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Abstract

Research in artificial general intelligence aims to create agents that can learn from their own

experience to solve arbitrary tasks in complex and dynamic settings. To do so effectively

and efficiently, such an agent must be able to predict how its environment will change both

dependently and independently of its own actions. General value functions (GVFs) are

one approach to representing such relationships. A single GVF poses a predictive question

defined by three components: a behavior (policy), a prediction timescale, and a predicted

signal (cumulant). Estimated answers to these questions can be learned efficiently from the

agent’s own experience using temporal-difference learning methods. The agent’s collection

of GVF questions and corresponding answers can be viewed as forming a predictive model of

the agent’s interaction with its environment. Ultimately, such a model may enable an agent

to understand its environment and make decisions therein.

Although GVFs are a promising approach, current understanding of their construction

and use remains limited. This dissertation explores several aspects of GVF usage and rep-

resentation and can be grouped into two areas of research. The first area concerns what

information can be represented by GVFs. We suggest that the GVF format might be used

by an agent for performing introspection or self-examination. Specifically, we propose us-

ing internally generated signals as cumulants for introspective GVFs and argue that such

predictions can enhance an agent’s state representation. We explore the behavior of several

introspective signals in various domains. We then present a new algorithm that uses a series

of GVFs to directly estimate the variance of the return—the sum of future signal. The

variance of the return can be viewed as one such introspective signal capable of enhancing

an agent’s decision making process.
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This dissertation’s second focus is on improving the representations used to estimate the

answers to GVFs. Value functions can be factored into two components, one representing the

signal of interest and the other representing the dynamics of the environment—the successor

representation. We show that in the context of a constructive GVF framework, in which

new GVF targets are identified over time, using the successor representation can speed up

learning of newly added targets. Next, we introduce Γ-nets, which enable a single GVF

estimator to make predictions for any fixed timescale within the training bounds, improving

the tractability of learning and representing vast numbers of predictions. Finally, we present

investigations into how GVFs, including Γ-nets, can be used as auxiliary tasks to improve

representation learning.

In summary, this dissertation provides new perspectives, algorithms and empirical eval-

uations that we believe will benefit the broader work in predictive approaches to artificial

general intelligence. Specifically, our work on GVF representations provides a direction for fu-

ture research on the topic of introspection, and the work on representing GVFs demonstrates

methods for making learning and representing large collections of GVFs more tractable for

real-world problems.
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Glossary

agent An entity capable of making decisions and taking actions.

auxiliary task For the purposes of this dissertation an auxiliary task is any network output
whose sole purpose is to provide gradient for training a representation network that is
shared by an agent’s policy. See Chapter 8.

BLINC Bionic Limbs for Improved Natural Control Lab, University of Alberta, Edmonton,
Canada.

certainty For the puroses of Part I of this dissertation this is defined as the width of a
distribution over a prediction’s output. See Section 3.1.

confidence For the purposes of Part I of this dissertation this is defined as an agent’s own
estimation of the probability that its choice is the correct one, given all its current
knowledge. See Section 3.1.

cumulant The signal by the which the return of a GVF is defined—the sum of future
cumulants.

environment Everything outside of the agent. Actions are sent to the environment and
the agent receives rewards and observations from the environment. The environment
should not be seen as synonymous with the physical world or the agent with a robot’s
body. The boundary between environment and agent is more likely to be within the
mind of the agent itself.

function approximation Function approximation involves representing a complex or un-
known target function using a simpler well-known function.

general value function (GVF) General value functions pose a predictive question defined
by the syntax of value functions used in reinforcement learning. A GVF question is
defined by three components: 1) policy, 2) cumulant, 3) timescale.

generalization The ability to make inferences about things that are similar to what has
been seen before, but not the same.

intelligent An intelligent agent is one that is able to learn about itself, its environment,and
the interaction between the two and adapt its actions to improve its ability to accom-
plish a goal.

model In contrast to the strict definitions often used in RL, we use the term model to
mean any representation that captures some aspects of the dynamics of the agent, its
environment, and their interaction.
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off-policy Learning about a target policy from data collected under a different behavior
policy.

offline Offline machine learning methods separate the collection of samples from the learning
from those samples. That is, there is a sample collection phase, followed by a learning
phase.

on-policy Learning about the behavior policy from data collected under that policy.

online Online machine learning methods are those that learn from each data sample as it
occurs.

policy A policy is a way of behaving. It is a deterministic or stochastic mapping from a
state to an action.

Reinforcement Learning (RL) A problem setting in which an agent learns directly from
experience how to behave, so as to maximize long-term reward.

return The sum of future rewards or cumulants. The agent’s goal is to learn a policy to
maximize the return. In practice, various proxy-returns are used instead.

reward A scalar signal that evaluates an agent’s performance at each timestep.

RLAI Reinforcement Learning and Artificial Intelligence lab, University of Alberta, Ed-
monton, Canada.

Robot Operating System (ROS) An open-source framework for robotics software.

state The configuration of the universe and everything in it at a given moment in time. In
real-world scenarios an agent has limited observation and must rely on its own, internal
representation of state, which is an approximation.

Successor Representation (SR) A method for factoring value estimation. The SR cap-
tures the dynamics of the environment with respect to a given policy and timescale
independent of any reward or cumulant.

Temporal-Difference (TD) A family of algorithms used in reinforcement learning that
learn to estimate value incrementally by updating towards an approximate return com-
posed of environment samples and bootstrapped estimates.

timescale A GVF has an associated prediction timescale, which can be roughly thought of
as the prediction length.

timestep (ts) Typically one timestep is one state-action-state transition tuple. Timestep
units are denoted by ts.

value The expected sum of future rewards (or cumulant) starting from a state and following
a particular policy.
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Notation

S,R,A — random variables are indicated by capital letters, while lower-case letters are used
to indicate specific instances of a variable. Lower-case letters are also used for functions and
scalars.
S,A — calligraphics are used to indicate sets
w, φ, e — vectors are indicated in bold
IRn — vector of n real-valued numbers.
> — transpose operator
E — expectation
I — identity matrix
N — Normal (Gaussian) distribution

Frequently used variables

A, a — action. An action taken or available to an agent. See Figure 2.1.
α — step-size. Used to control how big of a step an iterative update (such as Gradient
Descent or Stochastic Gradient Descent) takes to adjusting its prediction. See Equation 2.6.
C, c — cumulant. The signal accumulated by the GVF. See Section 2.4.
δ — temporal-difference error. The difference in the current prediction and prediction target.
See Equation 2.5.
G — return. Summation of future cumulant. See Section 2.4.
γ — temporal discounting factor. Used in value functions to adjust emphasis between near-
term and far-term signals. See Equation 2.2.
λ — bootstrapping parameter. Controls the trade off between bootstrapping and Monte
Carlo backups in the TD update. See Equation 2.9.
φ — feature vector. A representation of the state. See Section 2.3.
Q — state-action value, the expected return under a specified policy starting from a state s
and taking action a and then following the specified policy. See Equation 2.4.
R, r — reward. A signal used to evaluate a goal-seeking agent’s actions. See Figure 2.1.
ρ — importance sampling ratio. This is the ratio between the likelihood of taking action a
in state s under a target policy and a behavior policy. See Equation 2.11.
S, s — state. The configuration of the agent and the agent’s environment. State may not
be directly knowable. See Figure 2.1.
t — time.
τ — expected number of timesteps. This variable corresponds to the timescale of a value
function prediction. See Equation 2.13.
V — state value, the expected return under a specified policy starting from a state s. See
Equation 2.3).
w — learned model parameters. See Chapter 2.
X — used to denote an arbitrary signal.
z — trace vector. A vector used to track state visitations and assign credit. See Equa-
tion 2.10.
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Chapter 1

Introduction

The real-world is large and complex and cannot be known fully by either robots or humans,

nor can a robot be preprogrammed to deal with all situations or tasks. My research is moti-

vated towards creating robots capable of continual learning—the incremental acquisition of

increasingly complex knowledge and skill over time, directly from a robot’s own sensorimotor

experience, with no singular end in mind (Ring, 1994). Continual learning robots would be

generally useful and would benefit broad aspects of human society in ways that are presently

limited to works of fiction. Such robots could help humans in their daily lives, cleaning

up around the house and preparing supper. Such robots might perform complex life-saving

medical operations, or autonomously construct houses, or repair spacecraft. The creation of

robots such as these is the motivation for the work presented in this dissertation.

In reinforcement learning (RL) an agent, virtual or robotic, learns how to behave in

its environment so as to accomplish a goal. As the agent interacts with its environment

it receives feedback in the form of a scalar reward signal. Better behavior produces larger

reward and the agent learns to adapt its behavior to maximize the amount of cumulative

reward it receives in the future. It is important to note that in the context of continual

learning we are not as concerned that an agent achieves optimal performance on any one

task, but rather that it has the algorithmic mechanisms needed to continually improve its

performance on all tasks that it undertakes.

Broadly, my research focuses on the incremental construction of models in the context of

RL, one of the key open problems in artificial intelligence (AI). While those with backgrounds

in RL may associate the term model with the one-step transition and reward models, here

I use the term in a broader, and arguably more common, sense. For the purposes of this
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dissertation a model is a representation of a system and its dynamics and can be used to

predict how the system will respond to input (including time). In AI a model allows an

agent to represent the world, itself and the interactions between the two and to predict how

this system, both the environment and the agent itself, will respond due to the agent’s own

behavior or other factors in the system. Ultimately, models enable agents to make decisions.

A complete model is one that reflects all the dynamics of the environment, accurately

predicting all aspects of the future in so far as it is predictable. With complete models an

agent can theoretically make optimal decisions. In simple settings a complete model might

be provided to the agent by an expert. In complex settings agents must instead learn their

models over time, based on their own experience. The agent must therefore make decisions

with incomplete and inaccurate models that change. This creates an interesting cycle in

that the agent’s model affects the decisions it makes, which in turn affects the experiences

it observes, which in turn affects how it refines its model, which again affects the decisions

it makes and so on. This process of iterative model construction is a key component to

continually learning robots.

Robots (and humans) are bound by resources such as time, energy, limited observation,

memory and computation. They must make decisions quickly as the real-world continues

to move forward without waiting for their choices. Thus, I desire algorithms that are light

weight, which can scale indefinitely with experience and that allow rapid online learning and

adaptation. Further, I desire techniques that are not dependent on human intervention or

design, but rather I look for general solutions and principles—views that have been shaped

by many of my colleagues and teachers.

General value functions (GVFs) (Sutton, Modayil, et al., 2011), which are described in

detail in Section 2.4, are one framework for representing predictive models. A GVF asks a

single predictive question about a prediction target, the cumulant, with respect to a way of

behaving, a policy, over a prediction timescale. For example, consider a simple mobile robot,

GVF questions could include:

“If I drive forward, how much current will my motors draw over the next 3

seconds?”

“If I drive forward, how long until my bump sensor is activated?”
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A GVF is grounded directly in the agent’s own sensorimotor stream and action space, not

depending on any privileged signals or representations interpreted by a human. A GVF can

be treated as an experiment that an agent can perform on its own sensorimotor experience.

The agent can make a prediction, “If I drive forward my motors will use 10 amps in the

next 3 seconds.” The agent can then drive forward for 3 seconds and validate or invalidate

its prediction, using the error to improve its estimate for next time.

For a continually learning agent using a GVF-based model we want an algorithm that

incrementally constructs the agent’s model as it gains more experience. While this process

of incremental construction is still unsolved, we can imagine desirable properties of such

a process. Newly added GVFs should leverage existing GVFs whenever appropriate. A

GVF might predict the output of another GVF or be used as state information to inform

another GVF’s own predictions. Thus, we desire a GVF-based model to be hierarchical,

growing from simpler predictions to increasingly complex and abstract ones. Additionally,

it is desirable that models be compositional. That is, the GVF model should be able to

combine different predictions in such a way that it can answer questions for which it does

not have an explicit representation. This is increasingly important in large domains to ensure

compact representations and sample efficiency. For example, imagine that I am planning a

holiday for my family to go to Kyoto, Japan. I have travelled extensively and have even

been to Kyoto, but not with my family. Rather than having to relearn all aspects of trip

planning, I am able to reuse what I have learned before to plan for this new trip. In the

RL literature this is referred to as transfer—reusing what was learned in one situation for

another. A specific example of compositionality in GVFs is demonstrated in Chapter 6.

A GVF specifies a question and various representations and algorithms are used to learn

an estimate for the answer. Throughout this dissertation we use temporal-difference (TD)

learning methods (Sutton and Barto, 2018), which are described in Section 2.2, to learn

these estimates. TD methods have many appealing properties: they can be computationally

efficient and computed online—learning can occur continually without having to wait until

a task has completed. This is achieved by bootstrapping—learning from estimates. TD

methods allow GVFs to monitor their own accuracy and self-correct. Thus, TD learning and

GVFs provide a way of grounding the agent’s model in its own experience and sensorimotor

stream.

My dissertation makes contributions to the topic of representation and GVFs. The con-
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tributions of Part I look at what sorts of questions can be represented with GVFs. In Part II,

I present contributions relating to how to represent the answers posed by GVFs. In Part III,

we consider how GVFs can be used to drive representation learning. My dissertation’s

contributions are summarized in the following section.

1.1 Contributions

Part I - Questions: Representation with GVFs

• Introspective State Representations (Chapter 3). We propose that an agent’s

state representation include measures that describe its internal state and statistics of its

learning experience and sensorimotor stream. We suggest that some such measures can

be captured by GVFs and, further, that such measures might themselves be predicted

by GVFs. This perspective motivates the remainder of the work in Part I.

• Evaluation of Introspective Measures (Chapter 4). We provide empirical demon-

strations of the behavior of various GVF-based introspective measures on simulation

and robot domains. These examples suggest how such measures might provide the

agent with information currently lacking in its representation, without which it cannot

be expected to make optimal decisions.

• Estimating the Variance of the Return Using GVFs (Chapter 5). We present

a novel algorithm, Direct Variance TD (DVTD), for directly estimating the variance

of the return by using a series of GVFs. We empirically evaluate DVTD, against an

indirect method, Variance TD (VTD) and find that in all tested cases DVTD performs

just as well and sometimes better. Additionally, we provide theoretical bounds on the

variance estimate as a function of the error in the value estimate.

Part II - Answers: Representing GVFs

• Accelerating GVF Learning Using the Successor Representation (Chapter 6).

Here we assume that a process of GVF construction exists. In this setting we demon-

strate how the successor representation (SR), which captures the dynamics of the

environment, can be used to accelerate learning of incrementally added GVFs. This is

validated experimentally in both a tabular grid-world and on a robotic arm.
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• Generalizing Value Estimation Over Timescale (Chapter 7). We introduce a

novel method, Γ-nets (Gamma-nets), which generalizes value estimation over timescale.

The method allows a single network to make GVF predictions for any fixed timescale

within the training bounds. We show that Γ-nets can be effectively learned in the

policy evaluation setting on simulation and robotic domains. We consider various

implementation approaches for Γ-nets and empirically evaluate the effect they have on

prediction performance.

Part III - Driving Representation Learning with GVFs

• Γ-nets as Auxiliary Tasks (Section 8.2). We demonstrate that Γ-nets can improve

policy performance when used as auxiliary tasks on several Atari games.

• Temporal-Difference Auxiliary Tasks (Section 8.3). We examine the effect that

the temporal scale of a GVF has on representation learning when used as an auxil-

iary task. We introduce the temporal-difference auto encoder (TD-AE) and evaluate

its effect on the performance of agents on the ViZDoom environment using the A2C

algorithm. In our experiments, we found no direct relationship between the temporal

scale and agent performance. However, we do find that adding such auxiliary tasks can

increase the algorithm’s robustness to the sequence length parameter used by A2C.

As stated in the opening paragraph of this chapter, my goal is to create robots that are

capable of continual learning. More specifically, the research presented in this dissertation

has been motivated towards the creation of intelligent prosthetic limbs—limbs which can

adapt to their user and the environment around them and improve the user’s ability to

perform everyday tasks. As such, while much of the validating experiments presented in this

dissertation are done in simulation, we will often include experiments on robot arms which

are intended to validate the ideas in a more realistic, prosthetics-inspired setting.

The idea that predictions are a key component to AI systems is not a new one, in

fact it is quite popular. GVFs present one possible predictive architecture. They have

many characteristics that make them appealing, as we have already discussed. However,

they remain in the research stage with many open questions. The work in my dissertation

provides new knowledge about the relationship between GVFs and representation and will

enable further progress towards incorporating GVFs into real-world robotics in useful ways.
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Chapter 2

Background

2.1 Reinforcement Learning

Reinforcement learning (RL) is the problem of how an agent can learn from a scalar reward

signal. The RL problem is illustrated in Figure 2.1. At time, t, the agent receives some

observation of state, St, from the environment, takes some action, At and receives a reward,

Rt+1 and the next observation St+1. The agent’s task is to learn how to maximize the sum

of its future rewards. It is important to distinguish that RL is a problem setting, not a set

of solution methods.
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Figure 2.1: The Reinforcement Learning setting.

It is convenient to consider the RL problem as a Markov Decision Process (MDP) that

is defined by the tuple < S,A, P, r >, where S is the finite set of states, A the set of

actions the agent can take, p
.
= (s′|s, a) gives state transition probabilities, r(s, a, s′) ∈ IR

the reward function. This translates to the following interaction. At each timestep t the
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agent observes the state of the world St ∈ S and chooses an action At ∈ A according to

its policy π(a|St) ∈ [0, 1], that gives the probability of choosing each action, a ∈ A given

the state St. The environment transitions to a new state St+1 according to p(St+1|St, At)
and receives a reward Rt+1 given the reward function r(St, At, St+1). The agent must learn

a policy π that maximizes the return—the sum of future rewards:

Gt
.
= Rt+1 +Rt+2 +Rt+3 + . . . =

∞∑
i=0

Rt+1+i. (2.1)

Learning against this return can be difficult, thus it is common for the agent to learn to

maximize a proxy return instead such as the geometrically discounted return:

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + . . . =

∞∑
i=0

γiRt+1+i. (2.2)

The term γ ∈ [0, 1)1, known by several names including the discount or the timescale,

determines how much emphasis is placed on future rewards. If γ = 0 then the agent is

only concerned about immediate rewards and as γ increases more weight is added to future

rewards.

In order to determine the best course of action many RL algorithms rely on value esti-

mates:

vπ(s)
.
= Eπ

[
Gt|St = s

]
. (2.3)

Value gives the expected return under a given policy and discount starting from a particular

state. The state-action value gives the expected return from following policy π after taking

action a from state s:

qπ(s, a)
.
= Eπ

[
Gt|St = s, At = a

]
(2.4)

Policy learning algorithms can then use this information to learn the best course of action

to take.

Note, that to simplify notation, we will write drop the policy subscript of the value. It

should be assumed that, unless otherwise specified, the value is taken with respect to the

agent’s behavior policy, π. Further, we will use v to denote the true value function and V

to denote an estimate.

1Note that γ can be 1 if the trajectory is guaranteed to terminate, as in the episodic case.
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2.2 Temporal-Difference Learning

Ideally, real-world agents would be able to learn from each new experience as it happens.

We call this online learning. When learning value estimates from experience we update the

estimates towards samples of the return. However, to do so in an online fashion, the agent

cannot wait until the full return has been collected at the end of an episode. Temporal-

difference (TD) algorithms solve this by using a technique known as bootstrapping in which

value estimates are combined with partial returns to provide a sample of the estimated

return. Thus, for a one-step TD update each transition tuple (St, At, St+1, Rt+1) gives us the

well-known TD-error (Sutton and Barto, 2018):

δt
.
= Rt+1 + γV (St+1)− V (St). (2.5)

Assume that the value estimator is parameterized by weights w: V (s; w). These weights

can be adjusted so as to minimize the squared TD-error, which is commonly used as the loss

function. Various optimization techniques such as stochastic gradient descent are based on

taking a small step, controlled by the step-size parameter, 0 < α < 1, in the direction of the

negative gradient of the loss:

wt+1 ← wt − α∇wLt. (2.6)

Note that, in most TD algorithms, a semi-gradient approach is used, in which the boot-

strapped target return is assumed to be independent of w when taking the gradient.

In the tabular setting, in which each state is independently and uniquely represented,

we can write our weights as wi;t = Vπ;t(si), computing the semi-gradient then gives us the

update:

Vt+1(St)← Vt(St) + αδt. (2.7)

Bootstrapping introduces bias in the estimates. On the other hand, updating towards

the full return (the Monte Carlo return) can have high variance. We can instead use the

n-step return to balance this tradeoff. As the name implies, the n-step return uses n steps

of the full return before bootstrapping:

Gn
t
.
= Rt+1 + γRt+2 + γ2Rt+3 + . . .+ γn−1Rt+n + γnV λ

j (St+n), (2.8)
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where Vj is used to indicate the estimate available at the time the return is calculated, which

may not be directly tied to t (e.g. training from a replay buffer may disassociate t and j).

A family of algorithms known as TD(λ) averages over many n-step returns by using an

alternative return, known as the λ-return:

Gλ
t
.
= Rt+1 + γ(1− λ)V λ

j (St+1) + γλGλ
t+1, (2.9)

where λ ∈ [0, 1] trades off bias and variance in the value estimate. For many learning settings

better performance can be achieved by setting λ to some value slightly less than 1, e.g. 0.95.

However, this equation, which is referred to as the forward view, requires the full return,

which, again, is not available until episode termination. To implement TD(λ) in an online

fashion we use a mechanism known as traces. Traces keep track of the past states the agent

has visited (Sutton and Barto, 2018; van Seijen and Sutton, 2014) and are used to push

back corrections to the value estimates of previously visited states. In this way, traces assign

credit to previously visited states. This is referred to as the backward view of the λ-return.

TD(λ) with accumulating traces, z is shown below. Our value estimate, V , is parameterized

by w.

δt = Rt+1 + γVt(St+1)− Vt(St)

zt = λγzt−1 +∇wVt(St)

wt+1 = wt + αδtzt

(2.10)

Another aspect of TD learning is on-policy vs. off-policy learning. In on-policy learning

the agent executes a behavior policy and learns a value estimate for that policy. In off-policy

learning the agent follows one policy, the behavior policy, b, while learning a value estimate

for a different target policy, π. In short, off-policy learning is following one policy while

learning about another. This allows an agent to learn about many policies simultaneously.

For one-step returns we have a straight forward off-policy learning algorithm, Q-learning,

which learns a value estimate with respect to the greedy policy and forms estimated returns

as follows:

Gt = Rt+1 + γmax
a
Qπ(St+1, a).

In general though, off-policy learning is impacted by both the difference in observed

returns and the difference in the distribution over states. In practice, correcting for the
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distribution over states is generally ignored. To correct for the difference between the proba-

bilities of single-step action selection in estimating V it is common to reweight updates using

the importance sampling ratio:

ρ(a, s) =
π(a|s)
b(a|s) . (2.11)

The importance sampling ratio can introduce high variability in the update targets,

making learning difficult and even unstable. Further, off-policy learning using TD(0) with

linear function approximation has been shown to diverge. The GTD(λ) algorithm (Maei,

2011) was designed to address the instabilities in off-policy TD learning with linear function

approximation:

zt = ρt(zt−1γλ+ φ(St))

wt+1 = wt + α(δtzt − γ(1− λ)φ(St+1)(z
>
t ht))

ht+1 = ht + αh(δtzt − (h>t φ(St))φ(St)),

(2.12)

where the secondary weight vector h is used to correct the estimate of the gradient and

αh is the step-size used to adjust h. Note that we have introduced the concept of function

approximation of state φ(s), which is discussed in the next section. For more detailed

discussions on off-policy learning see Maei (2011) and Mahmood (2017). The majority of

the work in this dissertation focuses on the on-policy setting, thus, we primarily use TD

methods rather than GTD or related off-policy algorithms.

