, unanticipated behavior and communication during
collaboration (as shown in Figure 4). These goals anticipate that the person and the environment
change over time and that the human–robot pair will need to coadapt to each other. They also
have something in common technically—they lack standardized algorithmic tools, which are
currently in development in terms of theory and implementation, as we discuss below. As a result,
datasets are needed for validating pHRI-relevant algorithmic tools, benchmarking algorithms
prior to use with people, and comparing and evaluating current pHRI capabilities.

4.1. Continual Adaptation with Safety Guarantees

pHRI involves potential safety hazards because of the direct mechanical contact and energy ex-
change. As a result, safety has been a core focus of facilitating pHRI (152). Even so, it is not clear
how to guarantee safety without limiting parameters of robot motion (e.g., torque or velocity)
and bounding the robot’s performance (152, 153). Due to the lack of reliable alternatives, ISO
guidelines released in 2016 suggest just that—they recommend quantitative biomechanical lim-
its, such as allowable peak forces or pressures for various parts of the body, as a requirement for
collaborative robots (154).

Recent work takes advantage of predictive modeling to ensure safety. Folkestad et al. (155)
used control barrier functions and Koopman operators to impose data-driven safety guarantees.
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Other approaches involve modeling and closely monitoring people’s behavior in anticipation of
unsafe robot motion. As an example, researchers have shown the utility of hidden Markov models
for estimating, in real time, human affective states during pHRI (156) and proposed using this
approach as a feedback mechanism to prevent unsafe interactions. Separately, Brown et al. (157)
formalized and theoretically analyzed safety in the context of efficient value alignment, with the
goal of constructing a kind of driver’s test that a human can give to a robot for assessment prior to
use. These efforts are a step toward providing standardized safety guarantees (under reasonable
assumptions) for data-driven robotic systems.

In Section 2.5, we discussed the value of adaptation and data-driven methods for algorith-
mic regulation of human–robot interaction. Notably, most work has focused on learning within
a confined period of initial interaction, and few studies have considered continual or long-term
adaptation. One reason for this is that although it is challenging to assess the safety and perfor-
mance of data-drivenmethods, it is evenmore challenging to do so for systems that are continually
adapting. Developing methods for data-driven verification of safety while enabling long-term
learning is an important direction for future work. As discussed by Kress-Gazit et al. (158),
we should aim to provide safety guarantees that at minimum maintain states within safe sets
and satisfy temporal logic guarantees while also providing specifications that are appropriate for
nonstationary models and reason about human variability and adaptation.

4.2. Multimodal Dialogue

Just as we seek to infer informative measurement signals from the human for the robot, the robot
should seek to provide informative signals to the person (181). Many human–robot systems rely
on the robot movement as implicit feedback for the human partner. Some work augments the
interaction with exaggerated robot movements (10, 159, 160) or anthropomorphic signaling (161).
Purposefully communicative motion has been shown to benefit the interaction, because it makes
robot behavior more predictable, allowing the person to anticipate robot movements and adapt
their own behavior accordingly (162). If robot motion is predictable and allows humans to adapt—
e.g., in the way that humans swiftly adapt to robot motion in crowd navigation (135)—then safety
constraints on the robot might be relaxed and enable more effective collaboration.

Other work has taken advantage of communication through modes other than motion to
provide explicit feedback about robot intent. For instance, recent studies have used vibrotactile
feedback in the form of a vibrating sleeve (132), pressure spots in a prosthetic socket (131), or
friction modulation on the surface of a touch screen (163). Other studies have explored using
vibrotactile feedback to communicate emotion, imitating social touch with patterns of haptic
sensations on the arm (164, 165), or to communicate learned predictions of upcoming haz-
ards (166, 167). Without disturbing the task flow, vibrotactile stimulation and haptic cues can
significantly increase the information communicated to the person by the machine, improving
the pair’s collaborative potential.

As discussed throughout the review, one-way signaling about intent—from the person to the
robot—has enabled task-specific robotic assistance.We described howmost work on communica-
tion in pHRI treats the robot as a passive observer of human behavior and, at best, enables the robot
to provide feedback about its current state and/or intent.We discussed evidence showing that re-
ciprocal signaling from the robot to the person overwhelmingly improves the interaction (68, 70,
132, 168). Though bidirectional, thus far this type of communication has enabled negotiating task
solutions or refining mutual understanding and alignment over time. Bidirectional dialogue—
where communication is dependent on both the mental state of the communication partner and
the communication history—could enable more versatile collaboration.
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4.3. Emergent Interfaces

The model of signaling described above assumes that the communicating agent (human or
robot) has a correct mental model of the communicative conventions, and this assumed mental
model is typically static. If we are to move toward active nonverbal dialogue between the human
and the machine, novel nonverbal languages will form a foundation for communication. As de-
scribed by Dominijanni et al. (169), we can capitalize on our kinematic, muscular, and neural null
space—excess degrees of freedom—to enable communication with assistive devices without caus-
ing excessive increases in cognitive load. The question remains how to facilitate efficient neural
resource allocation for a novel human–robot system (169).

As a baseline approach, the languages can be predefined and encoded in the robot—the pro-
grammer determines a set of vectors in the neural null space, and the human operator is instructed
in their interpretation and trained to generate them. However, how can functionally optimal or
near-optimal symbols be specified? And how can the cognitive burden on the human partner—
who is expected to learn the newly introduced vocabulary of nonintuitive symbols—be reduced?
If we are mapping joystick commands to the action space of a powered wheelchair, there is an
intuitive way to specify the mapping of the continuous 2D control space onto the analogous 2D
action space of the robot, making the language easy to learn. However, if we are using shoulder
shrugs to control movements of a robot arm (170) or sips and puffs to maneuver a wheelchair (58),
the mapping is no longer as intuitive, either to specify or to learn, and may not even be within the
motor control capacity of a given individual.

