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Abstract— This work contributes a conceptual analysis of
upper-limb prosthesis control methods; the goal of this work is
to deliver new insight into the design of future biomechatronic
systems intended for human interaction. Recent advances in
upper limb prostheses have led to significant improvements
in the number of movements provided by a user’s robotic
limb. However, controlling multiple degrees of freedom via
muscle-generated (myoelectric) signals remains challenging for
individuals with limb difference. To address this issue, various
machine learning controllers have been developed to better
predict a user’s movement intent. As these controllers become
more intelligent and take on more autonomy in the system,
the traditional approach of representing the human-machine
interface as a human controlling a tool becomes limiting. We
here suggest that one possible approach to improve the under-
standing of these interfaces is to model them as collaborative,
multi-agent systems through the lens of human-prosthesis joint
action. The field of joint action has been commonly applied
to two human partners who work jointly together to effect
coordinated change in their shared environment. Using a joint
action framework also provides opportunities to understand the
interactions between human and machine partners: how each
represents the other’s goal, their monitoring and prediction of
each other’s actions, the communication between them, and
their ability to adapt to each other. In this work, we survey
three different prosthesis controllers—proportional electromyo-
graphy with sequential switching, pattern recognition, and
adaptive switching—in terms of how they present the hallmarks
of joint action. The results of this comparison contribute a new
perspective for understanding how existing myoelectric systems
relate to each other, along with two concrete recommendations
for how to improve these systems via additional capacity for
prediction learning and coordination smoothing.

I. INTRODUCTION

The development of robotic upper limb prostheses first
began in the mid-twentieth century starting with single-
degree-of-freedom powered hands that were driven using
voluntary surface electromyography (EMG) signals gener-
ated by residual muscles of the amputated limb [1], [2]. In
these early systems, the prosthesis controller was calibrated
in the clinic, fixed for day-to-day use, and considered as a
standard example of human tool use. Since then, the capabil-
ity and complexity of prostheses has increased dramatically
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Fig. 1. Human-prosthesis joint action. A human and a machine partner
act on the world (solid arrows) to create change in their shared environment
with respect to a shared goal. In service of this pursuit, they may exhibit
hallmarks of human-human joint action (c.f., [13], [14]): representation,
monitoring, prediction (all shown via lines with circled ends), and acts of
coordination smoothing (squared lines).

with additional powered joints and multi-articulated hands
becoming available. With this scaling in both sensing and
actuation technology, users continue to report challenges
and frustration when controlling such a high number of
joints with a small number of control inputs [3], [4]. To
address user concerns, machine learning methods, such as
pattern recognition [5], [6], [7], deep neural networks [8],
and continual learning methods like adaptive switching [9],
[10], [11], [12], have been developed to learn and specialize
a device to the control signal patterns and daily life needs
of individual prosthesis users [2]. These machine learning
methods can be retrained or adapted during day-to-day use
and generally delegate more autonomy to the prosthesis
control system than earlier control approaches [2]. With the
addition of more advanced computing technology, the tradi-
tional approach of modeling human-prosthesis interaction as
a single human controlling a fixed tool has been suggested
to no longer adequately capture the complex behavior of
the co-adaptation between the human and the prosthesis
controller [15]. We propose herein that our understanding of
these more complex systems will improve by considering the
human and the prosthetic device on comparable footing as
partners working together to accomplish complex tasks, such
as coordinated movement and object manipulation, through
the lens of what has been termed joint action (Fig. 1).

Joint action can be defined as “any form of social in-
teraction whereby two or more individuals coordinate their
actions in space and time to bring about a change in the
environment” [14]. In the social sciences, joint action has
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been historically applied to two or more humans interacting
together [16], but more recently, studies have begun to inves-
tigate interaction between human and robots [17], [18], [19].
Mathewson et al. [20] further introduced a framework for
representing a prosthesis as a distinct agent—communicative
capital. They used case studies and examples to outline the
relationship between the agency of each partner in a human-
prosthesis system and the capacity of the partnership. In the
current article, we take these trends one step further by apply-
ing the viewpoint of joint action to what we hereafter denote
human-prosthesis interaction (HPI). To accomplish this goal
we explore how proportional EMG with sequential switch-
ing, pattern recognition, and adaptive switching controllers
(a representative example of continual machine learning) fit
into the framework, along with how these controllers might
be further improved by incorporating additional hallmarks
of joint action. We note for the reader that the comparisons
in this work contribute conceptual advances as opposed to
numerical advances; empirical evaluation is outside the scope
of the present work. This manuscript aims to provide a novel
multiagent lens for the development and analysis of future
upper limb prostheses and other medical and non-medical
biomechatronic systems intended for human interaction.