2.3 Representation

Good representations of state are crucial for all AI and machine learning algorithms. In the

MDP setting we talk about state—the configuration of the world—as a discrete thing that

is unique and knowable. If the agent can distinguish each state uniquely from its obser-

vations then the agent can use a tabular representation in which all states are represented

uniquely and independently as a fixed length vector. All elements of this vector are zero

except the state that the agent observes, which is indicated by a one. This is known as a

tabular representation. In the limit this will give the most accurate predictions as there is no

conflation between states. However, there are several reasons why this is undesirable or even

impossible. First, consider again the case where it is possible to use a tabular representation.

A tabular representation does not guarantee fast learning. Similar states are treated com-

pletely independently and the learning done in one state does not benefit those states that
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are similar. That is, tabular representations do not generalize. Further, in reality, for even

moderately complex settings, tabular representations are simply not possible; state cannot

be uniquely observed or the state space may be incredibly large or even infinite.

To deal with this we use function approximation in which the system takes as input an

observation X(St), which is a function of the true state of the world, and maps it a feature

vector φt ≡ φ(X(St)). The value estimate is then given as V (φ(s)). The question then

becomes, what is a good representation? Ultimately, φ should capture the properties of the

environment that identify the similarities and the differences of the underlying state and

may even be a summary of the past. Properties that show the similarities of the underlying

state allow the agent to learn faster by generalizing. Even in the tabular setting, it can be

desirable to use representations that capture the similarities of states, as they enable more

sample efficient learning (as an example, consider the symmetries in tic-tac-toe). Properties

that discriminate the important differences of the observations ensure accuracy for specific

situations.

The next question to ask is, where do good features come from? In many applications, the

system designer hand engineers features building in their own understanding of the problem.

This is generally a difficult and costly process. In fact, in many fields of machine learning,

such as vision and electromyographic control of prosthesis, countless years of research has

gone into finding good features. Instead, it is desirable to have the agent construct the repre-

sentation on its own from its own experience. In recent years one of the major breakthroughs

in machine learning has been the ability to learn representations directly from data in an

end-to-end fashion using deep neural networks (Goodfellow et al., 2016). An overview of

modern representation learning techniques can be found in Bengio, Courville, et al. (2013).

Once we have a representation, φ, we can make an estimate, ŷ = g(φ). As a common

example, we might simply use linear function approximation (LFA) that simply involves

taking an inner product between our feature vector and a learned set of weights:

ŷ = φ>w,

and thus we can write our value estimate as:

V (s) = φ(s)>w.

11



The goal of the learning algorithm is then to learn the set of weights, w, which minimizes

the chosen loss.

In the following sections we discuss methods used in this dissertation for constructing φ.

2.3.1 Tilecoding

Tilecoding (Sutton and Barto, 2018) is a non-linear method of discretizing real-valued inputs,

which is used frequently throughout this dissertation. In tilecoding, an individual input

can be tilecoded by itself or multiple inputs can be combined as in the 2D case shown in

Figure 2.2. A single tiling is formed by subdividing the input space. The output of the tiling

is a one-hot vector where all elements are 0 except for the bin occupied by the input values.

A single tiling is limited in its representational power. Instead we use multiple overlapping

tilings, each offset from the others. In this way the tilings are able to capture both course

generalizations and finer details. Naive tilecoding can quickly produce extremely large feature

vectors. To get around this, hashing is often used to limit the size of the feature space. A

side-effect of hashing is that it can produce collisions when multiple inputs are mapped to the

same hash. If we can assume that the observations of the agent only cover a small portion

of the input space, which is generally not an unreasonable assumption, then such collisions

can be rare.

2.3.2 Deep Learning

Deep learning (DL) refers to a family of function approximation techniques in which many

non-linear function approximators are layered on top of each other with data flowing se-

quentially through the layers. This is typically done with artificial neural networks (ANN)

in which each layer is composed of many artificial neurons, such as perceptrons (Figure 2.3).

An artificial neuron takes input x and performs some non-linear operation parameterized by

weights w and bias b and produces an output ŷ = g(x;w, b). An example operation would

be to take an inner product between w and x, add b, and then pass the result through a

non-linear activation function like the rectified linear unit (ReLU): max(0, w>x+ b). With-

out a non-linearity the network could not represent non-linear functions. Deep networks

stack many layers of non-linear function approximators one after the other. The depth of

these networks is key to their compact representational power and tractable training times

(Bengio and Delalleau, 2011).

12
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Figure 2.2: Tilecoding. In this example a 2D sensor space is normalized and discretized
into bins with width 0.5. Each tiling then has 9 possible bins, although in the case where
the bins are perfectly aligned, as on the left, only 4 would be used. When multiple tilings
are combined together each is shifted allowing the discretization to capture both coarse
generalizations and fine refinements. (Figure taken from Sherstan (2015))
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Figure 2.3: Perceptron. An inner product followed by a non-linearity, shown here with a
ReLU activation.

The most common approach to training an ANN is the use of backpropagation (Goodfel-

low et al., 2016). Backpropagation is applied as follows. First a loss, L, is computed at some

13



head of the network. For each parameter, wi, in the network gradients can then be computed

∂L
∂wi

and weights updated by gradient descent. The key to backpropagation is the observation

that the gradient can be computed through the entire network by the use of the chain rule.

Modern computational libraries such as TensorFlow (Abadi et al., 2015), PyTorch (Paszke

et al., 2019), and MXNet (Chen et al., 2015) handle this process automatically.

2.3.3 Deep Reinforcement Learning

Mnih, Kavukcuoglu, et al. (2015) demonstrated the successful combination of deep learning

with RL with Deep Q-Networks (DQN). DQN was used to train agents to play Atari games

directly from pixel input using end-to-end training driven by reward. To process images DQN

uses a convolutional neural network (CNN) followed by a fully-connected layer. Following the

representation network is a Q-value network that consists of |A| nodes. In order to capture

history, multiple consecutive image frames are stacked together before being passed into the

network. The network is not trained from each sample as it comes in, rather, transition

tuples are saved to an experience replay buffer. For each training step, the agent samples a

minibatch of transitions uniformly from the replay buffer and computes the one-step TD-

error for each transition. The TD-error is bootstrapped from the greedy action choice of the

next state’s estimated Q-values. DQN is used in Section 8.2. In Chapter 7 we use a variant

of DQN called Rainbow. The implementation of Rainbow that we used makes three changes

to DQN. The first is to use prioritized sampling from the replay buffer where samples are

weighted according to the magnitude of their past training errors. In other words, a sample

that has had high error has a higher probability of being sampled. The second change is

to use n-step returns instead of one-step (Equation 2.8). The final change is to estimate

the distribution over returns rather than just the mean (Bellemare, Dabney, and Munos,

2017). All these changes have been found to improve performance over DQN. Since Mnih,

Kavukcuoglu, et al. (2015), the study of Deep RL, as it’s referred to, has taken off. Not

only is it being studied in earnest in research settings, but it is being used to solve practical

problems in the real-world as well.
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2.4 General Value Functions

General value functions (GVFs) make two relaxations to the value function definition we

have already considered (Sutton, Modayil, et al., 2011). First, we are free to choose any

signal available to the agent as the prediction target, not just reward. We refer to the

prediction target as the cumulant, C. Secondly, the discount parameter, γ, is replaced by

a transition dependent continuation function: γt+1 ≡ γ(St, At, St+1) (White, 2017) (Note

that given this definition γ need not lie in [0, 1], and can even be complex valued (De Asis

et al., 2018)). This function is referred to by several names in the literature including the

continuation function, discount and timescale. With these two generalizations we define the

return as

Gt = Ct+1 + γt+1Ct+2 + γt+1γt+2Ct+3 + . . .

=
∞∑
i=0

(
i∏

j=1

γt+j)Ct+1+i.

Like a value function, a GVF is defined by three components: the policy, the timescale, and

the prediction target. GVFs allow the agent to express representation elements in the form

of predictive questions. Consider the following examples for a mobile robot:

• “If I drive forward, how much current will my motors draw over the next 10 timesteps?”

Policy: Drive forward
Cumulant: Motor current
Timescale: 10 ts (γ = 0.9)

• “If I drive forward, how long until my bump sensor is activated?”

Policy: Drive forward
Cumulant: 1

Timescale:

{
A large value, say 0.99 Bump sensor = 0

0 Bump sensor = 1

The term (1 − γ) can be treated as the probability of terminating on the next step,

therefore γ can be viewed as the probability of continuation. We can then define the expected

number of timesteps till termination for a fixed γ as (see Sherstan (2015) for a derivation):

τ =
1

1− γ . (2.13)

The variable τ has units of timesteps, ts. We will often refer to the timescale of a

prediction in an imprecise way, say as 10 ts. Unless otherwise stated this refers to the value
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of τ and has a corresponding value of γ. Timescale will be discussed in more detail in

Chapter 7.

GVFs have the same definition as value functions, thus, we are free to use any of our

usual learning methods, such as TD(λ).

2.4.1 PSRs and TD-nets

Predictive state representations (PSRs) (Littman et al., 2002) and temporal-difference net-

works (TD-nets) (Sutton and Tanner, 2005) are predictive approaches to representation,

which precede GVFs. PSRs are motivated by the problem of partially observable Markov

decision processes (POMDPs). In POMDPs the agent knows the possible states but is un-

able to directly observe them. Instead the agent constructs belief states—distributions over

latent states. PSRs represent state as a collection of core tests. A test gives the probability of

observing a specific sequence of observations, o = [ot+1, ot+2, . . . , ot+T ], starting from time t

with history ht and following a specific sequence of open-loop actions, ν = [at+1, at+2, . . . , aT ].

Thus, the test output is Pr(Ot+1, Ot+2, . . . , Ot+T = o|ht, ν). Given a sufficient set of tests

that are linearly independent, each state in the POMDP can be uniquely described. This set

is referred to as the core tests. Finding this set can be very difficult. Further, the idea that

all possible states are known or can be known does not hold in the real world. Despite these

difficulties, the predictive syntax of PSR tests may still be useful. However, GVFs provide a

more general syntax, which may be able to describe PSR tests as well. A key difference be-

tween GVFs and PSRs is the policies over which they can be defined. PSR tests are defined

with respect to a fixed sequence of future actions, which do not depend on environmental

response (open-loop). In contrast GVFs are defined over general, state-dependent policies

(closed-loop), which can be stochastic and of variable length. This property allows GVFs to

generalize better than PSRs (Schaul and Ring, 2013).

TD-nets and GVFs are more general than PSRs, allowing the prediction of arbitrary

scalar signals. GVFs can be seen as a natural generalization or relaxation of TD-nets with

options (Sutton, Rafols, et al., 2006). The semantics are the same, but GVFs do not neces-

sarily impose a particular network structure or recursive state representation, as was done

with TD-nets. Thus, it is more accurate to say that TD-nets are one particular instantiation

of a GVF-based predictive architecture.
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2.4.2 GVFs So Far

GVFs, in their current form, were first introduced by Sutton, Modayil, et al. (2011), in what

they referred to as the Horde architecture. In this paper they showed that it was possible

to learn and make multiple GVF predictions simultaneously on a robot in parallel using

off-policy learning. Modayil, White, et al. (2014) extended this work to demonstrate that

thousands of GVF estimates, over diverse sensory spaces, could be practically learned in

an online fashion using the sensorimotor data of a simple mobile robot. This illustrated a

concept known as nexting—continuously making numerous short timescale predictions with

respect to the agent’s local situation, something believed to be done by humans and animals

(Gilbert, 2006).

One of the first ways in which GVFs were used was with Pavlovian control—reflexive

responses to predictions of external stimuli. Modayil and Sutton (2014) demonstrated that

GVFs could be used to trigger fixed reflexive policies whenever a particular prediction ex-

ceeded a threshold. In one experiment their mobile robot learned to predict wheel stall

events, a dangerous situation where the robot might continuously push against a wall, po-

tentially damaging the motors from overheating. Once the robot’s prediction for the stall

event exceeded a threshold a command was sent to turn off the motors. In a second experi-

ment they demonstrated how GVF predictions could be used to reduce communication lag

by preemptively taking action based on predicted commands. GVF-based Pavlovian control

has also been demonstrated in research aimed at restoring walking for paralyzed humans. In

the work of Dalrymple et al. (2020), electrical stimulation of an anesthetized animal’s spinal

cord was driven by a state-machine based gait controller to produce walking. GVFs were

used to predict various sensorimotor signals. When predictions exceeded specified thresh-

olds the state machine was transitioned to the next state in the gait cycle. To date, GVFs

with Pavlovian control may still represent one of the most effective ways that GVFs can be

deployed in current robotic systems.

One of the goals of the Pilarski lab and the Bionic Limbs for Improved Natural Control

(BLINC) lab, of which I have been a member, is to create intelligent prosthetic limbs that can

predict their user’s needs and intentions and assist the user, filling in the gaps in control. To

this end, we have focused much of our research on the use of GVFs in prosthetic control. A

common method for controlling powered prosthetic arms is the use of electromyography—the
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electrical signals produced by muscle contraction. Sensors are placed on a prosthesis user’s

residual limb over the muscle belly and the user can then send voluntary control signals in the

form of muscle contractions. However, with such a system it is common that the user is only

able to control a single joint at a time and must provide some additional signal to switch

which joint they are presently controlling, a tedious process. Edwards et al. (2016) used

GVFs to predict which joint the user would select next. Then, when the user would switch

joints, rather than giving the joint list in a fixed order, as is typical, the joint list would be

reordered by most probable as predicted by the GVFs. This enabled the user to select the

desired joint with fewer control signals and complete their task quicker. Additionally, GVFs

have been used in several prediction and movement control experiments with a prosthetic

arm. In the work of Pilarski, Dick, et al. (2013) a user controlled elbow and hand joints while

the computer agent controlled the wrist. The agent learned to predict wrist joint position

as a function of the current arm configuration. These predictions were then used in two

different control scenarios: 1) to directly drive the wrist joint via Pavlovian control and 2) as

part of the state information used by an actor-critic policy learner. Sherstan, Modayil, et al.

(2015) created a system that assisted a user in controlling multiple joints simultaneously. In

our system the agent first observed the user as they controlled a prosthetic arm one joint

at a time, learning GVF predictions of future joint positions. The predicted joint positions

were then mapped directly to control the joints that were not presently being controlled by

the user. That is, if the user controlled the elbow joint, the agent would use its prediction of

future shoulder joint positions as movement targets for the shoulder joint. Vasan and Pilarski

(2018) showed that accurate GVF predictions about target joint positions could be learned

from visual information. Parker et al. (2019) used GVFs to predict joint motor loading in

order to provide users with predictive feedback when controlling a robot arm. This allowed

the user to more effectively avoid overloading the joints and to complete their task quicker.

There are several general ways in which GVFs might be used. The first is as a predictive

state representation. An RL agent learns a mapping from its state representation to action

(Pavlovian control uses a fixed mapping from state to action). When an agent does not have

a complete observation of the world-state, predictive representations provide a powerful way

of disambiguating between observations. Further, predictive representations of state allow an

agent to generalize its learning to configurations not seen before (Littman et al., 2002; Rafols

et al., 2005; Schaul and Ring, 2013). GVFs have been shown to generalize better than an
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alternative predictive representation known as PSRs (Schaul and Ring, 2013). Using GVFs

as predictive state representation is the primary usage by which I motivate my research. A

second way in which GVFs might be used is to drive representation learning as auxiliary tasks

as in the UNREAL architecture (Jaderberg et al., 2017). This approach is discussed further

in Chapter 8. Another way in which GVFs can be used is to form policies themselves. For

example, in Sutton, Modayil, et al. (2011) a mobile robot followed a random behavior policy

while learning a GVF that maximized the intensity of light in one of its sensors. The robot

then followed the GVF policy by selecting greedy actions that maximized the estimated light

intensity. The result was that the robot learned to seek light. In work by Riedmiller et al.

(2018) they build off these ideas. In their work numerous GVFs are learned that maximize

different, hand selected, signals that are grounded in the agent’s sensorimotor stream. The

agent then learned a policy that selected which GVF policy to follow as a function of its

current state. This resulted in improved performance in learning complex robot tasks with

sparse reward. Finally, taken together, GVFs form a model, as we have already discussed.

One way in which models are commonly used in AI is for planning courses of action. Planning

with GVFs is an open, and largely unexplored, avenue of research that I do not address in

this dissertation.

2.5 Reuse

In reinforcement learning, agents act in the world to solve tasks. Most RL, but not all,

research has focused on solving single tasks. In this setting a model helps the agent to

understand the world and predict the outcomes of its actions, thus enabling better decision

making. Models are even more important in the settings of lifelong learning (Thrun and

Mitchell, 1993), in which an agent is given multiple consecutive tasks, and the related setting

of continual learning in which an agent undergoes “the constant development of complex

behaviors with no final end in mind” (Ring, 1994). In these settings the agent is expected

to continually learn new skills. This is facilitated by leveraging existing skills and models.

Models enable an agent to reuse its past experience in new settings to accomplish new tasks.

Ultimately, this incremental process sets up an ever expanding loop of capability and world

understanding — current skills enable new experiences that are used to build models, models

enable more complex and refined skills, which in turn enables new experiences and leads to
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more complex and refined models.

However, the structure with which models are represented affects the degree to which

they can be reused. The following subsections describe two approaches to representations

that may enhance sample efficiency and reuse by enabling an agent to generalize its model

across different tasks and settings.

2.5.1 The Successor Representation

The Successor Representation (SR) was introduced by Dayan (1993) as a predictive repre-

sentation for policy learning. It separates value estimation into two components, one for the

dynamics of the environment and the other for the reward. If we write the tabular Bellman

equation in vector format and solve for value, v, we have:

vπ = r̄π + γPπvπ

(I − γPπ)vπ = r̄π

vπ = (I − γPπ)−1r̄π

where:

r̄π - the average one-step reward from each state: r̄π[i] = E[Rt+1|St = si]

Pπ - the transition matrix: Pij = Prπ(St+1 = sj|St = si),

the probability of transitioning from state si to sj

when following policy π

I - the identity matrix

The SR is defined as the first factor in this factorization:

Ψπ =
∞∑
t=0

(γPπ)t = (I − γPπ)−1. (2.14)

The SR captures the dynamics of the environment with respect to a policy, π and discount γ.

Given a policy, this factor is completely independent of the reward. The second factor, r̄π, is

the one-step expected reward from each state under policy π. In the function approximation

setting we can write the SR as (this is referred to as Successor Features in other literature,
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such as (Barreto, Borsa, et al., 2018; Kulkarni et al., 2016)):

Ψπ(s) = Eπ[φ(S0) + γφ(S1) + γ2φ(S2) + . . . |S0 = s]

= Eπ
[ ∞∑
t=0

γtφ(St)|S0 = s
]
.

A TD-error can then be derived for the SR and it can be learned using standard TD learning

methods:

δΨ;t = φ(St) + γt+1ψ
(
φ(St+1)

)
− ψ

(
φ(St)

)
.

If we consider the equation V (s) = Ψ(s)>r̄ then we see that this is a form of linear function

approximation in which the SR forms the input feature representation and r̄ is the weight

vector that must be learned.

The SR can be seen as a temporally extended model, capturing how the environment

changes with response to action. Like typical model-based RL algorithms (in which the agent

learns a one-step transition and reward model) the SR can be used for planning, where the

agent updates its value estimates and policies by taking imagined actions using its model

(Russek et al., 2017). In fact, it has been proposed that something like the SR is used

in the hippocampus of mammals to enable predictive localization and planning in space

(Stachenfeld et al., 2017). One of the current research focuses with the SR is in the field of

transfer learning (Barreto, Borsa, et al., 2018; Kulkarni et al., 2016; Ma et al., 2018; Zhu

et al., 2017; Zhang et al., 2017; Lehnert et al., 2017). Loosely, this is defined as learning

something in one context and being able to reuse it in another. Because the SR captures

the dynamics of the environment under a policy independently of reward it can be reused

to evaluate any signal function, including reward functions, with respect to the same policy,

enabling transfer across many signal functions.

Clarification About Indexing with the SR

I wish to clarify an issue related to how the cumulant is indexed in the SR as it has caused

myself and colleagues considerable confusion. The SR is typically said to predict how often

a state will be visited in the future. Although conceptually intuitive, this is not technically

accurate and can lead to the wrong intuition regarding the learning updates. The usual thing
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to do in TD is to count the cumulant as the observed signal when transitioning from St to

St+1. If we are counting future states then we would want to use a cumulant of φ(St+1).

While this is certainly something that can be predicted, it does not give the SR; the cu-

mulant of the SR is φ(St). I find it best to focus on the definition of the SR as given by

Equation 2.14 rather than thinking of it as predicting future state visitations.

2.5.2 Universal Value Function Approximators

Universal Value Function Approximators (UVFAs) (Schaul, Horgan, et al., 2015) are a

method for generalizing value estimation across goals and their corresponding policies. The

main idea behind UVFAs is to provide a representation of the agent’s current goal, referred

to as the embedding, as input to its function approximation network. That is, they make

estimates a function of both state, s, and goal, g: V (s, g).

For GVF architectures we want to make large numbers of predictions. However, each

prediction is policy dependent and there are potentially infinite policies an agent could follow.

If predictors are represented uniquely then there are two problems that must be addressed: 1)

selecting the policies to make predictions about 2) learning about all the desired policies. By

treating the policy as an input to the function approximator it is able to learn generalizations

across related policies. This is potentially a very powerful mechanism for enabling compact,

tractable, value representations that are sample efficient.

UVFAs perform a complementary function to off-policy learning that was demonstrated

in “Unicorn: Continual Learning with a Universal, Off-policy Agent” by Mankowitz et al.

(2018). This paper looked at how the UVFA and off-policy learning could be used together

in a continual learning setting. The experimental setting was an object collection task set

in the 3D gaming environment DeepMind Lab (Beattie et al., 2016). The tasks were defined

to be sequential in nature; the key must be collected to open the lock before the door can be

opened and then the chest opened. The ultimate goal was to open the chest. Many agents

ran in parallel following policies to collect the various items in the environment and feeding

their experience back to a central learner, akin to the IMPALA architecture (Espeholt et

al., 2018). Q-value estimates were represented using a UVFA. Training was applied in the

following way. At the start of each episode the agent selected a target item to acquire, let us

call that goal gi, and followed the corresponding policy that was encoded as Q-values by the
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UVFA. When the episode terminated all goals were trained, not just the behavior goal. An

update target was formed as an n-step return, where n is the number of steps at which point

the agent selected a different action than would have been taken under the target policy

corresponding to goal gj:

Gt,gj =
n∑
k=1

γk−1Rt+k;gj + γn max
a
Q(a, St+n, gj).

Here Rt;gj is the reward received at time t with respect to the target goal’s reward

function. Bootstrapping is done using the UVFA with the embedding corresponding to goal

gj. The researchers found that training in this way enabled better performance than training

an agent explicitly on the final goal of opening the chest.

Universal Successor Representation Approximator (USRA) (Ma et al., 2018) combines

the UVFA and the SR representation. The SR, the average one-step reward estimator and

the policy are all dependent on the goal: ψ(φ(s), g), r̄(g), π(φ(s), g). The current environment

image is given as the input, s, and the goal is presented as the desired environment image.

This is an interesting idea in that it is able to combine different reuse approaches.

The idea of treating estimator parameters as part of the input to the function approx-

imator network is one that I build on further in Chapter 7 to enable generalization across

the prediction timescale parameter γ.
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Part I

Questions: Representation with GVFs
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Part I looks at the types of predictive questions that can be encoded as GVFs. Chapter 3

introduces the motivating ideas for the rest of this part of the dissertation. Specifically, we

propose that the agent should use internally generated signals, introspective measures, as

part of its state representation. Further, predicting such introspective signals with GVFs

may provide additional information to the agent. In Chapter 4 we provide empirical inves-

tigations of the behavior of several introspective measures, examining how they may encode

information about the agent’s interaction with its environment. In Chapter 5 we look at one

particular introspective measure, the variance of the return, and present a new algorithm

for estimating it using a series of GVFs. This part of the dissertation represents a fertile

opportunity for further research.
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Chapter 3

Introspective Agents

The core tenet of this chapter is the idea that introspective measures—measures about an

agent’s own state and learning process—should be included as part of the agent’s state

representation. While there are numerous works on curiosity, exploration, and intrinsic

motivation that are clearly related, we believe this to be an understudied area of research.