Interestingly, experiments have shown that humans are good at adapting to and developing
novel communication protocols (171). For instance, in an experimental setup with an unfamiliar
task (172), people learned how to interpret vibrotactile stimulation without being given a descrip-
tion of what the stimulation is intended to evoke. In the experiment, the vibrotactile stimulation
was synthesized by an optimal controller (rather than embodying a state measurement), and the
context was sufficient for participants to infer the meaning of the vibrotactile signals—subjects
successfully learned to use the stimulation as a cue for motor response to improve performance.
Such anecdotal evidence illustrates potential for fluent coadaptation of the human–robot pair, on
fast timescales and in an individualized manner.

There is a body of work that studies how to enable and facilitate communication emer-
gence in autonomous agents (173), with recent studies exploring the role of deep reinforcement
learning (174, 175). These algorithmic approaches to facilitating collaborative development of
nonverbal languages have the potential to form the foundation for humans and robots to coop-
erate flexibly (176) and to continuously negotiate their partnership. Enabling the human–robot
pair to jointly develop a communication protocol could reduce the cognitive burden on the hu-
man partner and enable more effective communication protocols that are uniquely relevant to the
human–machine system and to the corresponding task space. However, unlike the anecdote men-
tioned above, the deep learning algorithms are data intensive, requiring thousands or millions of
interactions in order to achieve a nonverbal language. The opportunity is that these approaches
assume naive agents that know little about their environment or about each other. Incorporat-
ing these approaches into collaborative language creation between a human and a robot is the
next step in bringing these simulation-based studies closer to the fast, individualized physical
communication needed in human–machine interaction.

4.4. Datasets and Benchmarking

Acquiring human data is costly in terms of the time and effort required from both the researchers
and the study participants, particularly in experiments with vulnerable populations. As a result,
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research studies have focused on evaluating novel algorithmic solutions, and few have carried out
direct comparisons with existing approaches. To accelerate progress, sharing datasets of bench-
mark tasks would be beneficial. Although statements that data are available upon request are
common, they have been shown to be inefficient (177). This suggests that the pHRI commu-
nity needs open datasets and standards that define them, in terms of both standardized sharing
practices and standardized data formats.

Some researchers have already initiated this practice. A recent paper featured a dataset of kine-
matic and EMG signals collected during reach-to-grasp movements with online adjustments in
response to visual perturbations (178). Datasets like this one, which record human kinematics in
response to environmental stimuli, can be used for training robotic controllers that aim to mimic
human behaviors. Similarly, a multimodal dataset of assistive human–robot collaboration has been
released, including eye tracking, EEG, EMG, camera images, joystick signals, and more (179). Al-
though these data cannot substitute for an experimental evaluation of a novel algorithm because
of the interactive aspect of online control, they can enable a baseline comparison of task perfor-
mance. Sharing data is of particular importance in fields such as pHRI, where active participation
of human volunteers is required to collect data.

While the benefits of sharing data are clear, wide adoption and reliable benefits will require
us to create and implement community standards. Such standards may require a standardization
of tasks, which could be similar to clinical assessments of impairment (180)—sets of well-defined
minitasks that are scored independently and summed to provide an estimate of motor deficit. The
standards will also need to focus on ease of use—e.g., sharing raw anonymized data along with
Jupyter Notebooks for server-side visualization, or making code available for reproducing statis-
tics used in the original study. Sharing data can improve benchmarking, facilitate collaborations,
and accelerate progress in designing machines that can effectively interact and communicate with
people.

5. CONCLUSIONS

In current applications of human–robot collaboration, pHRI is largely avoided or completely pre-
scribed. The robot is often treated as a passive observer of human intent; in some scenarios, it can
provide reciprocal feedback. While this type of embodied communication has enabled success-
ful collaboration within the constraints of a specific task, effective collaboration in unanticipated
settings will require human–machine dialogue—comprising a multimodal exchange of informa-
tion based on a mental model of the collaborative partner and interaction history—and safely
incorporating intermittent physical contact. As such, developing new algorithmic tools to facili-
tate multimodal dialogue and enable the emergence of communicative conventions is one of the
next frontiers for pHRI. If we achieve flexible dialogue between the human–robot pair, human–
robot collaboration will become possible in currently impractical applications, such as coexistence
in the home or continuous rehabilitation during robot-assisted execution of daily activities.

FUTURE DIRECTIONS

1. Continual adaptation with safety guarantees:With the growing use of data-driven meth-
ods that learn over time, there is an increased need for provable safety bounds that do
not unnecessarily constrain the human–robot interaction or limit overall performance.

2. Multimodal dialogue: While many existing solutions rely on the robot to infer intent
from communicative signaling generated by its human partner, and some enable
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reciprocal signaling from the robot, continual bidirectional communication could
enable more versatile collaboration.

3. Emergent interfaces: While it is difficult to prespecify a comprehensive multimodal
vocabulary of symbols, a human–robot pair could gradually expand its communicative
capacity by establishing relevant conventions through interaction.

4. Datasets and benchmarking:With a growing number of algorithmic approaches and the
costliness of comparison-based evaluations, robust benchmarks and reliable data sharing
could speed up innovation while reducing experimental overhead and barriers to entry.
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