II. JOINT ACTION
Several architectures of collaborative social interaction and

joint action have been developed in the literature [13], [14],
[21], [22], [23], [24]. For the purposes of this paper, we
build upon the architecture of Vesper et al. [13] as it includes
a clearly defined basic framework for evaluating whether a
given system may develop into joint action. As per Vesper et
al. [13], there are four main hallmarks that should be present
for a system to be considered as jointly acting: represen-
tations, monitoring, prediction, and coordination smoothers.
Joint action also requires partners, tasks, and goals. In what
follows, we define these terms and relate them specifically
to the domain of HPI (as summarized in Fig. 1).

A. Partners
There needs to be at least two partners collaborating on a

task for joint action to occur [13]. In the case of HPI, one
partner is the human partner and the other is the machine
partner (in this case, we define the machine as the prosthesis
and its control system).

B. Tasks & Goals
Each partner has an individual task that they are responsi-

ble for, which in combination, allows them to work towards
accomplishing a shared goal [13]. The shared goal between
the human and machine partner is to move the prosthesis to a
particular position or use it to interact with the environment
to bring about a specific, user-defined configuration of the
environment. Typical tasks of the human include providing
control signals to the machine partner and gross positioning
of the prosthesis using body and residual limb movements
[25], [26]. Typical tasks of the machine partner include
interpreting the control signals from the human and selecting
which motor(s) should be driven on the prosthesis.

C. Representation

As per Vesper et al. [13], every partner working together
should, at a minimum, internally depict for themselves their
individual task and the shared goal (e.g., portrayals in the
human brain or in digital storage). It may be helpful for each
partner to have a representation of the other’s individual task,
but Vesper et al. [13] do not list this as a requirement.

D. Monitoring

In joint action, numerous perceptions or states are contin-
ually sampled or estimated by each partner, including their
own actions and their partner’s actions, along with how well
they are achieving their individual tasks and shared goals
[13], [24]. The joint action architecture of Vesper et al. [13]
does not explicitly define which of these monitoring pro-
cesses should be required, but instead indicates that necessary
processes may be task-specific. In the context of HPI, we
note that each partner will need to at least monitor their
own actions, their partner’s actions, and how well they are
completing their own task. The human typically monitors the
movement of the prosthesis via visual feedback. Conversely,
the machine partner has an array of sensors, which may
capture EMG signals from the human, as well as movements
and forces from the prosthesis.

E. Prediction

Across multiple joint action architectures, each partner
is considered to make predictions about their own actions
or the actions of their partner [13], [24]. These predictions
could take many forms, including predicting the actions
themselves, the timing of the actions, or the outcomes of
the actions [13].

F. Coordination Smoothers

Coordination smoothers are defined broadly as anything
(besides the previous hallmarks) that improves coordination
between partners [13]. Examples of coordination smoothers
that are particularly relevant to HPI include behaviors such
as emphasizing actions and sending coordination signals.
A complementary model of joint action [24] specifically
mentions the continuous improvement of predictions as a
type of coordination smoother, which we have also included
in our evaluation, due to its pertinence to the HPI setting.

III. MYOELECTRIC CONTROLLERS INCLUDED
IN THIS COMPARISON

The prosthesis controllers selected for comparison under
the joint action architecture are representative cases from
three main categories of control: proportional EMG control
with sequential switching (no machine learning), pattern
recognition (batch/offline machine learning), and adaptive
switching (continual/online machine learning) (Fig. 2). We
now introduce each controller and review their specifics.



Fig. 2. Block Diagrams of three different prosthesis controllers and how
they interact with the prosthesis user. (A) Conventional myoelectric control
with proportional EMG and sequential switching. (B) Pattern recognition
controller with single class output and episodic (batched offline) training. (C)
Adaptive switching, a continual learning method that dynamically adjusts
the order of the sequential switching list. One common feature that is present
in all three controllers is a physical connection between the prosthesis user
and the multi-joint prosthesis via a prosthetic socket. EMG electrodes are
integrated inside the socket, over residual muscles, and provide EMG signals
to each prosthesis controller. The prosthesis user is also able to grossly
position the prosthesis in space by moving their feet, trunk, or joints of
their residual limb. Actuation of the motorized joints on the prosthesis is
handled by the prosthesis controller. Another feature common to all three
controllers is that the current state (e.g. position and velocity) of the multi-
joint prosthesis is monitored by the human by visually attending to it.