We further advocate that such introspective measures serve as prediction targets for GVFs

and that some introspective measures could be captured as GVFs themselves. This chapter

first outlines our position in detail before relating it to existing research. In the third part

of the chapter we describe various introspective certainty measures and suggest how they

might be useful. Introspective measures would augment an agent’s state representation with

information that is currently unavailable in standard approaches. We posit that the inclusion

of such information would be particularly useful in continual learning agents faced with a

complex, dynamic world.

3.1 Introspection and Prediction

In RL we commonly describe an agent’s interaction with its environment as a Markov Deci-

sion Process, which models the dynamics of the environment as transitions from one discrete

state to the next. In complex scenarios this concept of state does not hold, or at least cannot

be explicitly observed or described. Instead, an agent must rely on its own representation

of state, an approximation that we will refer as the agent’s state. Ideally, an agent’s state

should provide a sufficient, minimal and well-factored description of the current configura-

tion of the world. By sufficient we mean that the representation contains all the information

that the agent needs in order to make optimal decisions. By minimal we mean that only
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information that is needed is presented; there is nothing extra to confuse the agent. By

well-factored we mean that all the factors of variation are well separated. In the continual

learning setting an agent works to construct and improve this state representation over time.

Commonly, an agent’s state representation is dependent only on external sensorimotor

information. However, this misses part of the picture—the agent’s own internal configuration,

its internal state. Here we suggest that introspective signals should be included in the agent’s

state representation. These are signals relating to the agent’s own learning mechanisms—

for example, its prediction errors, weight changes, and other time-varying meta-parameters.

Such signals are generally treated as just part of the algorithmic learning system and ignored

as part of state. There are also a range of signals that quantify the agent’s interactions with

its sensorimotor stream—for example, statistics about state or feature-space visitation and

statistical properties of sensorimotor signals themselves. Thus, our first conjecture is as

follows:

1. An agent’s state representation will be improved by including in-

trospective signals.

GVF research has focused on predictions about signals external to the agent—signals in

the agent’s sensorimotor stream. However, the introspective signals previously mentioned

may also serve as prediction targets for GVFs. Thus, our second conjecture is:

2. An agent’s state representation will be further improved by includ-

ing predictions of introspective signals.

Ultimately, the quality of an agent’s state affects its ability to make good decisions.

We suggest that including introspective signals as part of the agent’s state should further

improve its decision-making capabilities.

The terms certainty and confidence are used in many different ways without a univer-

sal consensus. Pouget et al. (2016) provide a perspective for thinking about these words

from a neurological perspective of animal and human decision making. For the purposes of

this chapter and the next we will use their definitions. Given some predicted variable, µ,

they define certainty as the width of the distribution of possible outcomes given an input

source. They propose that each measure of certainty is taken with respect to some context
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or modality. For example, in their work they suggest that different modalities, such as vi-

sion (V ) and auditory (A) data, would each have their own distribution for prediction of

µ: p(µ|V ), p(µ|A). Mathematically, certainty might be measured as the inverse entropy or

inverse variance of those distributions. However, neither entropy or variance discriminate

the sources of uncertainty, whether they be from insufficient data, an inaccurate model, or

intrinsic stochasticity in the system. Confidence is defined as the probability that an agent’s

choice is the correct one, given all of its information. Confidence is defined in terms of an

agent’s own estimation, rather than the ground truth. This idea of confidence is relative to

an agent’s own policy and may change depending on the situation. For the RL setting we

can define confidence as the probability that the agent’s action selection is the optimal one:

pθ(πw(φ) = π∗(φ)|φ ≡ φ(V,A)), where we have defined: πw as the agent’s policy parameter-

ized by w, π∗ as the optimal policy, φ as the representation of the input and we denote p as

being parameterized by θ to make it clear that confidence is subjective, rather than based

on the ground truth; it is always an estimate.

While these mathematical definitions suggest explicit representation of distributions, cer-

tainty may not be explicitly known or modelled. Instead, we suggest that various introspec-

tive measures might serve as substitutes, fulfilling the same purpose of informing an agent’s

confidence. We will refer to these as certainty measures. Thus, our third conjecture follows:

3. Certainty measures, a class of introspective measures, inform an

agent’s estimate of its confidence.

These ideas can be applied to GVFs. An estimated answer to a GVF question simply

provides a prediction—a scalar value—but does not provide any sense of the certainty of

that prediction. This leads to our fourth conjecture.

4. Certainty measures allow an agent to determine when and how to

use a prediction.

There are many different measures that describe a distribution and might be used to

characterize its uncertainty. Examples include variance and entropy as well as higher mo-

ments like skew and kurtosis. However, these measures are a summary of all the factors of

uncertainty. Different types of introspective certainty measures, such as those we will de-

scribe in Section 3.3.2, may provide different views into the data, the environment, and the
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learning process. This may allow an agent to identify and correct the sources of uncertainty.

Thus, we make our final conjecture.

5. An agent’s decision-making and learning processes will be improved

by including multiple certainty measures, not just one.

These conjectures provide the motivation for the remainder of the work presented in

Part I.

3.2 Related Works

The study of curiosity and intrinsic motivation—self-driven exploration—is filled with various

introspective measures. Oudeyer and Kaplan (2009) provides a summary of approaches to in-

trinsic motivation. In this study they subdivide the approaches into four different categories:

1) information theoretic and distributional, 2) predictive models, 3) competence-based, and

4) morphological models. In these settings the introspective measures are all used to produce

a motivating reward that is given in addition to the agent’s main task reward. The infor-

mation theoretic approaches construct probability distributions over states and transitions.

From these distributions they derive numerous approaches. There are those that reward

agents for visiting unlikely states, or those that reward the agent for reducing uncertainty

or entropy. There are approaches that reward the agent for surprise—violations of strongly

held beliefs, and there are those that reward for familiarity. Approaches based on predictive

models provide some of the same ideas, but ground their intrinsic motivation directly to pre-

diction errors. The information theoretic methods might be seen as the Bayesian approach,

while the predictive model methods might be seen as frequentist. Competence-based ap-

proaches construct measures based on the agent’s improvement at achieving self-determined

goals. Different measures are constructed that encourage an agent to focus on different types

of goals. In some approaches the agent is motivated to work on goals for which it presently

performs poorest, in others it is encouraged to maximize its competency and yet other ap-

proaches reward the agent for maximizing the amount of progress it can make in learning.

The morphological category considers statistical properties of the sensorimotor stream itself.

The agent is rewarded for achieving some statistical goal in the sensorimotor space such

as maximizing the signal correlation across as many signals as possible, or minimizing or

maximizing the variance across the signals.
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Introspective measures are heavily used in exploration—how an agent chooses its actions

and goals so as to sample the state-action-reward space. RL agents face a continual trade-off

of whether to stick to what is known, exploitation, or try something new, exploration; to

achieve optimal performance, maximizing the sum of rewards, an agent cannot strictly do

one or the other. This is referred to as the exploration-exploitation dilemma (Sutton and

Barto, 2018). Exploration can be beneficial or harmful depending on the circumstances. If

the agent expects the environment to be safe or is optimistic then exploration is the right

choice. On the other hand if the agent perceives the world, or at least the current situation,

as dangerous then exploration may need to be avoided. The value of exploration also depends

on the evaluation setting being considered. If we are only concerned with the agent’s final

performance then exploration should be sought aggressively until sufficient coverage has been

achieved. In such settings there is no true consequence for failure along the way, i.e. if the

agent dies it just restarts a new episode with no permanent consequence. A key focus, then,

is on how to direct the agent’s exploratory behavior to achieve sufficient coverage. The works

of Bellemare, Srinivasan, et al. (2016) and Machado, Bellemare, and Bowling (2020) give the

agent bonuses for visiting states with low visitation count. In the work of Schmidhuber

(1991) the agent learns to predict changes in its uncertainty. It then provides a reward

to the agent for taking actions that reduce the uncertainty. Ngo et al. (2013) also seek to

reduce uncertainty but rather than providing a reward they apply their uncertainty estimate

directly to the agent’s decision making process. In their system they learn a transition model

of the world. For a given state the agent will take actions whose outcome is uncertain. If

all actions in the current state are considered certain then the agent will instead plan how

to reach a state for which it has uncertainty. White and White (2010) estimate confidence

intervals of predicted value that is used to select the action with the highest upper confidence

bound. White (2015) used violation of established GVF predictions, a measure of surprise,

to switch between different policies. In the work of Mihalkova and Mooney (2006) an agent

can request relocation to a different part of the state-space. It will do this if the agent’s

boredom measure is high or if it predicts that the agent is in a bad situation from which

there is no recovery. It will then request to be relocated to a state for which it has high

uncertainty about which action is best. All of these methods have encouraged the agent to

take actions in pursuit of uncertainty, either through a bonus reward or a heuristic approach

to exploration.
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On the other hand, if an agent is risk-averse or if there are permanent consequences to

bad decisions then the agent might wish to avoid low confidence situations. Such is the case

for a continual learning agent. Gehring and Precup (2013) encourages the agent, via a reward

bonus, to seek out states that are controllable—states for which the expected magnitude of

the TD-error is low. Kahn et al. (2017) uses an ensemble method to estimate the uncertainty

over projected model rollouts. The uncertainty is then scaled by the movement speed of the

agent and given as a penalty. In this way the agent is directly encouraged to take cautious,

low-speed, actions in the face of uncertainty. Deisenroth and Rasmussen (2011) achieved

extremely fast and robust learning rates by representing the transition model as a Gaussian

process. In their setting uncertainty was also used to increase the cost function of a modelled

rollout. (Tamar, Castro, et al., 2016) used an estimate of the variance of the return to

minimize risk while maximizing reward in financial decisions (see also Sato et al. (2001)).

Introspective measures can also be used to tune model parameters and drive improve-

ments in representation and the predictive models themselves. Ring (1997) used measures

of predictive error and weight changes to guide increases in representational capacity for the

agent’s model. White and White (2010) used confidence intervals to actively adapt the λ

parameter, used in credit assignment, in TD(λ). Whereas in White and White (2016) λ is

adapted by using the variance of the return.

Introspective measures can be used in conjunction with hand-coded procedures. Daftry et

al. (2016) used predictions of collisions with a vision system to improve behavior of a flying

drone. During training their system was given numerous trajectories and had to predict

whether or not those trajectories would result in a collision. The introspective measure

learned was, based on the current camera image, what percentage of projected trajectories

would collision be predicted incorrectly. That is, it predicted whether or not the system

was likely to get its predictions wrong. If the prediction exceeded a threshold then a safety

procedure was initiated.

There are numerous approaches to estimating uncertainty. Bayesian methods (Hu and

Kantor, 2017), such as Gaussian processes (Deisenroth and Rasmussen, 2011), are naturally

suited to giving uncertainty methods. Other approaches include ensemble methods (Kahn

et al., 2017), confidence intervals (White and White, 2010), or directly estimating the distri-

bution (Bellemare, Dabney, and Munos, 2017). These approaches are the more statistically

grounded ones. The others listed here tend to use some heuristically defined measure as an
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indirect substitute. For example, low visitation count (Bellemare, Srinivasan, et al., 2016;

Machado, Bellemare, and Bowling, 2020) is taken as an indirect measure of uncertainty.

All of the approaches listed here apply their introspective measures either by augmenting

the reward or cost function or by heuristically modifying the policy directly. Thus far, we

have not found any works that directly use their introspective measures as part of the agent’s

state representation. This is information about the environment and the learning process

itself that is often available, but withheld from the agent. Consider the work described in

Machado, Bellemare, and Bowling (2020); the agent forms a state visitation count that is

encoded in the successor representation. If the agent takes an action leading to a state with

a low visitation count then it receives a reward. Notice that all of the information used to

compute this reward is already encoded in the successor representation. However, the reward

is given after the agent has already taken the action. Thus, the agent does not really learn

to directly explore, it does not directly learn to seek states that have a low visitation count,

instead it learns to return to states for which past visitation count was low. If, instead, the

agent’s state representation included the estimates of the successor representation it might

be able to learn a policy that seeks out novel states explicitly.

What we see from the numerous different approaches being taken in this field is that

there is no single approach and no single measure that captures everything. Instead, an

agent needs many measures and to learn multiple generalized approaches to exploration. By

including these measures as part of the agent’s state information what we expect is that

a continual learning agent could learn general strategies of exploration and caution that it

can apply to new scenarios. For example, a robot might learn that when it enters a new

room that it should reduce its speed until it has built up enough confidence for the new

environment (Kahn et al., 2017). An agent might learn when it is safe to explore and when

it is not.

The idea of constructing introspective measures is not new. What is new is the sug-

gestion that they should be included as part of the state representation. This is a natural

interpretation of the RL framework (See Figure 2.1). The boundary between agent and envi-

ronment need not occur strictly at the physical boundary between robot and world. Rather,

the environment includes anything outside a given RL loop. Thus, we can instead consider

that an agent’s environment include various computational processes defined internal to the

robot itself (Barto, 2013). Further, while some of the methods described in this section can
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be seen as making predictions of internally generated signals, such as error (e.g. Gehring

and Precup (2013)), ideas connecting introspective measures with GVFs and the need for

certainty measures for GVFs is largely unconsidered (see White (2015) for early ideas on

this subject).

3.3 Certainty Measures

3.3.1 Recency and State

Certainty measures can be described across two separate axis: recency, and state (See Figure

3.1). Recency asks the question, “Have my predictions been accurate lately?” The varying

parameter here is how far back in time we consider with extremes being immediate (no

history) and all-of-time. Recency measures make the assumption that the underlying state

transitions are related in time. That is, a subsequent observation is strongly related to the

preceding one, i.e., there are no teleportations of state.

State asks the question, “How accurate have my predictions been when in this state?”

State varies by coarseness between a stateless representation (a single bias unit that is always

active) and a rich one that disentangles all the factors of variation (a tabular representation

in the limit). On their own, recency based measures might be effective for decision making.

However, state-based measures offer a number of advantages. The first is that the previously

stated assumption, that subsequent observations are highly related, need not hold. A non-

linear function approximation across states allows for discontinuities or sharp jumps in the

predictions. Secondly, using a stateful measure enables the agent to predict states of low

confidence ahead of time and even to plan accordingly. Imagine that the agent moves into

new state territory, i.e., states that have not yet been experienced. With stateless recency

our confidence would not drop until after our predictions have made errors. With a state-

based approach we are able to identify that we are moving into new territory and lower

our confidence in anticipation. Finally, state-based measures allow us to provide certainty

measures independently of current observations, making them suitable for planning.

3.3.2 Candidate Certainty Measures

In this section we highlight several measures of certainty, which might be used on their

own or together. These measures are not necessarily new, many of them have been used
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Figure 3.1: Recency and State. Extremes are marked. 1) A measure that captures an
immediate statistic, e.g. squared TD-error. 2) A measure that captures an immediate
statistic as a function of state, e.g. expected squared TD-error as a function of the current
observation. 3) A stateless measure capturing a statistic over all time, e.g. the max observed
squared TD-error. 4) A stateful statistic over all time, e.g. the max squared TD-error
observed from the current observation.

in different works such as those described in the previous section. Each measure seeks to

provide a different view into the causes of uncertainty. We expect that each measure will

have different utility depending on the current situation. Further, we seek to describe many

of these measures as GVFs themselves. If we can do this it provides a single mechanism

capable of capturing both our base sensorimotor signal predictions as well as the introspective

measures we propose. This is appealing given that in a continual learning scenario we

expect the GVF models to be incrementally constructed over time. If a single architecture

is sufficient to represent both sensorimotor GVFs and their certainty measures then so too

a single constructive algorithm may produce both. For the measures presented here we have

been able to describe some as GVFs, but others remain unknown.

It is important to consider that TD methods, which we use in the GVF framework,

specifically predict the expected return of a signal, not the return itself; GVFs form an

expectation model. Thus, if we make some predictive statement such as “predicting joint

angle” we are referring to the expectation of the return of the joint angle. In reality, the signal

is a random variable that is supported over some distribution. With an expectation model,

the predictions made may not reflect possible outcomes. However, the agent’s predictive

capabilities may be improved with additional state information. An alternative approach
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would be to model the distribution over outcomes (Bellemare, Dabney, and Munos, 2017)

and draw a prediction from that distribution. However, distributional models are not always

practical or tractable.

For example, consider an agent that comes to a junction where it can choose between

two doors, left or right. If it goes left its x position sensor reads -1 and if it goes left its x

position sensor reads 1. On alternating days the agent chooses to go either right or left, thus,

over all time there is an equal probability of choosing either door. A naive GVF predicting

the position x at the junction would output a prediction of 0, which is not a valid outcome.

However, if the agent’s state includes which action was chosen on the previous day then it

can predict exactly which door will be taken on each day.

How accurate have past predictions been?

Ultimately, the question we are asking is how certain we are that the given prediction will

match the observed outcome. Thus, the most direct certainty measure is prediction accuracy

or error. The other measures proposed in the following sections might be considered surrogate

or supplemental.

Measures of prediction accuracy can be spread over the recency/state grid as shown in

Figure 3.1. If considering a stateless representation then the question we are asking is “How

accurate have the predictions been lately?” Such an approach was taken by White, Modayil,

et al. (2014) wherein they use a trace on the TD-error to guide exploration towards surprising

states, i.e., those states where prediction error was high. Their method, unexpected demon

error (UDE) is given as:

Ut =

∣∣∣∣ δ̄β√
var[δ] + ε

∣∣∣∣. (3.1)

In their equation δ̄β is an exponential moving average of the TD-error: δ̄βt+1 = (1−β)δ̄βt +βδt,

where β ∈ [0, 1] . The term ε is a small constant used to prevent division by zero. For the

denominator the variance of the TD-error is tracked from the beginning of time. In this

way they can measure how much the current error compares to the usual variability. If the

TD-error exceeds the usual variability there will be a spike in the UDE measure, which they

take to indicate surprise. As the agent continues to improve its prediction the UDE measure

will decrease. In using such a measure for certainty the idea is that if prediction accuracy

has been good for recent predictions, then we should expect it to be good for the current
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prediction as well, and vice-versa. This measure is studied in more detail in Chapter 4.

A state-based approach to prediction accuracy lets us ask the question, “When we were in

this state before, how accurate were our predictions?” This would be useful for planning, and

for anticipating state-regions of uncertainty. The state-based measure of error is only usable

given that the agent has sufficient experience with a state-region of interest (the function

approximation can be initialized to give high values indicating high uncertainty). A simple

approach to this would use a GVF with the squared TD-error as the cumulant and γ = 0.

How much has the prediction output varied recently?

Consider the situation where an agent’s predictions vary drastically in the recent past, say

in the past few seconds. What might cause such behavior? One situation could be that

the agent’s internal representation is operating very close to a threshold. For example, this

might happen in a function approximation setting where the inputs are binned into different

ranges. Thus, this may indicate a need to improve the agent’s representation.

Another cause could simply come from incomplete information. An agent in the real

world is never able to observe the state of the universe directly. Agent’s are limited to their

locality and their sensory inputs. Thus, perception must be a process that unfolds over

time. An agent gathers observations over time to construct its representation of relevant

state information. This is illustrated by the duck-rabbit illusion shown in Figure 3.2. Most

people are able to interpret this image as either a duck or a rabbit. Which is correct? With

only this static image we cannot say. If instead we could move to observe the rest of the

animal or see the animal itself move then we would be able to discern the truth. Consider the

example of a cat on a lawn who perceives something that might be of danger. The cat might

sink low and stare very hard at the potential threat, gathering more data until it decides

if the threat exists or not. The cat is waiting for more information to validate the initial

prediction. Other works have looked at using information gain as an exploration strategy

for an RL agent (Oudeyer and Kaplan, 2009; Iwata et al., 2004; Storck et al., 1995).

How often has the current state been visited?

The agent learns from experience, thus to be able to make accurate predictions about a

particular state it must have sufficient experience with that state. If visitation for a particular

state is low then the agent might be hesitant about trusting predictions in that state. State
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Figure 3.2: “Duck Rabbit Illusion” (1892)

visitation could also be useful for planning and decision making. In safe environments

low state visitation might indicate an opportunity to explore and learn about the world

(Machado, Bellemare, and Bowling, 2020). In dangerous environments the agent might

prefer to stick with known states. Counting states may allow an agent to represent novelty

and familiarity.

Counting state visitations in the tabular setting is straight forward, but with function

approximation it is quite complicated. We have access to features, not states, so we might

imagine simply counting features, but this is not the same. A particular configuration of

features may not uniquely describe a state, or some features may be irrelevant to making

accurate predictions. Further, we may want to share counting across related states. Being

able to identify sets of features as relating to the same state is a complex task and beyond

the scope of this short discussion. Tang et al. (2017) and Bellemare, Srinivasan, et al. (2016)

discuss different approaches towards counting state-visitations.

Nonetheless, we present a naive approach to counting state visitations using a GVF.

In this case we simply use a fixed cumulant of 1 and γ = 0. Then for a linear function

approximator we would have a TD-error of

δt = 1−w>t φt. (3.2)

This predictor should be initialized to zero. In this setting a new state will have a count

of 0 and a frequently visited state will be near 1. This approach would tend to over count

37



unchanging features. As well, it is best suited to binary features rather than real-valued

ones. This measure is used in Chapter 4.

Thus far, we have only considered counting state visitations. The successor representa-

tion, which can be represented as a GVF, can be used to estimate counts along a trajectory

of states (Machado, Bellemare, and Bowling, 2020).

In conclusion, counting state visitation can be phrased in many different ways and the

correct way to do so is still an open question in the community.

How long has it been since this state was last visited?

This measure simply asks how long it has been since the agent last experienced a given

state. This acts as a check on being overly confident if there has been considerable time

since the agent last saw the state. If the environment is potentially changing then, despite

good performance in the past, the agent may want to be wary of situations it has not seen

in a long time. For a static environment this may not be an issue. However, with function

approximation we know that if the agent does a lot of learning in one area of the state space,

this can cause forgetting in other areas of the state space. In such a case the agent should

not necessarily trust that its predictions are still good. It may need to relearn. This idea

can also be extended to asking how long it has been since the agent followed a particular

policy. Such measures might be implemented as a decaying trace over the features.

How predictable is the next state out of the current one?

If the state representation is sufficient then the next state should be predictable, within the

bounds of the environment’s stochasticity. Measuring such predictability could thus serve

two purposes: 1) giving the agent an evaluation of its own representation, 2) giving the agent

a certainty measure for decision making. If the predictability of the next state is low then

the agent may wish to be hesitant about trusting its predictions and take action cautiously.

The same information may already be captured in estimations of prediction error.

Have the predictions of the GVF converged?

Our learning algorithms typically take small steps towards their prediction target on each

update. Even if we assume the simplest scenario where targets are unchanging, then a GVF

will take several learning iterations to converge on its target. Thus, measuring the rate of
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learning and convergence seems like a natural signal to consider. One method for measuring

convergence is using RUPEE, which is tied to the GTD algorithm (White, 2015). GTD

uses a second set of weights to capture part of the gradient of the mean squared projected

Bellman error (MSPBE). This can be used to create an estimate of learning progress.

How up to date is our state information?

An agent operating in the real world has limited ability to observe the world and some of

its state representation must be based on its memories of the past, e.g. “Where was the last

place I saw my keys”. If the observations those memories are based on are old then the agent

might be hesitant to trust predictions based on that information. For example, consider a

military general planning an offensive. If their information about enemy troop placement is

a week old they will be less confident about planning an offensive than if the observation

had just been made.

How far in the future is the prediction?

The prediction timescale might affect confidence. If we consider predictions in the more

general sense (more general than GVFs and TD learning) then the timescale of a prediction

can affect its certainty depending on what is being predicted. For example, as of the time of

writing, I can predict with high confidence that tomorrow I will still be a graduate student

and I can predict with high confidence that 2 years from now I will not be. However, I have

a hard time making that same prediction for 6 months from now as it is uncertain exactly

when I will complete the requirements of my degree.

On the other hand, when we consider the case of GVFs and TD learning there is not

such a clear relationship between a prediction’s timescale and its certainty. Samples of longer

timescale returns typically have higher variability. However, GVFs predict the expectation

of the target rather than the target itself. For static environments and policies the expec-

tation is also static. Thus, the prediction timescale does not factor into the certainty of

the expectation. Instead, it is the learning of the prediction that might be affected by the

timescale. This effect should already be captured by other signals we have discussed, such

as the measure of convergence.
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How high is variance of the target signal?

The variance of the return will affect the predictor’s ability to learn the expectation. As

discussed, tracking convergence would help an agent to make decisions about trusting a given

prediction, despite its variance. However, where variance could play a role is in choosing

between different policies. In RL research, we often construct artificial domains and allow our

algorithms to train until convergence, and what we care about is learning the best behavior

in expectation. In risky environments this changes. Consider the case of autonomously

driving a car, for which the agent receives more reward for arriving at its destination quickly

and is penalized for accidents. Imagine an agent comparing two policies that both have the

same expected return. The first policy drives sedately but consistently arrives safely at its

destination. The second policy drives very quickly, but occasionally gets into accidents. We

will presume that the two policies have the same expected return from their departure point,

so from a standard RL perspective they are both equivalent. However, the second policy has

much higher variability, and occasionally incurs damages. Thus, if an agent considered this

variability in its decision making it may be able to discriminate between the two policies. This

is discussed in more detail in Chapter 5 in which we demonstrate a method for estimating

the variance of the return as a network of GVFs.

How reasonable is the predicted value?

The output of a predictor itself may be used to provide a measure of certainty. If a predic-

tion falls outside the normal range of the target signal then the certainty should be lower

depending on how far outside the range it falls. Such a measure can also be spread across the

recency/state-based axes. The agent might consider the range of what it has seen over all-

time, or it might consider the range of targets it’s seen over the last hour. Additionally, the

appropriate range might be dependent on the state, with different ranges being appropriate

for different regions of state-space. Such a measure effectively acts as a sanity check.

3.4 Conclusion

This chapter connects GVFs with introspective measures and certainty measures. It serves

as the motivation for the work presented in the next two chapters. While we have drawn

attention to numerous introspective measures and consider the kinds of information they
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may provide to an agent, in the limit we are not suggesting that such measures should

be hand crafted. Instead, for our ideal continual learning agent, we imagine a mechanism

that incrementally constructs its predictive GVF model over time. We would hope that

such a mechanism would instead discover such signals on its own and suppose that some

of these measures would capture the same information described in this chapter and the

next. For a continual learning agent then, the key points being made are that the agent’s

knowledge construction framework should be able to use internally generated signals as

prediction targets as well as capture statistical properties of its interactions and that the

agent’s state representation will be enhanced by including such measures. Ultimately, we

believe this will allow the agent to make better decisions and learn general strategies for

controlling its own learning process.
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Chapter 4

Investigating Certainty Measures

Here we build off the ideas presented in Chapter 3. We provide several scenarios in which

we demonstrate and evaluate the behavior of selected certainty measures.

Section 4.1 first considers a simple robot in a grid world (Sherstan, Machado, White,

et al., 2016). This demonstration shows that adding certainty measures provides additional

information that might be useful for an agent. Further, it shows that multiple measures can

be used together to provide richer information.

Section 4.2 demonstrates several certainty measures on a human controlled robot arm

(Sherstan, Machado, Travnik, et al., 2017). The human moves the arm through a prespecified

set of waypoints, but must choose whether to go left or right at a single decision point.

This demonstration looks at how introspective measures might be used to detect states of

uncertainty.

Finally, in Section 4.3 a robot learns a large collection of predictions about its obser-

vation space. Additionally, the robot produces a measure of surprise, UDE, and learns to

predict UDE (Günther et al., 2018). Being able to predict such surprise might be key for

avoiding damaging situations. Note that this work builds on preliminary work by Pilarski

and Sherstan (2016).

4.1 Predicting Wall Hue in a Grid-World

In this section we provide a first illustrative example of how certainty measures might be

used. The environment used for these experiments (Figure 4.1) is inspired by the “compass

world”, which was first used to demonstrate the representational power of using TD-nets

with options (Sutton, Rafols, et al., 2006). In our experiments a simulated robot moves
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(a) Prediction (b) Visitation (c) Error

Figure 4.1: A simulated robot in a grid world. See text for detailed explanation. In all
cells the corresponding triangle opens in the direction of the prediction policy. For example,
for (a) in cell (0,0) the orange triangle opening to the left indicates the hue the robot
predicts it will see if it ran all the way to the left wall. (a) Prediction of wall hue (a
continuous representation of color in [0,360)) in each of four directions. (b) State-action
visitation. White is high visitation (high certainty). (c) Prediction of expected squared
TD-error (related to variance). White indicates expectation of low error (high certainty).

through a 3x3 grid world and predicts wall hue (a continuous representation of color in

[0,360)) in each of four directions (Figure 4.1a). The robot is only able to observe the hue

of a wall when it “bumps” into that wall. For each direction the agent has one GVF that

predicts the expected hue if it were to run all the way to the wall in that direction. The

cumulant and timescale are both dependent on whether or not the agent observes the hue

(takes action into the wall), hue present, which is either 0 or 1. The timescale is defined as

γt+1 = (1.0−hue presentt+1) and the cumulant is defined as Ct+1 = hue presentt+1∗huet+1.

A tabular state representation is used.

At each timestep the hue of the walls may change. In this example, the hue of the upper

wall has high variance while all other walls have low or no variance. Each cell of Figure 4.1a

shows the predicted hue in each direction. The robot moves in a weighted random walk

with a preference for moving up and left, as seen in the state-action visitation (Figure 4.1b).

High certainty (white) corresponds to high visitation and low certainty (black) corresponds

to low visitation (visitation is initialized to 0). In Figure 4.1c the robot makes predictions of

the expected squared TD-error of the primary hue prediction. This prediction is made using

another GVF that uses the squared TD-error of the hue GVF as its cumulant and γ = 0.

High certainty (white) corresponds to low error and low certainty (black) corresponds to

high error (error is initialized high).

Let us assume that the robot has some, as yet unspecified task, that depends on its

ability to accurately predict hue. The robot can decide to only trust predictions in portions
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of the world it has visited before, here the upper left. Further, when in the upper-left corner,

the robot can see that despite high visitation it should not trust it’s upward prediction as

error (and variance) remain high. On the other hand, it can trust its leftward prediction as

visitation is high and error is low. There are two main points here. The first is that adding

these certainty measures to the state representation, something that is not typically done,

provides additional information to the agent to improve its decision making abilities. Sec-

ondly, providing only a single measure was insufficient, visitation and error worked together

to give a more detailed picture.

4.2 Decision Points on a Robot Arm

As previously stated, one of the motivations for my research has been to improve a prosthesis

user’s ability to perform everyday tasks with a powered prosthesis. In this section, we

consider the case where a user performs a repetitive task with a robot arm. However, at

one particular point of the task the agent can choose to move in either of two directions.

We refer to this point as a decision point. We experimentally explore several introspective

measures in this setting. These measures could be used to provide additional information

to an agent which is not available in its sensorimotor stream. Further, these measures may

allow an agent to discern decision points.

In this experiment, virtual waypoints are displayed on a screen (Figure 4.2b), which

correspond to joint configurations of the shoulder rotation and elbow flexion joints of a

robot arm (Figure 4.2a). A user guides the arm through these waypoints using a joystick

(the colored trajectories are used as a legend for the figures that follow). Each trajectory

starts at the bottom-middle waypoint (start) and proceeds upward. At the start of the

experiment the user always goes left from the decision point (marked “split”). Around 4200

timesteps the user is permitted to choose to move the shoulder joint either left or right as

they like.

As primary predictions, we use one GVF each to predict the joint positions of the shoul-

der and elbow joints. In the initial scenario we expect that certainty in these predictions

should grow as the system learns to predict the positions of the joints. Once the user can

choose between going left or right this split point becomes a point of uncertainty. No state

information is provided that can tell the system which way the shoulder joint will go. Thus,
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Figure 4.2: (a) The Bento Arm (b) A user controls the shoulder rotation (x) and elbow flexion
(y) joints to move a pointer through a series of waypoints displayed onscreen. A circuit starts
in the lower-middle waypoint and follows the arrows in the diagram. For the first portion of
the experiment the user always goes the left, but after about 4000 timesteps they are free
to choose to go either left or right. (c) Various measures relating to the shoulder rotation
joint position. Shaded regions corresponds to the trajectories shown in Figure 4.2b. Note
that the shading color changes once the corresponding waypoint is reached, movement will
follow after. Predictions are shown in blue and the true return is shown in the dashed black.
(top) Joint position. (second) Predicted prediction error. (third) Prediction of Predicted
prediction error. (fourth) State visitation. (bottom) UDE, a measure of surprise.
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we would expect that while certainty for the rest of the trajectory regions may grow, the

region leading up to this split point will have low certainty and the predicted shoulder po-

sition will be more or less centered on the split waypoint until the user provides clarifying

information by moving in one direction.

In this setting we make several GVF predictions, which are learned using GTD(λ) with

λ = 0.99 (Equation (2.12)). The state representation is a fixed-length binary vector that

is constructed by concatenating a bias unit and a 4-dimensional tile-coding of normalized

shoulder angle (θ̂Sh), elbow angle (θ̂El), and decaying traces of the same (TSh, TEl), with a

decay rate of 0.8 (Ex. TSh;t = 0.8TSh;t−1 + 0.2θ̂Sh;t). The angles were normalized over the

effective joint range. These inputs were tile-coded (Sutton and Barto, 2018) with 100 coarse

tilings of width 1.0, which were hashed to a size of 2048, giving a feature vector of length

2049 with 101 active features. Learning updates were made at a rate of 30 updates per

second.

Additionally, we compute a simple method for counting state visitation, which is also

represented as a GVF. For this measure the cumulant is always 1 and γ = 0.0 (Section 3.3.2).

Finally, we compute UDE (Equation (3.1)) with β = 0.6.

We start by considering the prediction of the shoulder rotation, θSh. For this GVF we

use a cumulant of (1 − γ)θSh, which places the predicted return, and thus the prediction,

in the same scale as θSh. The prediction timescale is γ = 0.967 or approximately 1 s in the

future.

Figure 4.2c (top) shows the position of the shoulder joint, the true return and the actual

prediction made by the system. We see that prior to 4200 timesteps the trajectory was

consistently to the left side and that the predictions match well against the ideal. After this

point the predictions are initially off on the right side (green and yellow), but the system

soon learns to predict these trajectories. The area of interest is the region approaching the

split point (gray) and the region immediately following the split point. In the left only

regime the GVF learns to make decent predictions in both regions, predicting movement

to the left. Once the user begins choosing to go in either direction we see that in the gray

region leading up to the split point the prediction tends to stay in the middle. Once the user

switches joints we move into the pink region and here too the predictions tend towards the

middle. It is only after the user begins moving the shoulder in one direction or the other that

the predictions move to track the position of the shoulder joint. Also, in the gray and pink
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regions, prior to movement, while generally predicting a central position there does appear

to be a bias towards predicting in the direction that the user took the last time they were

at the split point. This is to be expected from the tracking performed by online learning.

The remaining panels of Figure 4.2c show various certainty measures on this system. In

the second panel the squared TD-error produced by the shoulder position estimator is used

as the cumulant of a GVF. We see that the system has settled on relatively low error until

the switch around 4200 timesteps at which point the system begins predicting high error

for all states leading up to the split point (gray) and around the split point itself. Further,

this prediction is itself used as a cumulant for another GVF in the third panel. Here we see

that this predictor is able to anticipate high error much earlier. The bottom panel shows

an estimate of visitation, which is also implemented as a GVF. Here we see that the system

has relatively less experience with the right side of the task. As in Section 4.1, the predicted

squared TD-error and the visitation could be taken together to explain whether or not a

prediction should be trusted and may suggest why. Finally the UDE measure (White, 2015)

shows that the agent gets spikes of surprise whenever the user starts moving left or right

from the split point. These results suggest several measures that may indicate uncertainty

in a GVF prediction. Using these approaches may highlight points where the trajectories

diverge, such as they did here.

4.3 Predicting Surprise

Unexpected Demon Error (UDE), Equation (3.1), can be seen as a measure of surprise. It

is computed by tracking the long-term and short-term statistics of TD-error and can thus

be seen as an introspective measure. When UDE increases it indicates that the recent TD-

errors are outside the standard deviation of the TD-errors over all time, thus such spikes are

surprising. In this section we investigate UDE and predictions of UDE for a set of GVFs

applied to the dataset of a robot arm.

For these experiments we use the Modular Prosthetic Limb (MPL v3) (Bridges et al.,

2011), which is arguably one of the most advanced prosthetic arms to date. What sets the

MPL apart as a prosthetic arm is its high degrees of freedom (17 active degrees) and its

rich sensory stream. For each motor the robot provides sensory readings of load, position,

temperature, and current. Additionally, each fingertip has a 3-axis accelerometer and 14-pad
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Figure 4.3: The Modular Prosthetic Limb (MPL) used for the experiments. The arrows
indicate the nature of the repeated disturbance imposed during the experiment. The green
arrow indicates the direction of the provided perturbation, while the blue arrows indicate
the resulting joint movement.

pressure sensor array to provide tactile sensation. Data packets are transmitted via UDP

packets. For this experiment we only included sensory data from the motors.

This experiment consisted of the MPL being intermittently perturbed from a resting

position. During the first two minutes of the experiment the arm remained motionless in

its resting position. Note that this position is not passive, but is actively maintained by

arm motors. This period allows the GVFs to learn predictions of the baseline behavior.

Following this, the arm was perturbed by the experimenter at minute intervals as indicated

in Figure 4.3. Following each perturbation the arm returned to its resting position. The

total experimental data set spanned 5217 timesteps (approximately 20 minutes) with 21

perturbations. Outputs for position, velocity, load and temperatures are shown in Figure 4.4.

4.3.1 Predictive Architecture and Algorithmic Implementation

The experimental architecture, visualized in Figure 4.5, produces four sets of outputs: 1) bit

level sensorimotor GVFs, 2) UDE for the sensorimotor GVFs, 3) predictions of UDE and 4)

float level sensorimotor GVFs. As input to the first module, GVF Module 1, we use the raw

bit representation of the data packet that is 3520 bits in length. GVF Module 1 then makes

a one-step prediction of each of these bits (γ = 0). For each GVF prediction the UDE is

calculated with β = 0.001. Thus, GVF Module 1 outputs 3520 predictions and 3520 UDE
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REPEATED DISTURBANCES

Figure 4.4: Decoded percept data from the robot over the 20 min duration of the experiment.
The 21 disturbances are clearly identifiable in data from the position, velocity and the load
sensors. The temperature sensors show an increasing temperature over the experiment, with
additional increases for some sensors due to the perturbations.

values. GVF Module 2 takes the first module’s GVF predictions as its features and the UDE

as its cumulant, thus predicting UDE. The discount rate for this module is γ = 0.999, which

is very long. The final module, GVF Module 3, takes the first module’s predictions as inputs

and again predicts the UDP packet, but this time using the float representation that is 108

floats in length. A discount of γ = 0.9 is used. While this third module does not contribute

to the narrative of this section it is included as an example of how predictions can be used

hierarchically for increasingly complex predictive questions.

We chose to focus on predicting the sensorimotor stream as bits because in this form they

provide examples of many different system dynamics. Some bits are completely stationary,
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Figure 4.5: The prediction architecture used in the experiments. The sensor stream from the
MPL on the left side is received over the network as a 3520 bit UDP packet, subsequently
decoded into 108 floating point signals. These 3520 bits are delivered directly as both
cumulant (C) and state (X) for Module 1. The output of the first Module is then fed into
Module 2 and 3 as the state X used in predicting the 108 decoded sensor signals and also to
make predictions about the UDE (surprise) of Module 1.

Bit/Line Data / sensor readings
0-39 Header
40-903 Position
904-1767 Velocity
1768-2631 Load
2632-3495 Temperature
3496-3520 Footer & Checksum

Table 4.1: UDP packet structure: the position of data in the MPL binary percepts (each bit
corresponding to the respective line in the figures that follow).

while others respond to the disturbance. The activity of some bits will change over time. Still

other bits will change randomly. The categorization of the bit indexes is listed in Table 4.1.

All GVF predictions were represented using linear function approximation and learned

using TD(λ) with accumulating traces and λ = 0.99 (see Equation (2.10)).

4.3.2 Experimental Results

Ideal Results

In order to provide intuition, we first created a simulated data set and computed the expected

behaviors for each of the layers (Figure 4.6). Dark purple indicates highly active values while

light blue indicates low activation. The simulated sensory bit stream is shown in subplot (a).

It includes bits that do not change, bits that follow recurring patterns and others that respond
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randomly. The first layer of GVF predictions (GVF Module 1 ) are shown in subplot (b).

They predict the sensory bits at one step and therefore subplot (b) should match subplot (a)

with a shift of one timestep. UDE is shown in subplot (c). UDE reacts differently to bits

with different dynamics. After initial learning UDE should not react to random bits or

bits that are constant. It should, however, react to bits that change in unexpected ways.

This might happen if a bit suddenly turns on or if the frequency of activation exceeds what

was previously observed. It will also occur for bits that turn on and off according to a

recurring pattern, like those bits that respond to the disturbance, if the moving average of

the UDE is short enough. Finally, the predictions of UDE are shown in subplot (d). Recall

that these predictions use a very large discount that has a correspondingly long timescale.

Thus, we expect that for bits with recurring patterns of UDE spiking our system will predict

continually high UDE as this signal is repeatedly reinforced.

Bits and Bit Predictions

Figure 4.7 shows results for the real sensorimotor stream. Similarly to Figure 4.6, subplot

(a) shows the raw bits of the UDP packets, (b) shows the one-step predictions from GVF

Module 1, (c) shows UDE values and (d) shows predictions of UDE. The bits (along the

y-axis) correspond to Table 4.1.

Some bits in the stream remain constant. This could be due to the bit representation of

the float value or because the corresponding sensory data is itself unchanging. For example,

readings from the hand should not change as it is not used in this experiment. Figure 4.8

provides a zoomed in look at Figure 4.7 for the position and velocity sensors (left) and the

load sensors (right). We see that the position and velocity sensor’s bits (Figure 4.8 (a, left))

are very constant with some fluctuations. However, around timestep 4090 we see a change in

bit activation due to perturbation on the arm. Other bits, such as those for the load sensors

(Figure 4.8 (a, right)), change continually. This may be the result of sensor noise or because

some sensory reading is continually changing. For example, in order to maintain the resting

position the arm must counter gravity, thus producing a continual, albeit fluctuating, load

on the corresponding motors and resulting in slowly increasing temperature readings.

Predictions of constant signals are easy to learn and the one-step predictions (Figure 4.8

(b)) for these signals match the sensorimotor stream well. On the other hand, bits that

change randomly or unpredictably (given the input features) are difficult or impossible to
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predict and we instead expect the predictions to find the expectation over time, around

0.5. This is observed in Figure 4.8 (b, right) for some of the load bits between lines 2000

and 2050. For the position and velocity signals we see an increase in prediction magnitude

around 4090, corresponding to the disturbance (Figure 4.8 (a, left)).

UDE and UDE Predictions

Our expectation is that UDE will show high activation at the beginning of learning until

it has observed the baseline activity for the resting state. Afterwards UDE should go low

and remain low until the TD-error increases due to the perturbations. This is clearly seen

in Figure 4.7 (c). We see the repetitive pattern of UDE activation due to the perturbation.

For example, we see this in lines 100, 950, 1800, which correspond to position, velocity

and load respectively. Figure 4.8 (d, left) provides a closeup of one of these events. Of

particular interest note that despite the regular noise of the velocity bits between lines 900

and 1000 in Figure 4.8 (a, left) the corresponding UDE signal only activates significantly

during the disturbance around 4090. We can see this is due to the increased TD-errors in

Figure 4.8 (c, left). Further, consider the highlighted UDE activation of the load sensors

in Figure 4.8 (d, right). The corresponding TD-error alternates frequently (subplot (c))

following the perturbation at timestep 4310 and the UDE initially spikes and then tapers off

its activation. It spikes again at 4460 in response to the negative TD-error.

Figure 4.7 (d), shows the predictions of UDE. These predictions do not significantly

activate until after the first disturbance occurs. Following this, predictions for bits that are

impacted by the disturbance remain high. The discount for these predictions is very high

with γ = 0.999, which corresponds to roughly 1000 timesteps in expectation. Thus, these

predictions are very long timescale. For bits that respond to each perturbation the prediction

is reinforced and remains high. These can be interpreted as expectations that this bit will

regularly be surprised. For other bits whose UDE spikes briefly the predictions of UDE have

only a minimal, slow response, which might be treated as a filtering of UDE spikes. Further,

for bits whose UDE is high (Figure 4.7 (c) around line 500 and 4090 timesteps) and then

drops off the predicted UDE slowly decays.
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Figure 4.6: Simplified plots for the ideal relationship between (a) binary data, (b) predictions,
(c) UDE and (d) predictions of UDE with γ = 0.999 for synthetic data.
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Figure 4.7: All recorded data for the experiment. The first subplot (a) shows the sensor
stream from the MPL as decoded binaries. The second subplot (b) contains the myopic
predictions for the binaries, provided by the first predictive layer. In the third subplot (c),
the UDE is shown, followed by (d) the predictions about the UDE for a termination signal
γ = 0.999.
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Figure 4.8: Zoomed in version of Figure 4.7. (a) Sensor data, (b) predictions (γ = 0), (c)
prediction error, (d) UDE and (e) predictions of UDE (γ = 0.999) for (left) position and
velocity sensors, (right) load sensors.
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4.3.3 Discussion

This section explored the behavior of the UDE surprise measure and predictions of UDE in

capturing information about the sensorimotor stream of a prosthetic arm. Here we focused

on capturing information about the raw binary data of the MPL’s data packets. The first

layer in our architecture performed one-step predictions of the sensory bits. The primary

role of these predictions was to produce TD-errors that were used for computing UDE.

Additionally, these predictions were used as input features for predicting the UDE signals.

Using UDE allowed us to capture information about the temporal behavior of the bits.

UDE essentially learns the baseline behavior of the signal and then spikes when something

happens that is outside the norm. Thus, it was able to signify the effects of the pertur-

bations on the position, velocity and load sensors. This provides insight into the sensory

data that is not directly available in the sensory data itself. Predictions of UDE perform

additional functions of filtering out temporary UDE spikes and identifying bits that regu-

larly experience surprise. In this particular experimental setting the predictions of UDE are

largely independent of state and instead capture whether or not a particular bit experiences

frequent spikes in UDE. However, we would also expect to be able to make predictions of

more state-dependent UDE, such as in Section 4.2.

UDE and predictions of UDE capture temporal information not directly available in

the robot’s data stream. Thus, providing such measures should enhance an agent’s state

representation, ultimately allowing it to learn to make better decisions. For example, spikes

in UDE may occur when the robot is damaged. This piece of state information may allow

the robot to adapt its behavior accordingly; if the robot learns to predict UDE, which occurs

as the result of damage, it may be able to avoid such damage in the future. Or consider the

setting of Section 4.2 in which there is one decision point in the trajectory that the user may

take. A prediction of UDE may inform the robot arm that a decision point is approaching.

This may enable the robot to take some sort of preemptive action depending on the task.

For example, it may provide the user with relevant prompts.

4.4 Conclusion

This chapter built off of the ideas presented in Chapter 3. Specifically, we explored different

introspective measures. We looked at how they could be used to capture information not

56



directly present in the observation stream. These measures capture temporal information

over the agent’s past experience. Such information, we speculate, will enhance an agent’s

representation of state and ultimately enable it to make better decisions.