A. Proportional EMG

The specific type of proportional EMG controller we focus
on in this analysis is a two-state proportional controller
with sequential switching (hereafter shortened to propor-
tional EMG) [27], [28], as illustrated in Fig. 2A. EMG
signals are acquired from residual antagonistic muscles (e.g.
biceps/triceps), rectified and averaged, and then directly
mapped to the velocity of a joint (e.g. hand open/close) on
the prosthesis. This can be thought of in terms of a simple
algorithmic mapping

at ← f(x⃗t|jt),

where x⃗ is a representation of the system’s input state
(in this case EMG signals), f(x⃗t|jt) is a fixed continuous
or piece-wise function mapping state to action, jt is the
joint or function selected at time t, and at is the velocity
action used to drive the prosthesis’s motors. After exceeding
a threshold, the proportionality allows for slower or faster
motor speeds, depending on the strength of the EMG signal,
and the sequential switching allows the prosthesis user to
sequentially switch between different joints on the arm
(e.g. jt in hand open/close, wrist rotation, elbow flexion).
The switching signal is typically communicated from the
human to the machine partner by co-contracting antagonistic
muscles, pressing a button, or pulling on a cable.

Auditory or vibrotactile feedback to indicate the occur-
rence of a switching event is available in some commercial
devices, but is mostly used for training and then turned off.
In practice, given that it is challenging for prosthesis users
to remember where they are in the switching order and it
can be tiring to switch multiple times to activate the joint
they want, the number of joints that are controlled using this
method is usually three or less. To alleviate this issue, such
controllers sometimes include options for implementing a
time out period, after which the controller will switch back
to a default joint (e.g. hand open/close).

B. Pattern Recognition

The pattern recognition controller [6], as illustrated in Fig.
2B, is an offline or batch machine learning classifier that
predicts the movement intent of the prosthesis user based on
the pattern of their EMG signals. In contrast to proportional
EMG controllers, pattern recognition controllers typically
use additional EMG electrodes placed over muscles on the
residual limb [2], [5], [6], [7]. Instead of relying solely
on signal strength, pattern recognition controllers extract
multiple features from the time and frequency domains.
These features include more information that can help the
classifier make accurate predictions. Similar to proportional
EMG control, pattern recognition controllers in contempo-
rary clinical use are typically limited to controlling a single
joint on the prosthesis at a time. If the predictions are
accurate enough, then the classifier can sometimes classify
as many as five or six different joints on the prosthesis.
However, predicting two to three joints is more common.

The prosthesis user can initially train or retrain the clas-
sifier by momentarily activating the retrain signal (Fig. 2B),



which can be a button on the prosthesis or accessed via a
phone application. A physical or virtual representation of
the prosthesis will then move each joint one at a time in a
prescribed manner while the human demonstrates their EMG
signal pattern for each movement. After the demonstration
period, the classifier will use the labeled samples to compute
the parameters of the classifier that allow it to make predic-
tions. Using the notation above, the algorithmic mapping for
pattern recognition

a⃗t ← fw⃗(x⃗t),

now sees fw⃗(x⃗t) parameterized by a vector w⃗ ∈ R; the
output of fw⃗(x⃗t) is also now no longer conditioned on jt, as
the mapping from inputs to a vector of possible outputs a⃗t
is made possible by the flexibility of fw⃗(x⃗t). The training
process that leads to a new set of fixed parameters w⃗ can
take roughly one to two minutes depending on the classifier.
After training, the pattern recognition controller is ready for
use by the prosthesis user to control in real-time the powered
joints on their prosthesis. Retraining of the classifier can be
done as often as required, which can range between a few
times a day to a few times a month. A common reason for
retraining is a noticable change in user EMG signals, such
as fatigue or shifting of electrodes in the prosthetic socket.