In Section 4.1 we visualized visitation counting and prediction error and suggested that

these could enhance an agent’s representation. These suggest that such introspective mea-

sures add information that was not already present in the observation stream and further

showed how multiple measures could work together. Section 4.2 presented a human-robot

interaction scenario in which the human was faced with a single, state-dependent, point of

decision as it controlled the robot arm. We considered predictions of error, visitation counts

and surprise and suggested that these might be useful for identifying and predicting decision

points—points of uncertainty. Finally, in Section 4.3 we conducted another demonstration

on a robot arm. In this setting the agent learned to make predictions of its sensorimotor

stream under normal behavior. The arm was then regularly perturbed and the agent used

error-based surprise (UDE, Equation (3.1)), and predictions of surprise to capture informa-

tion about these perturbations. This work suggested how predictions of surprise might be

used for predicting deviations from normal behavior (e.g., predicting damage).

Taken as a whole, these three demonstrations further our conjecture that introspective

measures can be a source of useful information for agents that continually, and autonomously,

learn and adapt in real-world environments. In the next chapter we present a new method

and detailed experimental analysis for estimating one specific introspective measure, the

variance of the return.
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Chapter 5

Using GVFs to Learn the Variance of
the Return

In Chapter 3, we conjectured that introspective measures would be useful as part of an

agent’s state representation, and, further, that some such measures could be captured as

GVFs. In this chapter we show that a sequential pair of GVFs can be used to directly

estimate the variance of the return—an inherently introspective measure. The key to our

approach is to use the squared TD-error of the first TD estimator as the cumulant of the

second. Additionally, the second GVF uses the square of the first GVF’s discount as its own

discount.

In this chapter, we describe our algorithm and present theoretical results in the tabular-

state setting. We experimentally evaluate our algorithm alongside an existing, but indirect

method for estimating the variance of the return. Most of the experiments are performed in

the tabular setting, but we also demonstrate our algorithm with linear function approxima-

tion. Our method is simpler than the indirect approach, and our experimental results show

that it performs just as well as the indirect method, but is generally more robust.

The body of this chapter, and the original paper it is based on, motivates this research

towards more traditional reinforcement learning issues, such as risk-sensitive RL, exploration,

and parameter adaptation. However, our own motivation for pursuing this line of research

was based on the premises posed in Chapter 3. The variance of the return may be useful as

a certainty measure, providing an agent with additional information about its environment

and learning process and allowing the agent to choose between different policies.

As a note to the reader, in keeping with the notation used by other works in this area,

throughout this chapter we use J to indicate the value estimate and V to indicate variance.
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Figure 5.1: Each TD node takes as input a cumulant C, a discounting function γ, and features
φ. For the direct method (top) the squared TD-error of the first-stage value estimator is used
as the meta-reward for the second-stage V estimator. For VTD (bottom), a more complex
computation is used for the meta-reward and an extra stage of computation is required.

5.1 Introduction

Conventionally, in reinforcement learning (RL) the agent estimates the expected value of

the return—the discounted sum of future rewards—as an intermediate step to finding an

optimal policy. The agent estimates the value function by averaging the returns observed

from each state in a trajectory of experiences. To estimate this value function online—while

the trajectory is still unfolding—we update the agent’s value estimates towards the expected

return. Algorithms that estimate the expected value of the return in this way are called

temporal-difference (TD) learning methods. However, it is reasonable to consider estimating

other functions of the return beyond the first moment. For example, Bellemare, Dabney,

and Munos (2017) estimated the distribution of returns explicitly. In this chapter, we focus

on estimating the variance of the return using TD methods.

The variance of the return can be used to design algorithms that account for risk in deci-

sion making. The main approach is to formulate the agent’s objective as maximizing reward,

while minimizing the variance of the return (Sato et al., 2001; Prashanth and Ghavamzadeh,

2013; Tamar, Di Castro, et al., 2012).
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An estimate of the variance of the return can also be useful for adapting the parame-

ters of a learning system automatically, thus avoiding time-consuming, human-driven meta

parameter tuning. Sakaguchi and Takano (2004) used the variance estimate explicitly in

the decision making policy to set the temperature variable in the Boltzmann action selec-

tion rule. Using variance in this way can automatically adjust the amount of exploration,

allowing the learning system to adapt to new circumstances online. Conventionally, this

temperature would either be set to a constant or decayed according to a fixed schedule. In

either circumstance, the performance can be quite poor in non-stationary domains, and a

human expert is required to select the constant value or fixed schedule. Similarly, White and

White (2016) estimated the variance of the return to automatically adapt the trace-decay

parameter, λ, used in learning updates of TD algorithms (see Section 5.2 for an explanation

of the role of λ). Not only does this approach avoid the need to tune λ by hand, but it can

result in faster learning.

The variance V of the return can be estimated either directly or indirectly. Indirect

estimation involves computing an estimate of variance from estimates of the first and sec-

ond moments. Sobel (1982) was the first to formulate Bellman operators for the second

moment and showed how this could be used to compute variance indirectly. This is the ap-

proach used by Tamar, Castro, et al. (2016), Tamar and Mannor (2013), and Prashanth and

Ghavamzadeh (2013). White and White (2016) introduced several extensions to this indirect

method including estimation of the λ-return (Sutton and Barto, 2018), support for off-policy

learning (Sutton, Maei, et al., 2009; Maei, 2011), and state-dependent discounting (Sutton,

Modayil, et al., 2011; White, 2017). Their method, which they refer to as VTD, serves as

the indirect estimation algorithm used in this chapter. We note that an alternative method,

which we do not investigate here, could be to estimate the distribution of returns as done

by Bellemare, Dabney, and Munos (2017) and compute the variance from this estimated

distribution.

Variance may also be estimated directly. Tamar, Di Castro, et al. (2012) gave a direct

algorithm but restricted it to estimating cost-to-go returns in a strictly episodic manner,

i.e., estimates are only updated after an entire trajectory has been captured. We introduce

a new algorithm for directly estimating the variance of the return incrementally using TD

methods. Our algorithm uses two TD learners, one for estimating value and the other for

estimating the variance of the return. These estimators operate in series with the squared
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TD-error of the value learner serving as the reward of the variance learner and the squared

discount rate of the value learner serving as the discount rate of the variance learner. Like

VTD (White and White, 2016), our algorithm supports estimating the variance of the λ-

return, state-dependent discounting, estimating the variance of the on-policy return from off-

policy samples, and estimating the variance of the off-policy return from on-policy samples

(Section 5.3.2 motivates these extensions). We call our new algorithm Direct Variance TD

(DVTD). We recognize that the algorithm of Sato et al. (2001) can be seen as the simplest

instance of our algorithm, using the on-policy setting with fixed discounting and no traces1.

Sakaguchi and Takano (2004) also used this simplified algorithm, but treated the discount

of the variance estimator as a free parameter.

We introduce a Bellman operator for the variance of the return, and further prove that,

even for a value function that does not satisfy the Bellman operator for the expected return,

the error in this recursive formulation is proportional to the error in the value function

estimate. Interestingly, the Bellman operator for the second moment requires an unbiased

estimate of the return (White and White, 2016). Since our Bellman operator for the variance

avoids this term, it has a simpler update. As shown in Figure 5.1, Both DVTD and VTD

can be seen as a network of two TD estimators running sequentially. Note that we restrict

our formal derivations and subsequent analysis to the table lookup setting.

Our primary goal is to understand the empirical properties of the direct and indirect

approaches. In general, we found that DVTD is just as good as VTD and in many cases

better. We observe that DVTD behaves better in the early stages of learning before the

value function has converged. Furthermore, we observe that the variance of the estimates

of V can be higher for VTD under several circumstances: (1) when there is a mismatch in

step-sizes between the value estimator and the V estimator, (2) when traces are used with

the value estimator, (3) when estimating V of the off-policy return, and (4) when there is

error in the value estimate. Finally, we observe significantly better performance of DVTD

in a linear function approximation setting. Overall, we conclude that the direct approach to

estimating V , DVTD, is both simpler and better behaved than VTD.

1Dimitrakakis (2006) used a related TD method, which estimates the squared TD-error

61



Table 5.1: Algorithm Notation

J estimated value function of the target policy π.
M estimate of the second moment.
V estimate of the variance.
C, C̄ meta-reward used by the J and (M,V ) estimators.
λ bias-variance parameter of the target λ-return.
κ, κ̄ trace-decay parameter of the J and (M,V ) estimators.
γ, γ̄ discounting function used by J and (M,V ) estimators.
δt, δ̄t TD-error of the J and (M,V ) estimators at time t.
ρ̄ importance sampling ratio for estimating the variance of the

target return from off-policy samples.
η importance sampling ratio used to estimate the variance of the

off-policy return.

5.2 The MDP Setting

We model the agent’s interaction with the environment as a finite Markov decision process

(MDP) consisting of a finite set of states S, a finite set of actions, A, and a transition model

p : S × S × A → [0, 1] defining the probability p(s′|s, a) of transitioning from state s to

s′ when taking action a. In the policy evaluation setting considered in this chapter, the

agent follows a fixed policy π(a|s) ∈ [0, 1] that provides the probability of taking action a in

state s. At each timestep the agent receives a random cumulant Ct+1 (typically reward R),

dependent only on St, At, St+1. The return is the discounted sum of future rewards

Gt = Ct+1 + γt+1Ct+2 + γt+1γt+2Ct+3 + . . .

= Ct+1 + γt+1Gt+1.
(5.1)

where γ ∈ [0, 1] specifies the degree to which future rewards are discounted. Note that we

define discounting as state-dependent such that γt+1 ≡ γ(St+1). This allows us to combine

the specification of continuing and episodic tasks. Further implications of this are discussed

in Section 5.3.2.

The value of a state, j(s), is defined as the expected return from state s under a particular

policy π:

j(s) =Eπ[Gt|St = s]. (5.2)

We use j to indicate the true value function and J the estimate. The TD-error is the
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difference between the one-step approximation and the current estimate:

δt = Ct+1 + γt+1Jt(St+1)− Jt(St). (5.3)

This can then be used to update the value estimator using a TD method, such as TD(0) as

follows:

J(s)t+1 = J(s)t + αδt (5.4)

5.3 Estimating the Variance of the Return

For clarity of presentation, we first discuss the simplest version of both the direct and indirect

methods and present the full algorithms in Section 5.3.2.

The direct TD method uses both a value estimator and a variance estimator. The value

estimator provides an estimate of the expected return. The variance estimator, on the other

hand, uses the value estimator to provide an estimate of the variance of the return. Since

we use TD methods for both the value and variance estimators we need to adopt additional

notation; variables with a bar are used by either the second moment or variance estimator.

Otherwise, they are used by the value estimator. The key to using both the indirect and

direct methods as TD methods is to provide a discounting function, γ̄, and a meta-reward,

C̄. In the following, we present a simplified TD(0) version of both algorithms.

Simplified Direct Variance Algorithm

γ̄t+1 ← γ2t+1

C̄t+1 ← δ2t

δ̄t ← C̄t+1 + γ̄t+1Vt(s
′)− Vt(s)

Vt+1(s)← Vt(s) + ᾱδ̄t (5.5)

Simplified Second Moment Algorithm

γ̄t+1 ← γ2t+1

C̄t+1 ← C2
t+1 + 2γt+1Ct+1Jt+1(s

′)

δ̄t ← C̄t+1 + γ̄t+1Mt(s
′)−Mt(s) (5.6)

Mt+1(s)←Mt(s) + ᾱδ̄t

Vt+1(s)←Mt+1(s)− Jt+1(s)
2
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5.3.1 Derivation of the Direct Method

We now derive the direct method for estimating the variance of the return. For clarity, we

start with the simple case described in Section 5.3. Section 5.3.2 presents the more general

extended algorithm.

The derivation of the direct method follows from characterizing the Bellman operator for

the variance of the return: Theorem 1 gives a Bellman equation for the variance v. It has

the form of a TD target with meta-reward C̄t = δ2t and discounting function γ̄t+1 = γ2t+1.

Therefore, we can estimate V using TD methods.

The Bellman operators for the variance are general, in that they allow for either the

episodic or continuing setting, by using variable γ. By directly estimating variance, we avoid

a second term in the cumulant that is present in approaches that estimate the second moment

(Tamar and Mannor, 2013; Tamar, Castro, et al., 2016; White and White, 2016).

To have a well-defined solution to the fixed point, we need the discount to be less than

one for some transition (White, 2017; Yu, 2015). This corresponds to assuming that the

policy is proper, for the cost-to-go setting (Tamar, Castro, et al., 2016).

Assumption 1. The policy reaches a state s where γ(s) < 1 in a finite number of steps.

Lemma 1. For j(s) = E [Gt+1|St = s], i.e., satisfying the Bellman function b : S ×A×R×
S → R,

E[b(St, At, Rt+1, St+1)(Gt+1 − j(St+1))|St = s] = 0

Proof. Let bt = b(St, At, Rt+1, St+1). By the law of total expectation:

E [bt(Gt+1 − j(St+1))|St = s] = E [E[bt(Gt+1− j(St+1))|St, At, Rt+1, St+1]|St = s]

Given St, At, Rt+1 and St+1, bt is constant and can be moved outside of the expectation.

Therefore,

E[bt(Gt+1 − j(St+1))
∣∣∣St, At, Rt+1, St+1]

= E
[
bt
∣∣St, At, Rt+1, St+1

]
× E

[
Gt+1 − j(St+1)

∣∣St, At, Rt+1, St+1

]
Because

E
[
Gt+1 − j(St+1)

∣∣St, At, Rt+1, St+1

]
= 0

the result follows.
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Theorem 1. For any s ∈ S,

j(s) = E [Rt+1 + γt+1j(St+1) | St = s]

v(s) = E
[
δ2t + γ2t+1v(St+1) | St = s

]
(5.7)

Proof. First we expand Gt− j(St), from which we recover a series with the form of a return.

Gt − j(St) = Rt+1 + γt+1Gt+1 − j(St)

= Rt+1+γt+1j(St+1)−j(St)+γt+1(Gt+1−j(St+1))

= δt + γt+1(Gt+1 − j(St+1)) (5.8)

The variance of Gt is therefore

v(s) = E
[
(Gt − E [Gt | St = s])2 |St = s

]
= E

[
(Gt − j(s))2 | St = s

]
(5.9)

= E
[
(δt + γt+1(Gt+1 − j(St+1)))

2 | St = s
]

= E
[
δ2t | St = s

]
+ E

[
γ2t+1(Gt+1 − j(St+1))

2 | St = s
]

+ 2E [γt+1δt(Gt+1 − j(St+1)) | St = s]

Equation (5.7) follows from Lemma 1 which shows

E [γt+1δt(Gt+1−j(St+1)) | St = s] = 0. Similar to Lemma 1, using the law of total expecta-

tion, E
[
γ2t+1(Gt+1 − j(St+1))

2 | St = s
]

= E
[
γ2t+1v(St+1) | St = s

]
.

We provide an initial characterization of error in the variance estimate obtained under

this recursion, when an approximate value function rather than the true value function is

used. As we show in Theorem 2, the resulting error in the variance estimator is proportional

to the squared error in the value estimate, and discounted accumulated errors into the future.

If the approximation error is small, we expect this accumulated error to be small, particularly

as the accumulation errors are signed and so can cancel, and because they are discounted.

However, more needs to be done to understand the impact of this accumulated error.

Theorem 2. For approximate value function J with variance estimate

V (s) = E
[
δ2t + γ2t+1V (St+1) |St = s

]
, if there exists ε : S → [0,∞) bounding squared value
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estimation error (J(s)− j(s))2 ≤ ε(s) and accumulation error |E[γt+1δt(j(St+1)−J(St+1)) +

γ2t+1γt+2δt+1(j(St+2)− J(St+2)) + ... |St = s]| ≤ ε(s), then∣∣v(s)− E
[
δ2t + γ2t+1V (St+1) | St = s

]∣∣ ≤ 3ε(s)

Proof. We can re-express the true variance in terms of the approximation J , as

v(s) = E
[
(Gt − j(s) + J(s)− J(s))2 | St = s

]
= E

[
(Gt − J(s))2 | St = s

]
+ (J(s)− j(s))2

+ 2E [Gt − J(s) | St = s] (J(s)− j(s)) (5.10)

This last term simplifies to

E [Gt−J(s) | St=s] = E [Gt−j(s) | St=s]+j(s)−J(s)

= j(s)− J(s) (5.11)

giving (J(s)− j(s))2 + 2(j(s)− J(s))(J(s)− j(s)) = −(J(s)− j(s))2. We can use the same

recursive form as (5.9), but with J , giving

E
[
(Gt−J(s))2 | St=s

]
=E
[
δ2t + γ2t+1V (St+1) | St=s

]
+ 2E [γt+1δt(Gt+1 − J(St+1)) | St = s]

+ 2E
[
γ2t+1γt+2δt+1(Gt+2−J(St+2))|St=s

]
+ ... (5.12)

where the terms involving δt(Gt+1 − J(St+1)) accumulate. Notice that∣∣E [γt+1δt(Gt+1 − J(St+1)) | St = s]
∣∣ =
∣∣E [γt+1δt(Gt+1 − j(St+1)) | St = s]

+ E [γt+1δt(j(St+1)− J(St+1)) | St = s]
∣∣

=
∣∣E [γt+1δt(j(St+1)− J(St+1)) | St = s]

∣∣
where the second equality follows from Lemma 1. By the same argument as in Lemma 1,

this will also hold true for all the other terms in (5.12). By assumption, the sum of all these

covariance terms between j and J are bounded by ε(s). Putting this together, we get

|v(s)− V (s)| =
∣∣v(s)−E

[
δ2t +γ2t+1V (St+1) | St=s

] ∣∣
≤ 2ε(s) + (J(s)− j(s))2 ≤ 3ε(s)
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5.3.2 The Extended Direct Method

Here, we extend the direct method to support estimating the λ-return, state-dependent γ,

eligibility traces and off-policy estimation, just as White and White (2016) did with VTD.

We first explain each of these extensions before providing our full direct algorithm and VTD.

The λ-return is defined as

Gλ
t = Ct+1 + γt+1(1− λt+1)Jt(St+1) + γt+1λt+1G

λ
t+1

and provides a bias-variance trade-off by incorporating J , which is a potentially lower-

variance but biased estimate of the return. This trade-off is determined by a state-dependent

trace-decay parameter, λt ≡ λ(St) ∈ [0, 1]. When Jt(St+1) is equal to the expected return

from St+1 = s, then Eπ[(1 − λt+1)Jt(St+1) + γt+1λt+1G
λ
t+1|St+1 = s] = Eπ[Gλ

t+1|St+1 = s],

and so the λ-return is unbiased. Beneficially the expected value Jt(St+1) is lower-variance

than the sample Gλ
t+1. If Jt is inaccurate, however, some bias is introduced. Therefore, when

λ = 0, the λ-return is lower-variance but can be biased. When λ = 1, the λ-return equals the

Monte Carlo return (Equation (5.1)); in this case, the update target exhibits more variance,

but no bias. In the tabular setting evaluated in this chapter, λ does not affect the fixed point

solution of the value estimate, only the rate at which learning occurs. It does, however, affect

the observed variance of the return, which we estimate. The λ-return is implemented using

traces as in the following TD(λ) algorithm, shown with accumulating traces:

zt(s)←
{
γtλtzt−1(s) + 1 s = St

γtλtzt−1(s) ∀s ∈ S, s 6= St

Jt+1(St)← Jt(St) + αδtzt(St)

(5.13)

For notational purposes, we define the trace parameter for the value and secondary

estimators as κ and κ̄ respectively. Both of these parameters are independent of the λ-

return for which we estimate the variance. That is, we are entirely free to estimate the

variance of the λ-return for any value of λ independently of the use of any traces in either

the value or secondary estimator.

State-Dependent γ. While most RL methods focus on fixed discounting values, it

is straightforward to use state-based discounting (Sutton, Modayil, et al., 2011; Modayil,

White, et al., 2014), where γt ≡ γ(St) (White (2017) goes further by defining transition

based discounting). This generalization enables a wider variety of returns to be considered.
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First, it allows a convenient means of describing both episodic and continuing tasks and

provides an algorithmic mechanism for terminating an episode without defining a recurrent

terminal state explicitly. Further, it allows for event-based terminations (Sutton, Modayil,

et al., 2011). It also enables soft terminations that may prove useful when training an agent

with sub-goals (White, 2017). The use of state-dependent discounting functions is relatively

new and remains to be extensively explored.

Off-policy learning. Value estimates are made with respect to a target policy, π. If

the behavior policy µ = π then we say that samples are collected on-policy, otherwise, the

samples are collected off-policy. An off-policy learning approach is to weight each update

by the importance sampling ratio: ρt = π(St,At)
µ(St,At)

. There are two different scenarios to be

considered when estimating the variance of the return in the off-policy setting. The first is

estimating the variance of the on-policy return of the target policy while following a different

behavior policy. The second has the goal of estimating the variance of the off-policy return

itself. The off-policy λ-return is:

Gλ:ρ
t =ρt(Ct+1 + γt+1(1−λt+1)jt(St+1) + γt+1λt+1G

λ:ρ
t+1). (5.14)

where the multiplication by the potentially large importance sampling ratios can significantly

increase variance.

It is important to note you would only ever estimate one or the other of these settings

with a given estimator. Let η be the weighting for the value estimator, and ρ̄ the weighting

for the variance estimator. If estimating the variance of the target return from off-policy

samples, the first scenario, ηt = 1 ∀t and ρ̄t = ρt. If estimating the variance of the off-policy

return ρ̄t = 1 ∀t and ηt = ρt.

Extended Derivation

Theorem 3.

v(s) = E[(ηtδt + (ηt − 1)j(s))2 + λ2t+1γ
2
t+1η

2
t v(St+1)|St = s]
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Proof. The proof is similar to the proof of Theorem 1.

v(s) =E[{Gλ
t − j(St)}2|St = s]

=E[{ηtCt+1 + ηtγt+1(1− λt+1)j(St+1) + ηtγt+1λt+1G
λ
t+1 − j(s)}2|St = s]

=E[{ηtCt+1 + ηtγt+1j(St+1)− ηtj(s) + ηtj(s)

− ηtγt+1λt+1j(St+1) + ηtγt+1λt+1G
λ
t+1 − j(s)}2|St = s]

=E[{(ηtδt + (ηt − 1)j(s)) + ηtγt+1λt+1(G
λ
t+1 − j(St+1))}2|St = s]

=E[(ηtδt + (ηt − 1)j(s))2 + η2t γ
2
t+1λ

2
t+1(G

λ
t+1 − j(St+1))

2

+ 2ηtγt+1λt+1(ηtδt + (ηt − 1)j(s))(Gλ
t+1 − j(St+1))|St = s]

=E[(ηtδt + (ηt − 1)j(s))2 + η2t γ
2
t+1λ

2
t+1(G

λ
t+1 − j(St+1))

2 + 2η2t γt+1λt+1δt(G
λ
t+1 − j(St+1))

+ 2ηtγt+1λt+1(ηt − 1)j(s)(Gλ
t+1 − j(St+1))|St = s] (5.15)

Using Lemma 1, with different fixed functions b, we can conclude that the last two terms

are zero, giving

v(s) =E[(ηtδt + (ηt − 1)j(s))2 + η2t γ
2
t+1λ

2
t+1(G

λ
t+1 − j(St+1))

2|St = s]

By the law of total expectation

v(s) =E[(ηtδt + (ηt − 1)j(s))2 + E[η2t γ
2
t+1λ

2
t+1(G

λ
t+1 − j(s′))2|St+1 = s′]|St = s]

=E[(ηtδt + (ηt − 1)j(s))2 + η2t γ
2
t+1λ

2
t+1v(St+1)|St = s].

completing the proof.

Theorem 3 gives a Bellman equation for V (s) in the more general off-policy setting. The

resulting TD algorithm uses meta-reward (ηtδt + (ηt − 1)j(s))2 and discounting function

η2t γ
2
t+1λ

2.

The Extended Algorithms

To estimate V , our method uses both value and variance estimators. The value estimator

provides an estimate of the expected return. The variance estimator, on the other hand,

uses the value estimator to provide an estimate of the variance of the return. Our method,

DVTD, and the indirect method, VTD, can be seen as simply defining a meta-reward and a

discounting function and can thus be learned with any known TD method, such as TD with
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accumulating traces as shown in Equation 5.13. Table 5.1 summarizes our notation.

Direct Variance Algorithm - DVTD

C̄t+1 ← (ηtδt + (ηt − 1)Jt+1(s))
2

γ̄t+1 ← γ2t+1λ
2
t+1η

2
t

δ̄t ← C̄t+1 + γ̄t+1Vt(s
′)− Vt(s)

z̄t(s)←
{
ρ̄t(γ̄tκ̄tz̄t−1(s) + 1) s = St

ρ̄t(γ̄tκ̄tz̄t−1(s)) ∀s ∈ S, s 6= St

Vt+1(s)← Vt(s) + ᾱδ̄tz̄t(s)

(5.16)

We also present the full VTD algorithm below (again, shown with accumulating traces).

Note that this algorithm does not impose that the variance be non-negative.

Second Moment Algorithm - VTD

Ḡt ← Ct+1 + γt+1(1− λt+1)Jt+1(s
′)

C̄t+1 ← η2t Ḡ
2
t + 2η2t γt+1λt+1ḠtJt+1(s

′)

γ̄t+1 ← η2t γ
2
t+1λ

2
t+1

δ̄t ← C̄t+1 + γ̄t+1Mt(s
′)−Mt(s)

z̄t(s)←
{
ρ̄t(γ̄tκ̄tz̄t−1(s) + 1) s = St

ρ̄t(γ̄tκ̄tz̄t−1(s)) ∀s ∈ S, s 6= St

Mt+1(s)←Mt(s) + ᾱδ̄tz̄t(s)

Vt+1(s)←Mt+1(s)− Jt+1(s)
2

(5.17)

5.4 Experiments

The primary purpose of these experiments is to demonstrate that both algorithms can ap-

proximate the true expected V under various conditions in the tabular setting. We consider

two domains. The first is an undiscounted, deterministic chain, which is useful for basic

evaluation and gives results that are easy to interpret (Figure 5.2). The second is a ran-

domly generated MDP, with different discount and trace-decay parameters in each state

(Figure 5.3). For all experiments Algorithm 5.13 is used as the value estimator. Unless

otherwise stated, traces are not used (κ = κ̄ = 0) and estimates were initialized to zero. For
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each experimental setting the average of 30 separate experiments is presented with standard

deviation shown as shaded regions. True values were determined by Monte Carlo estimation

and are shown as dashed lines in the figures.

We look at the effects of relative step-size between the value estimator and the variance

estimators in Section 5.4.1. Then, in Section 5.4.2 we use the random MDP to show that

both algorithms can estimate the variance with state-dependent γ and λ. In Section 5.4.3 we

evaluate the two algorithms’ responses to errors in the value estimate. Section 5.4.4 looks at

the effect of using traces in the estimation method. We then examine the off-policy setting

in Section 5.4.5. Finally, Section 5.4.6 provides experimental results in a linear function

approximation setting.

s0start s1 s2 s3
N (1, 1) N (1, 1) N (1, 1) N (1, 1)

Figure 5.2: Chain MDP with 4 non-terminal states and 1 terminal state. From non-
terminal states there is a single action with a deterministic transition to the right. On each
transition, rewards are drawn from a normal distribution with mean and variance of 1.0.
Evaluation was performed for λ = 0.9, which was chosen because it is not at either extreme
and because 0.9 is a commonly used value for many RL experimental domains.

5.4.1 The Effect of Step-Size

We use the chain MDP to investigate the impact of step-size choice. In Figure 5.4a all

step-sizes are the same (α = ᾱ = 0.001) and here both algorithms behave similarly. For

Figure 5.4b the step-size of the value estimate, (α = 0.01), is greater than that of the

secondary estimators, (ᾱ = 0.001). Now DVTD smoothly approaches the correct value,

while VTD first dips well below zero. This is expected as the estimates are initialized to zero

and the variance is calculated as V (s) = M(s) − J(s)2. If the second moment lags behind

the value estimate, then the variance will be negative. In Figure 5.4c the step-size for the

secondary estimators is larger than for the value estimator (0.001 = α < ᾱ = 0.01). While

both methods overshoot the target in this example, VTD has greater overshoot. For both

cases of unequal step-size, we see higher variance in the estimates for VTD.

Figure 5.5 explores this further. Here the value estimator is initialized to the true values

and updates are turned off (α = 0). The secondary estimators are initialized to zero and
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Figure 5.3: Random MDP, with a stochastic policy and state-based γ and λ. The state-
dependent values of γ and λ are chosen to provide a range of values, with at least one state
acting as a terminal state where γ = 0. On-policy action probabilities are indicated by µ
and off-policy ones by π.

learn with ᾱ = 0.001, chosen simply to match the step-sizes used in the previous experiments.

Despite being given the true values the VTD algorithm produces higher variance in its

estimates, suggesting that VTD is dependent on the value estimator tracking the return

samples.

This sensitivity to step-size ratio is shown in Figure 5.6 where consider different pairs of

step-sizes between primary and secondary estimators. All estimates are initialized to their

true values. For each ratio, we computed the average variance of the 30 runs of 2000 episodes.

We can see that DVTD is largely insensitive to step-size ratio, but that VTD has higher

mean squared error (MSE) except when the step-sizes are equal. This result holds for the

other experimental settings of this chapter, including the random MDP, but further results

are omitted for brevity.

Would there ever be a situation where different step-sizes between value and secondary

estimators is justified? The automatic tuning of parameters, such as step-size, is an impor-

tant area of research, seeking to make learning algorithms more efficient, robust and easier to

deploy. Methods that automatically set the step-sizes may produce different values specific

to the performance of each estimator. One such algorithm is ADADELTA, which adapts the
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(a)

(b)

(c)

Figure 5.4: Chain MDP (λ = 0.9). Varying the ratio of step-size between value and
variance estimators. a) Step-sizes equal. α = ᾱ = 0.001. b) Variance step-size smaller.
α = 0.01, ᾱ = 0.001. c) Variance step-size larger. α = 0.001, ᾱ = 0.01. We see greater
variance in the estimates and greater over/undershoot for VTD when step-sizes are not
equal. Shading indicates standard deviation.
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Figure 5.5: Chain MDP (λ = 0.9). Value estimate held fixed at the true values (α = 0, ᾱ =
0.001). Notice the increased estimate variance for VTD, especially State 0.

Figure 5.6: Chain MDP (λ = 0.9). The MSE summed over all states as a function of ratios
between the value step-size α (shown along the x-axis) and the variance step-size ᾱ (shown
in the 5 series). The direct algorithm is indicated by the solid lines, and VTD is indicated
by the dashed. The MSE of the VTD algorithm is higher than the direct algorithm, except
when the step-size is the same for all estimators, α = ᾱ or for very small ᾱ.

step-size based on the TD-error of the estimator (Zeiler, 2012). Figure 5.7 shows that using

a separate ADADELTA (ρ = 0.99, ε = 1e−6) step-size calculation for each estimator results

in higher variance for VTD as expected, given that the value estimator and VTD produce

different TD-errors.
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(a)

(b)

Figure 5.7: Chain MDP (λ = 0.9). a) Results using ADADELTA algorithm to auto-
matically and independently set the step-sizes α and ᾱ. b) The step-sizes produced by
ADADELTA.

5.4.2 State-dependent γ and λ.

One of the contributions of VTD was the generalization to support state-based γ and λ. Here

we evaluate the random MDP from Figure 5.3 (in the on-policy setting, using µ), which was

designed for this scenario and which has a stochastic policy, is continuing, and has multiple

possible actions from each state. Both algorithms achieved similar results (Figure 5.8).

5.4.3 Variable Error in the Value Estimates

The derivation of our DVTD assumes access to the true value function. The experiments

of the previous sections demonstrate that both methods are robust under this assumption,

in the sense that the value function was estimated from data and used to estimate V . It
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Figure 5.8: Random MDP evaluated on-policy with all step-sizes equal (α = ᾱ = 0.01).
Both algorithms achieve similar results.

remains unclear, however, how well these methods perform when the value estimates converge

to biased solutions.

To examine this, we again use the random MDP shown by Figure 5.3. True values for

the value functions and variance estimates are calculated from Monte Carlo simulation of

10,000,000 timesteps. For each run of the experiment each state of the value estimator

was initialized to the true value plus an error (J(s)0 = j(s) + ε(s)) drawn from a uniform

distribution: ε(s) ∈ [−ζ, ζ], where ζ = maxs(|v(s)|) ∗ err ratio (the maximum value in this

domain is 1.55082409). The value estimate was held constant throughout the run (α =

0.0). The experiment consisted of 120 runs of 80,000 timesteps. To look at the steady-

state response of the algorithms we use only the last 10,000 timesteps in our calculations.

Figure 5.9 plots the average variance estimate for each state with the average standard

deviation of the estimates as the shaded regions. Sweeps over step-size were conducted,

ᾱ ∈ [0.05, 0.04, 0.03, 0.02, 0.01, 0.007, 0.005, 0.003, 0.001], and the MSE evaluated for each

state. Each data point is for the step-size with the lowest MSE for that error ratio and

state. While the average estimate is closer to the true values for VTD, the variance of the

estimates is much larger. Further, the average estimates for VTD are either unchanged or

move negative, while those of the direct algorithm tend toward positive bias.

For Figure 5.10 the MSE is summed over all states. Again, for each error ratio the MSE

was compared over the same step-sizes as before and, for each point, the smallest MSE is

plotted. These results suggest the direct algorithm is less affected by error in J .
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Figure 5.9: Random MDP. For each run, the value estimate of each state is offset by a
random noise drawn from a uniform distribution whose size is a function of an error ratio
and the maximum true value in the MDP. Standard deviation of the estimates is shown by
shading.

Figure 5.10: Random MDP. The MSE computed for the last 10,000 timesteps of 120 runs
summed over all states using the step-size with the lowest overall MSE at each error ratio.
For each point the step-size, ᾱ, is displayed.
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5.4.4 Using Traces

We briefly look at the behavior of the random MDP when traces are used. We found no

difference when traces are only used in the secondary estimator and not in the value estimator

(κ = 0.0, κ̄ = 1.0 (Figure 5.11)

Figure 5.11: Random MDP. Using traces in the secondary estimators, but not in the value
estimator (TD(λ), α = ᾱ = 0.01, κ = 0.0, κ̄ = 1.0). There is no significant difference in
performance between DVTD and VTD.

Figure 5.12 considers the opposite scenario, where traces are only used in the value

estimator (κ = 1.0, κ̄ = 0.0). Here we do see a difference. Particularly the VTD method

shows more variance in its estimates for State 0 and 3.

Figure 5.12: Random MDP. Using traces (TD(λ), α = ᾱ = 0.01). Traces only used in
value estimator (κ = 1.0, κ̄ = 0.0). Notice the slight increase in the variance of the VTD
estimates for State 0 and 3.
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5.4.5 Off-policy Learning

We evaluate two different off-policy scenarios on the random MDP. First, we estimate V

under the target policy from off-policy samples. That is, we estimate the V that would be

observed if we followed the target policy, i.e., η = 1, ρ̄ = ρ. Both methods achieved similar

results in this setting (Figure 5.13).

Figure 5.13: Random MDP estimating V from off-policy samples (α = ᾱ = 0.01, η =
1, ρ̄ = ρ). Both methods produce similar results.

In the second off-policy setting, we estimate the variance of the off-policy return (Equa-

tion 5.14). Here ρ̄ = 1 and η = ρ. Figure 5.14 shows that both algorithms successfully

estimate the return in this setting. However, despite having the same step-size as the value

estimator, VTD produces higher variance in its estimates, as is most clearly seen in State 3.

5.4.6 Function Approximation

While this chapter has focused on the tabular case, where each state is represented uniquely,

here we include a first empirical result in the function approximation setting. We evaluate

both methods on the random walk shown in Figure 5.15. This domain was previously used

by Tamar, Castro, et al. (2016) for indirectly estimating the variance of the return with

LSTD(λ). We use transition based γ (White, 2017) to remove the terminal state and trans-

late the task into a continuing task. Further, we alter the state representation to make it

more amenable to TD(λ). For a state si we used φJ(i) = [1, (i+ 1)/30]T as features for the
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Figure 5.14: Random MDP estimating the variance of the off-policy return (α = ᾱ =
0.01, ρ̄ = 1, η = ρ).

s0 s1 s2 s27 s28 s290.3

0.7 0.7

. . .

0.7 0.7

0.30.30.30.3

0.7

Figure 5.15: Random Walk. Random walk with rewards of −1 for every transition to a
non-terminal state. Note that there is no discounting in this domain.

value learner and φM(i) = φV (i) = [1, (i+ 1)/30, (i+ 1)2/302]T as features for the secondary

learner. We use linear function approximation; each of our estimators is simply an inner

product of a set of weights and a feature vector: J(s) = w>J φJ(s), M(s) = w>MφM(s), and

V (s) = w>V φV (s). DVTD with linear function approximation and accumulating traces is

given by modifying Algorithm 5.16:

DVTD with Linear Function Approximation

C̄t+1 ← (ηtδt + (ηt − 1)Jt+1(s))
2

γ̄t+1 ← γ2t+1λ
2
t+1η

2
t

δ̄t ← C̄t+1 + γ̄t+1Vt(s
′)− Vt(s)

z̄t ← ρ̄t(γ̄tκ̄tz̄t−1 + φt(St))

wV :t+1 ← wV :t + ᾱδ̄tz̄t

(5.18)
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For DVTD, variance is computed directly as Vt+1(s). VTD with linear function approx-

imation is given as:

VTD with Linear Function Approximation

Ḡt ← Ct+1 + γt+1(1− λt+1)Jt+1(s
′)

C̄t+1 ← η2t Ḡ
2
t + 2η2t γt+1λt+1ḠtJt+1(s

′)

γ̄t+1 ← η2t γ
2
t+1λ

2
t+1

δ̄t ← C̄t+1 + γ̄t+1Mt(s
′)−Mt(s)

z̄t ← ρ̄t(γ̄tκ̄tz̄t−1 + φt(St))

wM :t+1(s)← wM :t(s) + ᾱδ̄tz̄t(s)

(5.19)

For VTD, variance is computed as Vt+1(s) = Mt+1(s)− Jt+1(s)
2.

We define the RMSVE for a value and variance estimate on this domain to be

RMSVE(J) =

√√√√ 29∑
i=0

dπ(si)(J(si)− j(si))2

RMSVE(V ) =

√√√√ 29∑
i=0

dπ(si)(V (si)− v(si))2

where dπ(si) is the steady state probability of being in state si. We set κ = κ̄ = 0.95 and

performed sweeps over step-sizes of {2i, i ∈ {−15,−12, . . . ,−1, 0}}. We first found the best

step-size for the value learner to be αJ = 2−11. Using this step-size for the value learner we

then swept over step-sizes for DVTD and VTD. In Figure 5.16a we show the total RMSVE

over 3,000,000 timesteps as a function of the step-size for the variance learner. Note that we

only show step-sizes that did not lead to numerical errors and each of the values reported is

the mean of 30 runs. Here we see that the direct method was considerably more insensitive

to the step-size selection than VTD. Using these results we selected the best alpha for VTD

(αJ = 2−11, αM = αV = 2−9) and used this for the remaining results.

Figure 5.16b shows the final estimates after 3M timesteps. The values reported are the

mean of 100 runs. Here we see that DVTD gives much better estimates than VTD, so much

so that the line from DVTD overlaps nearly perfectly with the true variance. VTD shows
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5. 4. 7  V a ri a bili t y i n  U p d a t e s

I n t his s e cti o n,  w e s h o w t h e e ff e cti v e u p d at e t o V t (s ) o n e a c h ti m est e p f or e a c h of t h e t w o

al g orit h ms i n t h e o n- p oli c y s etti n g.  F or n ot ati o n al cl arit y l et C = C t+ 1 , α = α t , γ = γ t+ 1 ,

λ = λ t+ 1 , S = S t , S = S t+ 1 , a n d δ t = δ .

F or t h e dir e ct al g orit h m t h e c h a n g e is j ust:

∆ V t (s ) = ᾱ (δ 2 + γ̄ V t (s ) − V t (s )). ( 5. 2 0)

T h e u p d at es f or t h e  V T D al g orit h m ar e  m u c h  m or e c o m pli c at e d t o c o m p ut e s o  w e  will

m a k e s o m e ass u m pti o ns a b o ut t h e d o m ai n t o si m plif y t h e d eri v ati o n.  First,  w e c o m p ut e t h e

c h a n g e i n t h e s e c o n d  m o m e nt a n d v al u e esti m at ors s e p ar at el y.

We first e x p a n d t h e t er m δ 2 as f oll o ws:

δ = c + γ J t (s ) − J t (s )

δ 2 =( c + γ J t (s )) 2 − 2( c + γ J t (s ))J t (s ) + J t (s ) 2 .
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Now we expand the change in the second moment estimate, M . To simplify the expansion,

we assume that at each transition the agent moves to a new state, i.e., st 6= st+1∀t (this is

not required for our algorithm, but simplifies the expansions below). This assumption holds

for both of the tabular domains examined in this chapter. This allows us to substitute

Jt+1(s
′) = Jt(s

′), which greatly simplifies the updates.

∆M(s) =ᾱ[(c+ γJt+1(s
′))2 − γ̄2Jt+1(s

′)2 + γ̄Mt(s
′)−Mt(s)]

=ᾱ[(c+ γJt(s
′))2 − γ̄2Jt(s′)2 + γ̄Mt(s

′)−Mt(s)]

=ᾱ[(c+ γJt(s
′))2 − 2(c+ γJt(s

′))Jt(s) + Jt(s)
2 + 2(c+ γJt(s

′))Jt(s)− Jt(s)2

− γ̄2Jt(s′)2 + γ̄Mt(s
′)−Mt(s)]

=ᾱ[δ2 + 2(c+ γJt(s
′))Jt(s)− Jt(s)2 − γ̄2Jt(s′)2 + γ̄Mt(s

′)−Mt(s)]

Notice that from the definition of the TD-error: c+ γJt(s
′) = δ + Jt(s).

=ᾱ[δ2 + 2(δ + Jt(s))Jt(s)− Jt(s)2 − γ̄2Jt(s′)2 + γ̄Mt(s
′)−Mt(s)]

=ᾱ[δ2 + 2δJt(s) + Jt(s)
2 − γ̄2Jt(s′)2 + γ̄Mt(s

′)−Mt(s)]

=ᾱ[δ2 + (γ̄Mt(s
′)− γ̄Jt(s′)2)− (Mt(s)− Jt(s)2) + 2δJt(s)− γ̄2Jt(s′)2 + γ̄Jt(s

′)2]

=ᾱ[δ2 + γ̄Vt(s
′)− Vt(s) + 2δJt(s)− γ̄2Jt(s′)2 + γ̄Jt(s

′)2]

=ᾱ[δ2 + γ̄Vt(s
′)− Vt(s)] + ᾱ[2δJt(s)− γ̄2Jt(s′)2 + γ̄Jt(s

′)2]

The first half of this equation is the same as the update for the direct algorithm (5.20).

Now we expand the change in the variance update for VTD.

∆Vt(s) =(Mt+1(s)− Jt+1(s)
2)− (Mt(s)− Jt(s)2)

=∆M(s) + Jt(s)
2 − Jt+1(s)

2

=∆M(s) + Jt(s)
2 − (αδ + Jt(s))

2

=∆M(s) + Jt(s)
2 − ((αδ)2 + 2αδJt(s) + Jt(s)

2)

=∆M(s)− (αδ)2 − 2αδJt(s).

Note that in the case that α = ᾱ this last term cancels out and we’re left with:

∆Vt(s) =α[δ2 + γ̄Vt(s
′)− Vt(s)] + αJt(s

′)2(γ̄ − γ̄2)− (αδ)2.
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Table 5.2: Average updates for various experiments.

Fig. Value 2nd Moment VTD Direct
5.4a 0.00332 0.0157 0.00415 0.00415
5.4b 0.0322 0.0165 0.143 0.00387
5.4c 0.00332 0.156 0.142 0.0419
5.5 0.0 0.0166 0.0166 0.00381
5.7 0.0212 0.0306 0.0752 0.00884
5.8 0.00362 0.00675 0.00381 0.00385
5.13 0.00362 0.00461 0.00303 0.00307
5.14 0.00362 0.0110 0.0116 0.00838

This suggests that VTD will deviate from the direct method more when: α is larger,

Jt(s
′) is larger, γ̄ = 0.5 and for large values of δ. In general, we expect from this equation

that the updates for the VTD will be larger than those of the direct method, suggesting a

cause for the higher variance of variance estimates across runs as observed for VTD under a

number of scenarios.

We also empirically tested this hypothesis, with Table 5.2 showing the updates for the

two algorithms across the tabular experiments. For episodic tasks (chain MDP, Figures 5.4a-

5.7) the results show the average total absolute change over all states for a given episode

averaged across runs and then averaged across all episodes. For the continuing case (complex

MDP, Figures 5.8-5.14) the results are the average absolute change for a timestep averaged

over all runs and then averaged across the entire run length. The experiments shaded in

gray are those where the two algorithms behaved nearly identically. In this case, we see

that the average magnitude of updates is nearly identical. For the other experiments, the

VTD algorithm showed higher variance in its variance estimates across runs. For these

experiments, we see that the average magnitude of the VTD updates is much larger than for

the direct algorithm.

5.5 Discussion

Both DVTD and VTD effectively estimate the variance across a range of settings, but DVTD

is simpler and more robust. This simplicity alone makes DVTD preferable. The higher

variance in estimates produced by VTD is likely due to the larger target that VTD uses in
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its learning updates: E[X2] ≥ E[(X − E[X])2]; we show more explicitly how this affects the

updates of VTD in Section 5.4.7. We expect the differences between the two approaches to

be most pronounced for domains with larger returns than those demonstrated here. Consider

the task of a helicopter hovering formalized as a reinforcement learning task (Ng et al., 2004).

In the most well-known variants of this problem the agent receives a massive negative reward

for crashing the helicopter (e.g., minus one million). In such problems the magnitude and

variance of the return is large. Here, estimating the second moment may not be feasible

from a statistical point of view, whereas the target of our direct variance estimate should

be better behaved. By focusing on simple MDPs we were able to carefully evaluate the

properties of these algorithms while keeping them isolated from additional effects like state-

aliasing due to function approximation. Further studies in more complex settings, such as

function approximation, are left to future work.

5.6 Conclusion

In this chapter we introduced a simple method for estimating the variance of the λ-return

using temporal-difference learning. Our approach is simpler than existing approaches, and

appears to work better in practice. We performed an extensive empirical study. Our findings

suggest that our new method outperforms VTD when: (1) there is a mismatch in step-size

between the value estimator and the variance estimator, (2) traces are used with the value

estimator, (3) estimating variances of the off-policy return, or (4) there is error in the value

estimate.

This concludes Part I of the dissertation. All of these chapters have been motivated

by the conjectures made in Chapter 3, primarily that introspective measures should be

included as part of an agent’s state representation. The experiments in Chapter 4 empirically

investigated several different measures and suggested ways in which they might provide

an agent with additional information currently lacking from typical state representations.

In Chapter 5 we showed how GVFs could be used to estimate one specific introspective

measure—the variance of the return. Research into introspective agents remains an open

opportunity for continued development, one which we believe will help enable continual

learning agents.
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Part II

Answers: Representing GVFs

86



In the second part of this dissertation we provide several contributions to answering GVF

questions. That is, we consider how to algorithmically represent and learn GVFs.