C. Adaptive Switching
As an example of continual or online machine learning

selected for this analysis, adaptive switching, as illustrated
in Fig. 2C, has a similar structure to a proportional EMG
controller. However, instead of using a fixed switching list,
adaptive switching uses the magnitude of a collection of
learned general value functions (GVFs [29]) to dynamically
adapt the order of the switching list [9], [11]. GVF learning
is a prediction approach, based on reinforcement learning
(RL) methods, that can learn expected temporally extended
accumulations of signals of interest based on a continuing
stream of observations [10], [29], which in the adaptive
switching case includes learned forecasts of prosthesis mode
or function use (c.f., [9]). One key difference, compared to
the other controllers, is that adaptive switching monitors the
joint feedback from the prosthesis to make its predictions
about which joint the human may want to use next. The
improvement to the adaptive switching predictions happens
continuously in real-time, during regular use, without the
need for an explicit training period. For clarity, the algorith-
mic mapping for adaptive switching can be thought of as

j⃗t ← fw⃗t
(x⃗t),

where fw⃗t
(x⃗t) is now parameterized by a vector w⃗t ∈ R

that is conditioned on t as it is updated continually in real
time; the output of fw⃗t

(x⃗t) is also now a ranked vector
of modes or functions available to the user, j⃗t, sorted via
fw⃗t

(x⃗t) according to temporally extended predictions stored
in the learned parameters w⃗t. An example of a common
behavior that adaptive switching will learn is that after the
prosthesis user moves the elbow joint of the prosthesis near
a desk or table surface they will likely want to use the hand
next to grasp an object.

Once a switching event is initiated by the human via a
switching signal, the adaptive switching controller momen-
tarily freezes the switching list while the human selects the
joint and then resumes re-ordering once they start moving
the joint (indicating that the correct joint was selected)
[11]. For simple tasks, the adaptive switching controller can
predict the correct switching order after a single iteration.
However, for more complex tasks that have more variation,
the controller may need to see several iterations of the
task before it can make functional predictions [11]. Another
difference between adaptive switching and the proportional
EMG controller is that to achieve good performance, the
controller needs to minimally communicate back to the
human when a switching event has occurred and which joint
was selected. This feedback can be communicated visually or
auditorily on a computer or on a display screen integrated to
the prosthesis. Since adaptive switching substantially reduces
the amount of switching required it can feasibly increase the
number of joints in the switching list to five or more.

IV. ANALYSIS & DISCUSSION

To determine whether the partnerships in each control set-
ting were presenting, possibly presenting, or not presenting
a hallmark of joint action (summarized in Fig. 3, first row),
we examined in detail the variations in the sensorimotor
streams and internal computing mechanisms that comprise
the different controller models under comparison. We consid-
ered control information, feedback information, system state
representations and transitions, system memory and learned
parameters, and other related factors in the environment of
use surrounding the human-machine partnership (e.g., factors
like a⃗t, j⃗t, w⃗t, fw⃗(.), and x⃗t, as schematically depicted
in Fig. 2). We then solicited interdisciplinary perspectives
on these factors from our authors who come from diverse
backgrounds including neuroscience, medicine, computing
science, and engineering. We compared the controllers using
the joint action lens and after reaching consensus recorded
the assessment in the analysis grid of Fig. 3.

For all control schemes, the human partner was considered
to reasonably demonstrate all of the hallmarks of joint action
related to representations, monitoring, and predictions—that
humans demonstrate these hallmarks of joint action is well
supported in the literature by studies showing that prosthesis
users adapt their internal models to take into account features
of their prosthesis and its controller [30], [31], [32], [33].
With respect to the machine partner, our analysis suggests
that all three prosthesis controllers do exhibit many of the
hallmarks of joint action, but that in all cases key hallmarks
were missing or inadequate to fulfill the complete definition
of joint action from Vesper et al. [13].

It is clear that joint action between a proportional EMG
controller and the human is not occurring due to the fact
that the proportional controller (Fig. 2A) lacks the necessary
representation and prediction processes: such systems do not
contain modifiable memory elements (e.g., no w⃗) and input
percepts (x⃗t) that would be necessary to internally contain
features relating to user task and goal, to forecast the future



outcomes of sensorimotor signals and states, and to modulate
action in response to the need for coordination smoothing (no
contemplated smoothing update like a′t ← fw⃗(at|x⃗t)). In this
case, proportional EMG control is in line with the common
conception of prosthesis use as standard human tool use.

Unlike proportional EMG control, both batch and con-
tinual machine learning methodologies contain modifiable
parameter vectors (w⃗ and w⃗t) deliberately designed to predict
the future of the user’s motor outcomes or other elements of
system operation (Fig. 2B,C); importantly, both also have an
explicitly constructed loss or error function that is the source
of persistent changes to the way the system predicts partner
actions and relates sensorimotor activity to a computational
analog of the shared goal. If the controllers’ representations
and specific loss or error function can be well thought of
as capturing all or part of shared and partner goals, then
it is likely that joint action may in fact be occurring in
some way with the human partner during their use (e.g., via
classification or regression loss in pattern recognition [6],
or the temporal-difference errors in predicting the signals
of interest in adaptive switching [11]). However, if the
shared goal is not within the scope of learning controllers’
representations or loss functions, or their perceptual stream
lacks a key modality to inform these factors then joint action
is arguably not occurring; we could consider it to be not
expressly facilitated by their component machine learning
processes or the capacity of their representations.

A. Representations, Monitoring, Tasks, and Goals

Monitoring, a consistent element of control engineering
and human motor control, is prominent in regard to signals
and states well within the observable space for a given
partner (e.g., the machine partner monitoring the operation
of its own inputs, outputs and state), but naturally less
prominent for things that require more complete or nuanced
representations of the full environment (e.g., partner and
goals). Proportional EMG controllers employ fixed, direct
mappings between inputs and outputs; such controllers do
not have an explicit representation of any of the tasks
or goals. However, it is less clear whether or not pattern
recognition and adaptive switching have representations of
their own tasks, the shared goal, or their partner’s task.
For pattern recognition, if the shared goal is to move to a
particular position based on a pattern of EMG signals, then
this controller may maintain some of these representations.
However, if the shared goal is more complex and involves
interacting with the environment (e.g., picking up an object),
then from Fig. 2B, we can see that the classifier does not have
access to this type of information and likely would not have
the required representations. The GVFs in adaptive switching
do have access to position sensors and a load sensor in the
gripper, which may help them infer the location of objects
in the environment, so for these kinds of shared goals, the
controller may have some of the required representations.
However, if we abstract the shared goal to be a higher level
task (e.g., folding a towel), then the controller likely does not
have the required representations (e.g., cases where shared

Fig. 3. Evaluation of myoelectric controllers through a joint action lens. A
green checkmark, yellow question mark, or red X symbol indicates that the
controller presents, possibly presents, or does not present the listed hallmark.
* indicates minimal requirements for joint action as per Vesper et al. [13].

goals might unfold over great temporally extended spans,
or integrate higher-level planning processes). We note that
while not a candidate for our analysis in the present work, RL
algorithms with an externally provided reward signal would
be well thought of as machine partners that represent and
make decisions with respect to a goal (c.f., [20], [34]).

B. Predictions and Coordination Smoothers

As outlined above, none of the controllers in this com-
parison were configured to predict their own actions. There
is potential capacity for this in both pattern recognition
and adaptive switching. However, both pattern recognition
and adaptive switching do predict the movement intent of
the human partner, which helps them better achieve the
shared goal. With regard to coordination smoothers, there is
evidence that humans make their actions more predictable by
trying to generate more distinct EMG signals for all types of
controllers, which can help improve their performance [35].
Additionally, pattern recognition controllers often try to make
their actions more predictable by mitigating the effects of
incorrect predictions via techniques such as majority voting
and velocity ramps [36], [37]. Although adaptive switching
is inherently less predictable than a stable ordered list, at
critical moments it does make its actions more predictable
by freezing the list when the human partner has triggered
a switching event. Continuously adapting predictions are
likely performed in all cases by the human as part of their



learning process. Since the parameters for proportional EMG
are typically only modified in the clinic, and given that the
retraining of the classifier in pattern recognition only occurs
intermittently, they do not learn continuously. Adapting and
improving predictions in real-time are built into the regular
operation of the GVFs in adaptive switching and so they
demonstrated this hallmark. For coordination signals, we
observe that proportional EMG and adaptive switching both
meet the condition by sending switching feedback to the
human. However, the human does not send any explicit
coordinating signals back to the machine partner. The coor-
dination signals for pattern recognition mostly occur during
the training phase, where the human sends the retrain signal
and the pattern recognition visually displays the movements
to guide the collection of EMG data.