In Chapter 6 we presuppose a mechanism for incrementally constructing a collection of

GVFs over time and assume that such a mechanism will identify new prediction targets as

it progresses. In this setting we show that if the GVFs are represented using the successor

representation (SR) then learning of newly added predictions can be sped up. This is because

the SR factors the value estimate into two components, one that captures the environment

dynamics and the other that predicts the target signal. The SR allows the reuse of the

learned environment dynamics across many different cumulants.

The GVF syntax allows us to specify an infinite set of possible predictive questions.

Further, discovering what questions to specify is a difficult process. In Chapter 7 we address

these two issues with respect to the timescale parameter. We introduce a new method,

Γ-nets, which allows a single GVF network to make predictions for arbitrary timescales.

This is accomplished by including timescale as one of the input parameters to the function

approximation network. The network then effectively generalizes across timescale. This is

one approach to making the learning and representation of multiple timescales tractable.
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Chapter 6

Faster GVF Learning with the
Successor Representation

We propose using the Successor Representation (SR) to accelerate learning in a constructive

knowledge system based on General Value Functions (GVFs). In real-world settings, like

robotics for unstructured and dynamic environments, it is difficult and often impossible to

model all meaningful aspects of a system and its environment by hand. Instead, robots

must learn and adapt to changes in their environment and task, incrementally constructing

models from their own experience. GVFs, taken from the field of reinforcement learning

(RL), are a way of modelling the world as predictive questions. One approach to such

models proposes a massive network of interconnected and interdependent GVFs, which are

incrementally added over time. It is reasonable to expect that new, incrementally added

predictions can be learned more swiftly if the learning process leverages knowledge gained

from past experience. The SR provides a means of capturing regularities that can be reused

across multiple GVFs by separating the dynamics of the world from the prediction targets.

As a primary contribution of this work, we show that using the SR can improve sample

efficiency and learning speed of GVFs in a continual learning setting where new predictions

are incrementally added and learned over time. We analyze our approach in a grid-world

and then demonstrate its potential on data from a physical robot arm.

6.1 Introduction

A long standing goal in the pursuit of artificial general intelligence is that of knowledge

construction—incrementally modelling and explaining the world and the agent’s interaction
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with it directly from the agent’s own experience (Drescher, 1991). This is particularly impor-

tant in fields such as continual learning (Ring, 1994) and developmental robotics (Oudeyer,

Kaplan, and Hafner, 2007), where we expect agents to be capable of learning, dynamically

and incrementally, to interact and succeed in complex environments.

One proposed approach for representing such world models is a collection of General

Value Functions (GVFs) (Sutton, Modayil, et al., 2011), which models the world as a set

of predictive questions each defined by a policy of interest, a target signal, and a timescale

(discounting schedule) for accumulating the signal of interest. For example, a GVF on a

mobile robot could pose the question “How much current will my wheels consume over the

next second if I drive straight forward?” Such predictive models should enable a robot to

understand its environment, its body and the consequences of its actions. As these models

continually improve so too the robot’s ability to act should also improve.

GVF questions are typically answered using temporal-difference (TD) methods (Sutton,

1988) from the field of reinforcement learning (RL) (Sutton and Barto, 2018). A learned

GVF approximates the expected future value of a signal of interest, directly representing the

relationship between the environment, policy, timescale, and target signal as the output of

a single predictive unit.

Nevertheless, despite the success RL algorithms have achieved recently (e.g., (Mnih,

Kavukcuoglu, et al., 2015; Silver et al., 2017)), methods for answering multiple predictive

questions from a single stream of experience (critical in a robotic setting) are known to

exhibit sample inefficiency. In our setting of interest, where multitudes of GVFs are learned

in an incremental, sample by sample way, this problem is multiplied. Ultimately, the faster

an agent can learn to approximate a new GVF, the better.

This chapter focuses on the problem of model construction. Specifically, we show how

one can accelerate learning in a constructive knowledge system based on GVFs by sharing

the environment dynamics across the different predictors. This is done with the successor

representation (SR) (Dayan, 1993), which allows us to learn the world dynamics under a

policy independently of any signal being predicted.

We empirically demonstrate the effectiveness of our approach on both a tabular repre-

sentation and on a robot arm that uses function approximation. We evaluate our algorithm

in the continual learning setting where it is not possible to specify all GVFs a priori, but

rather GVFs are added incrementally during the course of learning. As a key result, we
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show that using a learned SR enables an agent to learn newly added GVFs faster than when

learning the same GVFs in the standard fashion without the use of the SR.

6.2 Background

We consider an agent interacting with the environment sequentially. We use the standard

notation in the reinforcement learning (RL) literature (Sutton and Barto, 2018), modelling

the problem as a Markov Decision Process. Starting from state S0 ∈ S, at each timestep

the agent chooses an action, At ∈ A, according to the policy distribution π : S × A →
[0, 1], and transitions to state St+1 ∈ S according to the probability transition p(·|St, At).
For each transition St

At−→ St+1 the agent receives a reward, Rt, from the reward function

R(St, At, St+1) ∈ IR.

In this chapter we focus on the prediction problem in RL, in which the agent’s goal

is to predict the value of a signal from its current state (e.g., the cumulative sum of fu-

ture rewards). Note that throughout this chapter we use upper case letters to indicate

random variables.

6.2.1 General Value Functions (GVFs)

The most common prediction made in RL is about the expected return. The return is defined

to be the sum of future discounted rewards under policy π starting from state s. Formally,

Gt =
∑T

t=0 γ
tRt, with γ ∈ [0, 1]1 being the discount factor and T being the final timestep,

where T = ∞ denotes a continuing task. The function encoding the prediction about the

return is known as the value function vπ(s) = Eπ[Gt|S0 = s].

GVFs (Sutton, Modayil, et al., 2011) extend the notion of predictions to different signals

in the environment. This is done by replacing the reward signal, Rt, by any other target

signal, which we refer to as the cumulant, Ct, and by allowing a state-dependent discounting

function, γt = γ(St), instead of using a fixed discounting factor. The general value of state

s under policy π is defined as:

vπ:γ(s) = c̄π + γ̄π
∑
s′

pπ(s′|s)vπ(s′), (6.1)

1Note that γ = 1 is only valid when termination is guaranteed as in the episodic case.
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where c̄π is the average cumulant from state s, γ̄π is the average γ from state s, and pπ(s′|s)
is the probability of transitioning from state s to s′ under policy π. This can also be written

in matrix form: vπ:γ = c̄π + γ̄π�Pπvπ:γ, where � denotes element-wise multiplication. Such

an equation, when solved, gives us

vπ:γ = (I − γ̄π � Pπ)−1c̄π, (6.2)

where I is the identity matrix, v, c̄, γ̄ ∈ IR|S|×1, and Pπ ∈ [0, 1]|S|×|S| is a probability matrix

such that [Pπ]ij = E[pπ(St+1 = sj|St = si)].

6.2.2 The Successor Representation (SR)

The successor representation (Dayan, 1993) was initially proposed as a representation capable

of capturing state similarity in terms of time. It is formally defined, for a fixed γ < 1, as:

ψπ(s, s′) = Eπ
[ ∞∑
t=0

γt1{St=s′}|S0 = s
]
.

In words, the SR encodes the expected number of times the agent will visit a particular state

when the sum is discounted by γ over time2. It can be re-written in matrix form as

Ψπ =
∞∑
t=0

(γPπ)t = (I − γPπ)−1. (6.3)

Importantly, the SR can be easily computed, incrementally, by standard RL algorithms

such as TD learning (Sutton, 1988), since its primary modification is to replace the re-

ward signal by a state visitation counter. Nevertheless, despite its simplicity, the SR holds

important properties we leverage in this chapter.

The SR, in the limit, for a constant γ (see Eq. 6.3), corresponds to the first factor of the

solution in Eq. 6.2. Thus, the SR can be seen as encoding the dynamics of the Markov chain

induced by the policy π and by the environment’s transition probability p. If the agent has

access to the SR, it can accurately predict the (discounted) accumulated value of any signal,

from any state, by simply learning the expected immediate value, c̄π, of that signal in each

state. On the other hand, if the agent does not use the SR, the agent must also deal with

the problem of credit assignment, having to look at n-step returns to control for delayed

2Note that Dayan describes the SR as predicting future state visitation from time t onward. This is
non-standard in RL as we typically describe the return as predicting the signal from t+ 1 onward.
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consequences. Importantly, the dynamics encoded by the SR are the same for all signals

learned under the same policy and discount function. This factorization of the solution is

the main property we use in our work, described in the next section.

6.3 Methods

As aforementioned, we are interested in the problem of knowledge acquisition in the continual

learning setting (Ring, 1994), where knowledge is encoded as predictive questions (GVFs).

In this setting it is not possible to specify all GVFs ahead of time. Instead, GVFs must be

added incrementally by some, as yet unknown, mechanism. The standard approach would be

to learn each newly added prediction from scratch. In this section we discuss how we can use

the SR to accelerate learning by taking advantage of the factorization shown in Eq. 6.2. Our

method leverages the fact that the SR is independent of the target signal being predicted,

learning the SR separately and re-using it when learning to predict new signals.

In the previous section, for clarity, we discussed the main concepts in the tabular case. In

real world applications, where the state space is too large, assuming states can be uniquely

identified is not often feasible. Instead, we generally represent states as a set of features

φ(s) ∈ Rd where d� |S|. Because both ψ and c̄ are a function of feature vector φ(S), they

can easily be represented using function approximation and learned using TD algorithms.

In order to present a more general version of our algorithm, we introduce it here using the

function approximation notation.

The first step in our algorithm is to compute the one-step average cumulant, which we

do with TD-error:

δt = Ct+1 − c̄
(
φ(St)

)
. (6.4)

If we use linear function approximation to estimate c̄ then c̄
(
φ(s)

)
= φ(s)>w. The TD-error

for ψ is given as (note that δ is a vector of length d)

δt = φ(St) + γt+1ψ
(
φ(St+1)

)
− ψ

(
φ(St)

)
. (6.5)

This generalization of the SR to the function approximation case is known as successor

features (Barreto, Borsa, et al., 2018).
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Algorithm 1 GVF prediction with the SR

Input: Feature representation φ, policy π, discount function γ, and step-sizes αC , αSR
Output: Matrix M and vectors c̄i as predictors of Ci

Initialize w and M arbitrarily

while S ′ is not terminal do
Observe state S, take action A selected according to π(S), and observe a next state S ′

and the cumulants Ci
δSR = φ(S) + γ(S ′)M>φ(S ′)−M>φ(S)

M ←M + αSRφ(S)⊗ δSR
for each cumulant Ci do

δCi
= Ci − φ(S)>wi

wi ← wi + αCi
φ(S)δCi

end for
end while
δSR = φ(S ′)−M>φ(S ′)

M ←M + αSRφ(S ′)⊗ δSR

If we use linear function approximation to estimate ψ then ψ
(
φ(s)

)
= M>φ(s), where

M ∈ Rd×d. Using the usual semi-gradient method,3 often used with TD, we derive a TD(0)

stochastic gradient descent update as:

Mt+1 = Mt −
1

2
α∇M(δ2

t )

= Mt + α∇M

(
ψ(St)

)
⊗ δt

= Mt + αφ(St)⊗ δt,

where ∇M is the gradient with respect to M and ⊗ is the outer product. Based on this

derivation, as well as Eq. 6.4 and 6.5, we obtain Algorithm 1. Note that the last two lines of

Algorithm 1, which update the SR for the state S ′, are only required for the episodic case.

This algorithm allows us to predict the cumulant Ci, in state S, using the current estimate

of the matrix M and the weights wi. We can then obtain the final prediction by simply

computing ψ
(
φ(S)

)>
w =

(
M>φ(s)

)>
w = φ(s)

>
Mw.

This algorithm accelerates learning because, generally, learning to estimate c̄ is faster

than learning the GVF directly. This is exactly what our algorithm does. When predicting

a new signal, it starts with its current estimate for the SR, Ψ. At the end, the multiplication

3In semi-gradient methods, the effect of M on the prediction target φ(St+1) + γψ
(
φ(St+1)

)
is ignored

when computing the gradient.
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Ψc̄ is simply a weighted average of the one-step predictions across all states, weighted by the

likelihood they will be visited. We provide empirical evidence supporting this claim in the

next sections.

6.4 Evaluation in Dayan’s Grid World

We first evaluated our algorithm in a tabular grid world whose simplicity allowed us to

analyze our method more thoroughly since we were not bounded by the speed and complexity

of physical robots. The grid world we used was inspired by Dayan (1993) (see Figure 6.1).

Four actions are available in this environment: up, down, left, right. Taking an action into a

wall (blue) results in no change in position. Transitions are deterministic, i.e., a move in any

direction moves the agent to the next cell in the given direction, except when moving into a

wall. For each episode the agent spawns at location S and the episode terminates when the

agent reaches the goal G.

We generated fifty different signals for the agent to predict. They were generated ran-

domly from a collection of primitives enumerated in Table 6.1. They are composed of two

different primitive signals, sigx and sigy, one for each axis, like so: (sigx(x+offsetx)+biasx)∗
(sigy(y + offsety) + biasy). The bias and offset were drawn from [−2.0, 2.0) and [0, 10), re-

spectively. Offset and bias were not applied to either the unit or shortest path primitives.

Further, the shortest path primitive was not combined with a second signal, but was used on

its own. Gaussian noise with a standard deviation of 0.3 was applied on top of each signal.

The shortest path signal is inspired by a common reward function used in RL where each

transition has a cost (a negative reward) meant to push the agent to completing a task in a

timely manner and reaching the goal produces a positive reward signal.

Our agent selects actions using ε-greedy action selection where, at each timestep, with

probability 1 − ε, it uses the action specified by a hand-coded policy (see Figure 6.1), and

otherwise chooses randomly from all four actions (ε = 0.3 in our experiments). A tabular

representation is used with each grid cell uniquely represented by a one-hot encoding.

In this set of experiments we can compute the ground-truth predictors for the SR and

the signal predictors. This is done by taking the average return observed from each state.

The SR reference was averaged over 30,000 episodes and the signal predictor references were

averaged over 10,000 episodes. Each episode started at the start state and followed the

94



Figure 6.1: Dayan’s grid world. Arrows indicate the hand-coded policy (from the start state
the policy is to go up). Black squares indicate the SR prediction given from the starting
state, S, for γ = 1.0; the darker the square the higher the expected visitation. Notice the
graying around the central path caused by the ε-greedy action selection.

(a) (b)

Figure 6.2: a) MSE of the SR as a function of step-size α for different values of γ. Lowest
error is indicated by the markers. b) A comparison of the NMSE of the direct (dashed
lines) and SR-based (solid lines) predictions as a function of fixed step-size α and discount
factor γ summed across all signals. Lowest cumulative error is indicated by up arrows (direct
predictions) and down arrows (SR-based predictions). Note that, although difficult to see,
confidence intervals of 95% are included in figures.

ε-greedy policy already described.

We first evaluated the predictive performance of our SR learning algorithm with respect to
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Table 6.1: Signal Primitives

Primitive Parameters
Fixed value value ∈ [−2.0, 2.0)
Square wave period ∈ [2, 40), invert ∈ [True, False]
Sin wave period ∈ [2, 40)
Random binary Fixed random binary string generated over the length of an axis.

Random float Fixed random floats ∈ [0, 1.0) generated over the length of an axis.
Unit Fixed value of 1.0
Shortest path transition cost ∈ [−10.0,−1.0), goal reward ∈ [1.0, 10.0)

the step-size for a variety of γ values. We report the average over 30 trials of 10,000 episodes.

We initialize the SR weights to 0.0. The squared Euclidean distance was calculated between

the predicted SR and the reference SR for each timestep. These values were summed over

the run and the average was taken across the runs. These averages are shown in Figure 6.2a.

Using the results in Figure 6.2a we evaluated the performance of the two signal prediction

approaches by sweeping across step-sizes for various γ. For each experimental run, learning

of a new signal was enabled incrementally every 50 episodes. This produced runs with a

total length of 2,500 episodes where the first pair of GVFs added (the direct and one-step

predictors) were trained for 2,500 episodes and the last added GVFs were trained for 50

episodes. Further, for each run, the order in which the signals were added was randomized.

Thirty runs were performed. The weights of the predictors and of the SR were initialized

to 0.0. Notice that the SR was being learned at the same time as the direct and one-step

predictions.

For each run a cumulative MSE for each signal i was calculated according to Eq. 6.6.

This equation computes the total squared error between the predictor’s estimate, V and the

reference predictor’s estimate, V ∗. For each episode, E, the error of the current and previous

episodes is averaged. Then, for each signal, the maximum error for a given γ, either in the

direct or SR-based predictions, is found and used to normalize the errors in the signal across

that particular value of γ (see Eq. 6.7). In this way we attempt to treat the error of each

signal equally. If this is not done the errors of large magnitude signals dominate the results.

These normalized values are then summed across the signals and the averages across all 30

runs are plotted in Figure 6.2b.

96



MSEi =
1

E

E∑
e0

1

T

T∑
t=0

(Vi:t − V ∗i:t)2 (6.6)

NMSEi:α:γ =
MSEi:α:γ

maxα(MSEi:γ:direct,MSEi:γ:SR)
(6.7)

The advantage of the SR-based method is clear as γ increases. This is to be expected since

for γ = 0.0 both methods are making one-step predictions. In the experiment of Figure 6.2b,

the SR performs better in the vast majority of the signals, as shown in Table 6.2. For all

step-sizes not listed the SR-based method was better on all signals. Analysis of these cases

where the direct method did better reveal that some of the target signals have very small

magnitudes, suggesting the SR-based approach may be more susceptible to signal-to-noise

ratio.

Table 6.2: Signal performance for γ = 0.9 of Figure 6.2b.

α Direct Better SR-Based Better
0.25 3 47
0.5 5 45
0.75 4 46
1.0 1 49

Finally, we analyzed how the prediction error of our systems evolved with time. This is

demonstrated in Figure 6.3 where we selected the best step-sizes for γ = 0.9 and plotted

the performance over time across 30 different runs. In this case the order of the signals

remained fixed so that sensible averages could be plotted for each signal. Signal performance

was normalized as before and summed across all active signals. As expected, we clearly see

that the SR-based predictions (green) start with much higher error than the direct (blue),

but as the error of the SR (red) drops low the newly added SR-based predictors are able to

learn quicker, with less peak and overall error than the direct predictor.

In the continual learning setting we never have the opportunity to tune for optimal step-

sizes as we did in our evaluation. Practically, fixed step-sizes are used for many robotics

settings in RL, but, in order to ensure stable learning, small step-sizes are chosen. As we

saw in Figure 6.2b, the advantage of using the SR-based predictions is enhanced with smaller
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Figure 6.3: All predictors learn from scratch with new predictors added in every 50 episodes.
As the SR error (red, right axis) goes low the SR-based predictors (green) are able to learn
faster than their direct (blue) counterparts. Shading indicates a 95% confidence interval.

step-sizes. Ideally, however, we would imagine that a fully developed system would use some

method of adapting step-sizes, such as ADADELTA (Zeiler, 2012).

6.5 Evaluation on a Robot Arm

Figure 6.4: The user controls the robot arm using a joystick to trace the inside of the wire
maze in a counter-clockwise direction. Circuit path shown in blue.

Tabular settings like Dayan’s grid world are useful for enabling analysis and providing
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insight into the behavior of our method. However, our goal is to accelerate learning on a

real robot where states are not fully observed and cannot be represented exactly; instead we

must use function approximation. Here we demonstrate our approach using a robot arm and

learning sensorimotor predictions with respect to a human-generated policy. In our task a

user controls a robot arm via joystick to trace a counter-clockwise circuit through the inside

of the wire maze (see Figure 6.4) with a rod held in the robot’s gripper. The user performed

this task for approximately 12 minutes completing around 50 circuits.

In this experiment we used six different prediction targets: the current, position and

speed of both the shoulder rotation and elbow flexion joints. A new predictor was activated

every 2,000 timesteps (Note that the robot reports sensor updates at 30 timesteps/s). For

this demonstration a discount factor of γ = 0.95 was used. Four signals were used as input

to our function approximator: the current position and a decaying trace of the position for

the shoulder and elbow joints. The decaying trace for joint j was calculated as trj:t+1 =

0.8 ∗ trj:t + 0.2 ∗ posj:t+1. These inputs were normalized over the joint ranges observed in the

experiment and passed into a 4-dimensional tilecoding (Sutton and Barto, 2018) with 100

tilings (each randomly shifted) of width 1.0 and a total memory size of 2048. Additionally a

bias unit was added, resulting in a binary feature vector of length 2049 with a maximum of

101 active features on each timestep (hashing collisions can reduce this number). We use a

decaying step-size for all the predictors where the step-size starts at 0.1 and decays linearly

to zero over the entire dataset. At each timestep this step-size is further divided by the

number of active features in φ(St). Finally, for each predictor, this step-size is offset such

that the step-size starts at 0.1 when it is first activated and decays at the same rate as all

the other predictors.

To compare the prediction error we compute a running MSE for each signal according

to Eq. 6.8, where at each timestep t the sum is taken over all previous timesteps. Unlike

the previous tabular domain, we do not have the ideal estimator to compare against and

instead compare the predictions, V , against the actual return, G. In order to treat each

signal equally we further normalize these errors according to Eq. 6.9. Note that the NMSE

allows us to compare the predictions of a single signal between the two methods, but does
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not tell us how accurate the predictions are nor does it allow comparison across signals.

MSEi:t =
1

t

t∑
k=1

(Vi:t −Gi:t)
2 (6.8)

NMSEi =
MSEi

max(MSEi:direct,MSEi:SR)
(6.9)

Figures 6.5 and 6.6 show a single run, approximately 12 minutes in length. A single

ordering of the predictors was used. Figure 6.5 shows the error across all predictors while

Figure 6.6 separates out each predictor. Here we see a clear advantage to using the SR-

based predictions for most of the signals. Unlike the previous tabular results, there is little

difference on the performance of the first predictor (shoulder current), even while the SR

is being learned. To investigate, we ran experiments where each signal was learned from

the beginning of the run. We observed that performance was rarely worse and sometimes

even better when using the SR-based method. This suggests the SR-based approach is more

robust than expected, but further experimentation is needed.

Figure 6.5: Prediction accuracy for a single 12 minute run tracing the maze circuit. A new
predictor is added every 2,000 timesteps. NMSE errors are summed across all predictors.

6.6 Further Advantages When Scaling

While this chapter analyzed single policies and discount functions, this is not the setting

in which the GVF framework is proposed to be used. Rather, it is imagined that massive
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numbers of GVFs over many policies and timescales will be used represent complex models

of the world (Sutton, Modayil, et al., 2011; Modayil, White, et al., 2014). In this setting we

note that using SR-based predictions can offer additional benefits, allowing the robot to do

more with less. Consider, for a single policy π, a collection of SRs learned for f discount

functions and h one-step predictors. We can then represent fh predictions using f + h

predictors. A first advantage is that far fewer GVFs need to be updated on each timestep,

saving computational costs. As a second benefit, there is potential to reduce the number

of weights used by the system. For example, consider learning in a tabular setting, with

|S| states, using linear estimators. For fh predictions the number of weights needed is :

|w|direct = fh|S|, |w|SR−based = f |S|2 + h|S|. It can be shown that for a fixed f and S the

total number of weights used by the direct prediction approach is greater when h > f |S|
f−1 .

6.7 Related Work

The SR was originally introduced as a representation method for policy learning (Dayan,

1993), but has recently been applied to other settings. It has been used, for instance, in

transfer learning problems allowing agents to generalize better across different tasks (Barreto,

Borsa, et al., 2018; Kulkarni et al., 2016; Lehnert et al., 2017; Yao et al., 2014; Zhang et al.,

2017; Zhu et al., 2017; Ma et al., 2018). Particularly, the work of Zhang et al. (2017) showed

how the SR could be used for transfer in robot navigation tasks. The robot first learned to

navigate a simulated 3D maze environment. Next, the robot was moved to a real maze and

showed transfer by learning the real-world navigation task faster than learning from scratch.