V. RECOMMENDATIONS FOR IMPROVING
HUMAN-PROSTHESIS INTERACTION

In the previous section, we compared how hallmarks
of joint action presented in different candidate human-
prosthesis partnerships; whether joint action is occurring in
these controllers is perhaps less important than what our
analysis reveals in terms of recommendations for improving
HPI by incorporating ideas from the field of joint action.

We suggest one powerful way to improve the HPI is
to improve the representations or internal models of the
human and prosthesis controller, for example by provid-
ing additional coordination smoothers. This could be done
by increasing or improving the signals that each partner
monitors about themselves or the task. This suggestion is
supported by related literature—Shehata et al. [38] found that
feedback about a control system to a human partner showed
promise in increasing the strength of the internal model
formed in the human brain about a prosthetic device and its
control system, as well as the tasks performed. Specifically,
feedback from the partner relayed through auditory, visual,
and cutaneous sensory cues enabled the development of a
strong internal model and allowed the human to better adapt
to changes in the task and the prosthetic device [39]. While
task-specific feedback to the human is known to improve
performance for a given task [40], feedback from a machine
partner about the control states and signals to the human
partner has been shown to improve the human understanding
of how a prosthetic device operates and thus improved
the overall system integration [41]. Achieving the optimal
balance between providing information-rich feedback about
how the machine partner is controlling the prosthetic device
and task-specific feedback is key to improving the overall
system performance without increasing the human’s mental
effort and information processing costs. Further opportunities
also remain for exploring how subtle and ostensive cues
and signaling from the human to the machine partner can
further smooth their ongoing interactions (either emergent
conventions or pre-established conventions) [42], [43]. For
example, low hanging fruit for the human partner could
be to provide explicit (or, preferably, implicit) feedback to
a pattern recognition controller on the correctness of its

predictions in order to decrease misclassifications over time
and adapt to changing conditions.

We suggest a second pathway to improving HPI is enhanc-
ing the ability of the partners to make predictions about
themselves and each other. This could be accomplished
by blending control solutions, and by strengthening pre-
dictive capabilities of algorithms via additional sensors and
communication channels that facilitate more comprehensive
representations, and thus can be used in contextually nu-
anced prediction learning. One such predictive enhancement
has been made to adaptive switching through a technique
called autonomous switching, which not only predicts what
movement the prosthesis user wants to switch to next, but
also predicts when they will want to switch movements
[12]. With this method, when the autonomous switching
controller reaches a minimum level of confidence, it will
automatically switch (but will also allow the prosthesis user
to manually switch if the controller guesses incorrectly);
vibrotactile feedback to the user about prediction magnitude
and future switching activity serves as a learned coordination
smoother [12]. During the prediction process, autonomous
switching can be seen to resemble a continually learning vari-
ation of pattern recognition controllers, although via a very
different computational approach. Furthermore, we suggest
predictions from pattern recognition could be improved in a
straightforward way by increasing the contextual awareness
of the classifier, through the use of additional sensors that
describe the task or the human partner [2], [7]. As a recent
example, data from multiple sensors have been used to
facilitate precise classification of user-intended prosthesis
movements for upper limb device control across multiple
limb positions [8]. Devices’ abilities to predict and represent
elements of both partners and goals have also been enhanced
by way of myoelectric controllers that use camera data
alongside RL or deep learning methods to help their human
partners more easily select from multiple grasp patterns and
wrist functions [44], [45], [46].

VI. CONCLUSIONS

To our knowledge, this work is the first to propose human-
prosthesis joint action and suggest the impact of translating
ideas from human-human joint action to the realm of neu-
roprosthetics; we believe this is a valuable contribution to
the rehabilitation robotics and assistive technology literature.
As supported through the comparative assessment herein, we
consider joint action to be a useful framework for thinking
about and improving myoelectric control, and more broadly,
for considering the human and their prosthesis as a dyad of
interacting agents. This article presented a focused, literature-
based treatment of the hallmarks of joint action as arising in
three representative examples: conventional myoelectric con-
trol, batch machine learning, and continual machine learning.
It further presented two paths to improving myoelectric
control using insights from the joint action perspective: 1)
enhancing the capacity for coordination smoothing and 2)
strengthening the foundations for both human and machine
partners to form and leverage predictive knowledge during



their ongoing interactions. We recommend further study
into the impact of joint action ideas on the wider field of
neuroprosthetic control; we suggest that doing so will have
a significant impact on the design and use of next generation
individual-focused assistive rehabilitation technologies and
other human-facing biomechatronic systems.
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