Zhu et al. (2017) demonstrated the use of the SR in transfer with a traditional STRIPS

style planning algorithm. In their setting a simulated robot planned over high-level actions

with camera images as input. Their approach showed better ability to complete previously

unseen tasks than several other well-known algorithms.

To learn optimal policies an RL agent must sufficiently explore its state space. In complex,

real-world scenarios, such as those faced by robots, the state-action space is incredibly large

and exploration by random primitive actions, as is often done in simple grid-world domains,

is not feasible. The work of Machado, Rosenbaum, et al. (2018) uses the SR to define intrinsic

rewards in an option discovery algorithm. By exploring with these options agents are able to

improve the efficiency of their exploration. Such an approach might be applied beneficially
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Figure 6.6: The same results as Figure 6.5, but with the NMSE for the individual predictors.
Each is normalized from 0 to 1.
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to real-world robots.

GVFs were originally proposed as a method for building an agent’s overall knowledge

in a modular and hierarchical way, representing state as a collection of predictions (Sutton,

Modayil, et al., 2011). To date they have been used with hand-coded fixed policies (Modayil,

White, et al., 2014; Sherstan, Modayil, et al., 2015) and as state for learned policies (Pilarski,

Dick, et al., 2013). GVFs have also been used to track internal statistics such as the variance

of the return (Sherstan, Ashley, et al., 2018) and state visitation (Sherstan, Machado, White,

et al., 2016). The UNREAL agent (Jaderberg et al., 2017) is a powerful demonstration

of the usefulness of multiple predictions; predefined auxiliary tasks, which can be viewed

as GVFs, are shown to accelerate and improve the robustness of learning. Work on the

construction of GVF models is in its infancy, with the primary approach explored being

random generation (Schlegel, White, Patterson, et al., 2018). However, there are related

approaches using other predictive frameworks including TD-networks (Makino and Takagi,

2008) and PSRs (McCracken and Bowling, 2006).

There are several ways in which our own results might be improved and extended. Alter-

native algorithms have been suggested for learning with the SR (Gehring, 2015; Pitis, 2018).

In particular, Pitis (Pitis, 2018) shows potential alternatives to: 1) accelerate the learning

of value estimates by using the SR and 2) make the one-step signal predictors more robust

to noise. These algorithms may further improve the performance of the SR-based prediction

approach. Finally, a limitation of the SR is that it is tied to a specific policy. This limitation

was relaxed by combining the concept of Universal Value Functions (UVFAs) (Schaul, Hor-

gan, et al., 2015) with the SR in the Universal Successor Representation (USR) (Ma et al.,

2018). The USR enables SR-based predictions to generalize across goals (and their corre-

sponding policies). Combining our approach with the USR could further improve learning

efficiency and generality.

6.8 Conclusions

In this chapter we showed how the successor representation (SR), although originally intro-

duced for another purpose, can be used to accelerate learning in a continual learning setting

in which a robot incrementally constructs models of its world as a collection of predictions

known as general value functions (GVFs). The SR enables a given prediction to be mod-
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ularized into two components, one representing the dynamics of the environment (the SR)

and the other representing the target signal (one-step signal prediction). This allows a robot

to reuse its existing knowledge when adding a new prediction target, speeding up learning

of the new predictor. We demonstrated this behaviour in both a tabular grid world and on

a robot arm. These results suggest an effective method for improving the learning rate and

sample efficiency for robots learning in the real world. There are several clear opportunities

for further research on this topic. The first is to provide greater understanding into why, for a

given fixed step-size, some (few) signals are better predicted directly rather than through the

SR. Further, the work in using the SR with function approximation is preliminary and more

insight can yet be gained in this setting. Another opportunity for research is to explore using

SR-based predictions with state-dependent discount functions. Finally, we suggest that SR-

based predictions with deep feature learning (Kulkarni et al., 2016; Machado, Rosenbaum,

et al., 2018) and an incrementally constructed architecture would be a very powerful tool to

support continual or developmental learning in robotic domains with widespread real-world

applications.
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Chapter 7

Γ-nets: Generalizing Value Estimation
over Timescale

Temporal abstraction is a key requirement for agents making decisions over long time

horizons—a fundamental challenge in reinforcement learning. There are numerous reasons

why making value estimates at multiple timescales might be useful; recent work has shown

that value estimates at different timescales can be the basis for creating more advanced

discounting functions and for driving representation learning. Further, predictions at many

different timescales serve to broaden an agent’s model of its environment. In this chapter we

present Γ-nets, a method for generalizing value function estimation over timescale, allowing

a given GVF to make predictions for any fixed timescale within its training regime, greatly

increasing the predictive ability and scalability of a GVF-based model. The key to our ap-

proach is to use timescale as one of the value estimator’s inputs. This allows us to compute

the prediction target for any timescale. Thus, at every timestep our method trains the net-

work on multiple timescales. We first empirically evaluate Γ-nets on a simple square-wave.

Next, we predict sensorimotor signals on a robot arm with linear function approximation.

Finally, we empirically evaluate Γ-nets in the deep reinforcement learning setting using pol-

icy evaluation on a set of Atari video games. Our results show that Γ-nets can be effective

for predicting arbitrary fixed timescales, with only a small cost in accuracy as compared to

learning estimators for single timescales. Γ-nets make predictions at many timescales with-

out requiring a priori knowledge of the task, making it a valuable contribution to ongoing

work on model-based planning, representation learning, and lifelong learning algorithms.

105



7.1 Value Functions and Timescale

Reinforcement learning (RL) studies algorithms in which an agent learns to maximize the

amount of reward it receives over its lifetime. A key method in RL is the estimation of

value—the expected cumulative sum of discounted future rewards (called the return). In

loose terms this tells an agent how good it is to be in a particular state. The agent can then

use value estimates to learn a policy—a way of behaving—which maximizes the amount of

reward received.

Sutton, Modayil, et al. (2011) broadened the use of value estimation by introducing

general value functions (GVFs), in which value estimates are made of other sensorimotor

signals, not just reward. GVFs can be thought of as representing an agent’s model of

itself and its environment as a collection of questions about future sensorimotor returns; a

predictive representation of state (Dayan, 1993). A GVF is defined by three elements: 1)

the policy, 2) the cumulant (the sensorimotor signal to be predicted), and 3) the prediction

timescale, γ. Considering a simple mobile robot, examples of GVF questions include “How

much current will my motors consume over the next 3 seconds if I spin clockwise?” or “How

long until my bump sensor goes high if I drive forward?”

Modelling the world at many timescales is seen as a key problem in artificial intelligence

(Sutton, 1995; Sutton, Precup, et al., 1999). Further, there is evidence that humans and

other animals make estimates of reward and other signals at numerous timescales (Tanaka

et al., 2016). This chapter focuses on generalizing value estimation over timescale. Our

work can be seen as directly connected to the concept of nexting, in which animals and

people make large numbers of predictions of sensory input at many, short-term, timescales

(Gilbert, 2006). Modayil, White, et al. (2014) demonstrated the concept of nexting using

GVFs on a mobile robot. Until now, value estimation has generally been limited to a single

fixed timescale. That is, for each desired timescale, a discrete and unique predictor was

learned. However, there are situations where we may desire to have value estimates of the

same cumulant over many different timescales. For example, consider an agent driving a

car. Such an agent may make numerous predictions about the likelihood of colliding with

various objects in its vicinity. The agent needs to consider the risk of collisions in both the

near term and far term and the relevance of each may change with the speed of the car. If

the engineer knew which timescales would be needed ahead of time they could design them
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Figure 7.1: Training γ-nets. Values are estimated by providing state and timescale, γ,
as inputs to the network parameterized by weights w. An agent in state S takes action
A and transitions to state S ′ receiving the new target signal C. On each timestep, t, the
agent produces a set of timescales Γt on which to train and for each γk ∈ Γt computes
values V (S, γk; w) and V (S ′, γk; w). For each γk, the TD-error is calculated according to
δk = C + γkV (S ′, γk; w)−V (S, γk; w). The TD-errors are then collected and used to update
w using a chosen TD learning algorithm, such as TD(λ) or GTD.

into the system, but this is not the case for complex settings.

Here we present a novel class of algorithms which enables the explicit learning and in-

ference of value estimates for any valid fixed discount. The key insights to our approach

are: 1) the timescale can be treated as an input parameter for inference and learning and

2) the estimated bootstrapped prediction target for any fixed timescale is available at every

timestep. We demonstrate Γ-nets in three policy evaluation settings: 1) predicting a square

wave, 2) predicting sensorimotor signals on a robot arm, 3) predicting reward in Atari video

games. We also show that Γ-nets can improve policy learning when used as auxiliary tasks

in the Atari setting.

The ideas behind our approach are based on work by Schaul, Horgan, et al. (2015) which

generalized value estimation across goals by providing a goal embedding vector as input to

the value network. In contrast, our approach provides the discount, γ as input. A similar
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approach was taken by Xu et al. (2018). Their work presents a meta-learning RL algorithm

which learns to automatically adapt the meta-parameters of the algorithm, including the

discount. The goal of their algorithm was to automatically determine the best return to use

for learning. They found that providing these meta-parameters as input to both their value

and policy networks significantly improved performance in learning policies on many Atari

games.

7.2 Background

We model the environment as a Markov Decision Process. At each timestep t the agent, in

state St ∈ S, takes action At ∈ A according to policy π : S × A → [0, 1] and transitions

to state St+1 ∈ S according to the transition probability p(·|St, At). In the traditional RL

setting the agent receives a reward Rt+1 ≡ R(St, At, St+1) ∈ IR. The agent tries to learn a

policy which maximizes the cumulative reward it receives in the future, which is defined as

the return: Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . .. In the case of GVFs we simply substitute our

signal of interest, the cumulant, C for reward, R. The term γ ∈ [0, 1) is referred to by several

names including the timescale, the continuation function and the discount; it represents the

amount of emphasis applied to future rewards and is the focus of this chapter.

A value estimate is simply the expectation of the return: Vπ(s) = Eπ
[
Gt|St = s

]
.

Temporal-difference (TD) learning is a common class of algorithms used in RL for learn-

ing an approximation of value (Sutton and Barto, 2018). Estimation weights are typically

trained by semi-gradient descent using the TD-error: δt = Ct+1 + γVπ(St+1)− Vπ(St).

While simple domains can be represented using tabular lookup, complex settings in which

the state space is very large or infinite must use function approximation (FA) methods to

estimate the value as V (s; w), where w is a set of weights parameterizing the network.

Function approximation has the advantage that states are not treated independently, but

rather, a learning step updates related states as well, allowing for generalization across state-

space.

7.3 Increased Representational Power

One of the advantages of TD algorithms is that they allow the agent to bootstrap estimation

of the return from its existing estimates. However, this limits a single predictor to capturing
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only returns with geometric discounting. By combining predictions at several timescales it

is possible to capture returns of different shapes such as the example shown in Figure 7.2. In

fact, Fedus et al. (2019) used geometrically discounted value estimates as a basis to estimate

hyperbolically discounted returns. Figure 7.3 shows the different returns of a single reward of

magnitude 1.0 occurring at different distances in the future. We see that shorter timescales

are unaware of distant rewards, as expected.

Figure 7.2: Capturing non-geometric returns (green) by taking the difference of two predic-
tions at different timescales.

7.4 Generalizing over Timescale

Our goal is to be able to predict the value function for any discount γ. While the GVF

specification allows for γ that are a function of the transition, here we focus solely on the

case of fixed timescale. To achieve that goal, we propose Γ-nets: an architecture for value

functions that operates not only on the state, but also the desired target discount factor γk

(see Figure 7.1). The keys to generalizing over timescale with Γ-nets are: 1) make value

a function of γ by providing γ as one of the network inputs, i.e., V (s, γk), and 2) train on

many timescales simultaneously.

On each training step, t, the agent produces a new set of training timescales Γt. In our

experiments this set is produced by sampling over a distribution of timescales, but other
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Figure 7.3: For each series a single event, value=1.0, occurs at some time in the future.
Different timescales show different responses to these events. This suggests that different
prediction timescales can enhance an agent’s state representation.

approaches are possible. For each γk ∈ Γt the TD-error is:

δt;γk = Ct+1 + γkVπ(St+1, γk)− Vπ(St, γk). (7.1)

Gradients are then computed for all γk ∈ Γt and applied to update the network weights.

By training over many different timescales simultaneously, our network learns to generalize

over timescale.

Choosing Γt must be done with care. A naive approach might uniformly sample γk ∈
[0, 1). However, value functions change non-linearly with γ. To illustrate this property,

consider that γ can be viewed as the probability of continuation, allowing us to derive the

expected number of timesteps until termination of the return as (see Sherstan (2015) for a

derivation):

τ =
1

1− γ
. (7.2)

Table 7.1 shows selected values of γ and their corresponding values of τ . The relationship

between γ and τ is non-linear for large values of γ (Figure 7.4). Thus, naively drawing γk

from a uniform distribution would tend to favor very short timescales. Conversely, drawing

uniformly from τ would put little emphasis on short timescales. While the best method for

selecting γk for training is outside the scope of this chapter, we provide some comparisons
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in our experiments. Note that throughout this chapter we will refer broadly to the word

timescale for which we will use the parameters γ or τ as appropriate. It should be assumed

that these terms can be used interchangeably using Eq. (7.2).

Table 7.1: Expected Timesteps

γ τ
0 1
0.5 2
0.8 5
0.9 10
0.95 20
0.975 40
0.983 60
0.9875 80
0.99 100

Figure 7.4: Non-linear relationship between discount γ and prediction length in expected
timesteps.

The representation of timescale used for input to the network may affect the network’s

ability to represent different timescales. The γ scale compresses long timescales but spreads

short ones and in the τ scale we have the opposite effect. Thus, providing both γ and τ as

input may allow for good discrimination at all timescales.

Finally, the magnitude of returns at different timescales can be very different. Larger
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returns can produce larger errors and corresponding larger gradients, which can effectively

dominate the network weights. In general it is the longer timescales which will produce larger

magnitude returns, but returns can be constructed for which the opposite is true. To prevent

large magnitude returns from dominating the network weights we need to scale the returns

in some way. We want to look for a general solution as we may not know beforehand which

timescales are most important and thus seek a way to balance accuracy for all timescales. A

general approach is given by van Hasselt et al. (2016), in which they continually normalize

the target to have a mean of 0 and variance of 1. This allows them to handle rewards of

varying magnitude. Here, we take a simpler approach focusing on keeping the magnitude

of the returns, as a function of timescale, in the same ballpark, by learning the value of a

scaled cumulant: f(s, γk; w) = Eπ[
∑

t=0 γ
t
k(1 − γk)Ct+1|S0 = s]. This will scale the loss by

timescale and should result in smaller network weights. However, the resulting prediction

must then be rescaled by dividing by (1 − γk). However, if we instead redefine our value

estimator as

V (s, γk; w) =
f(s, γk; w)

(1− γk)
(7.3)

then we can simply scale the TD loss by (1−γk). In the following we show this derivation

for n-step returns. The TD-error for the n-step scaled cumulant is:

δt;γk = (1− γk)(Ct+1 + γkCt+2 + . . .+ γn−1k Ct+n) + γnk f(St+n, γk)− f(St, γk).

But, if we substitute in V from Eq. 7.3 we have:

=(1− γk)(Ct+1 + γkCt+2 + . . .+ γn−1k Ct+n) + γnk (1− γk)V (St+n, γk)− (1− γk)V (St, γk)

=(1− γk)(Ct+1 + γkCt+2 + . . .+ γn−1k Ct+n + γnkV (St+n, γk)− V (St, γk)).

This results in scaled losses and their scaled gradients. This scaling can then be applied at

either the loss or gradient level.

7.5 Experiments

We first provide two proof of concept demonstrations using linear function approximation.

The first on a square-wave signal, which is easily understood. The second on a robot arm.
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Next we empirically evaluate Γ-nets in a deep learning setting by looking at performance on

Atari games.

7.5.1 Square-wave

Figure 7.5: Square-wave Predictions. Predictions (solid) against the true return (dashed)
after 50k ts of training using both γ and τ as input, scaling the loss and drawing two γk each
from γ and τ scales plus τ = 1, 100 . For display purposes all predictions are normalized by
(1− γ). We see good accuracy across all timescales.

Our target signal was a repeating square wave 100 timesteps in length with a magnitude

of {−1, 1} (Figure 7.5). Inputs were normalized and then tilecoded (Sutton and Barto,

2018) with 20 tilings of width 1.0, 20 tilings of width 0.5 and 30 tilings of width 0.1. Tiling

positions were randomly shifted by small amounts at the time of initialization for each run.

Value estimates were computed using linear function approximation on the output of the

tilecoding and the final layer of weights were updated using TD(0) (Sutton and Barto, 2018)

(The algorithm used for this experiment is given in Algorithm 2). We also evaluated the

impact of loss scaling. Unless otherwise stated: 1) timescale inputs were given on both the

γ and τ scales simultaneously, 2) Γt was 6 elements long, with τ ∈ {1, 100} always included

and two additional timescales drawn uniformly from each of the γ and τ timescales, 3) loss

scaling was used. Results are shown in Figures 7.6-7.8. Each training run lasted for 50k

timesteps and for each series 100 different runs were made. We show the normalized errors

as a function of the prediction timescale, given on the τ -scale. Results are averaged over the
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last 5k timesteps. For each τ we normalize by the maximum mean error across the series in

the plot. Error bars indicate standard error.
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Figure 7.6: Inputs (Square Wave). Comparing the effect of using different timescale
representations as input. As expected, providing timescale as γ did better than τ on the
short timescales, but worse on the longer timescales, although this cross over occurred at a
much longer timescale than expected. Providing both γ and τ did the best of all, producing
the lowest errors across all probe timescales as well as providing the lowest variability. Error
bars for the square-wave plots indicate standard error.
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Figure 7.7: Distribution (Square Wave). Here we compare the effects of drawing γk from
different distributions. As previously discussed, Γt was 6 elements long, always including
τ ∈ {1, 100}, and sampling the additional 4 γk. Excluding τ ∈ {1, 100} we see that drawing
all γk from the γ scale performs better than drawing all from τ scale at shorter timescales,
but does worse at longer timescales. Drawing half from each tends to follow the lower errors
at all the timescales.

114



S
ca

li
n
g

1 2 4 5 10
0.2

0.4

0.6

0.8

1.0

1.2

No
rm

 A
ve

ra
ge

 M
SE

τ
20 40 60 80 100

Scaled
Not Scaled

(a) MSE

Scaled Not Scaled0.0

0.2

0.4

0.6

0.8

Av
er

ag
e 

No
rm

 M
SE

Mean
Variance

(b) Avg Norm MSE

Figure 7.8: Scaling (Square Wave). We compare the effects of scaling the cumulant. Here
we see that scaling does improve performance on the shorter timescales, but causes worse
performance on the longer ones.

Algorithm 2 Generalization over γ with TD(0)

Input: Feature representation φ ∈ IRn, policy π, and step-size α
Output: Vector w.
Initialize w ∈ IRn arbitrarily
while S ′ is not terminal do
Observe state S, take action A selected according to π(S), and observe a next state S ′

and cumulant C
Pick a set of γk to train on:
Γ ← γSelectionFunction(Terminal = False)
∆ ← 0; Zeros vector, length n
for γk in Γ do
δ = C + γkφ(St+1, γk)

�w − φ(St, γk)
�w

∆ += δφ(St, γk)
end for
w = w + α∆

end while
Γ ← γSelectionFunction(Terminal = True)
for γk in Γ do
δ = C − φ(St, γk)

�w
∆ += δφ(St, γk)

end for
w = w + α∆
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(a) (b)

(c) (d)

Figure 7.9: Robot Arm. a) A user controls the shoulder and elbow joints of a robot arm via
joystick to move a rod counter-clockwise around a wire maze. b-d) Predictions of the speed
of the shoulder joint. Predictions and returns are scaled by (1 − γ) for display purposes.
Timescales correspond to ∼0.33, 1.0, 2.0 s. Γ-net predictions (orange) perform similarly to
the baseline (green) in matching the return (blue).

7.5.2 Predictions on a Robot Arm

In this experiment a human operated the shoulder rotation and elbow flexion joints of a robot

arm by joystick (this is the same as described in Chapter 6). The task was to maintain contact

between a rod held by the robot and the inside of a wire maze while moving in a counter-

clockwise direction (Figure 7.9a). Fifty circuits of the maze were completed in approximately

12 minutes. Network inputs were the normalized positions of the shoulder and elbow servos

as well as both γ and normalized τ . Inputs were tilecoded (Sutton and Barto, 2018) with

100 tilings of width 1.0 into a space of 2048 bits and a bias unit was added giving a feature

vector of 2049 bits. Value estimates were computed by linear function approximation (LFA)

and trained by TD(0). On each timestep Γt was generated from τ ∈ [1, 100] ts. The upper
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and lower bounds were included in the set and one γ and 29 τ were sampled uniformly from

their respective scales for a total of 32 timescales. More emphasis was placed on sampling

from the τ scale because of the relatively high update rate (30 Hz, 1 ts ∼ 0.03 ms). Thus,

the likely important timescales will be above γ = 0.9. Loss prescaling was used. We used a

step-size of 0.1 divided by the number of active features. The step-size was linearly decayed

to zero over the course of the training set. A baseline predictor with a fixed timescale was

also trained using the same parameters as the Γ-net excepting the inclusion of timescale

input.

Figure 7.9 shows the Γ-net predicting shoulder joint speed at several timescales. Table 7.2

shows the cumulative sum of absolute error between the predictor and the return over the

whole dataset after training. With this configuration the Γ-net outperformed the baseline

for most of the timescales tested. For γ = 0.99 the baseline performed slightly better.

Table 7.2: Robot Arm. Cumulative absolute error over the entire dataset after training.
Lower is better.

γ Γ-net Baseline
0.9 1025 1124

0.9666 602 822
0.98333 379 440

0.99 273 253

7.5.3 Atari Environment

We examined the performance of Γ-nets under policy evaluation in the Atari Arcade Learning

Environment (ALE) (Bellemare, Naddaf, et al., 2015). The agent’s policy was trained using

the Dopamine project’s (Castro et al., 2018) implementation of the Rainbow agent (Hessel

et al., 2018) (also, see Section 2.3.3), which uses the same network architecture as the DQN

agent (Mnih, Kavukcuoglu, et al., 2015), but adds prioritized replay (Schaul, Quan, et al.,

2016), n-step returns, and distributional representation of the value estimates (Bellemare,

Dabney, and Munos, 2017). The architecture used in shown in Figure 7.10.

The primary results presented are for the game Centipede with a Rainbow agent trained

for 25 M frames, which we will refer to as Centipede@25M. Additional Atari games were

evaluated using agents trained for 200 M frames, which we will refer to as Atari@200M.

These agents were included as part of the Dopamine package and trained according to the
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Figure 7.10: Architecture used for the policy evaluation experiments. The Rainbow Network,
from Dopamine, is used to generate episodes of data where we save the feature vector, φ, to
file. To train the Γ-net we then read in these files, store them in a prioritized replay buffer
and sample from this replay buffer. The feature vector, φ, is then combined with the γk
using the embedding function ν which acts as input to the Γ-net.

specifications given in Castro et al. (2018).

Figure 7.11 shows predictions on the early transitions of a single episode. For this episode

the expected return was estimated by running 2000 Monte Carlo rollouts from each state vis-

ited along the way (dashed lines). The solid lines indicate the Γ-net predictions after training

for 20M frames (using the direct configuration which is described in following sections).

Training

The prediction networks were trained using samples of transitions generated by pretrained

policies. Agents select actions using ε-greedy over their Q-values. During policy training

ε = 0.001, but for generating the samples used for training the Γ-nets we use an evaluation
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Figure 7.11: Predictions on Centipede@25M for different γ from the start of a single episode.
Γ-net predictions are shown in solid lines and the expected return, produced by Monte Carlo
rollout, is shown by the dashed lines.

mode where ε = 0.0001. Transitions were generated sequentially and the environment was

reset at the end of each episode or 27,000 steps, whichever came first. These transitions

were saved to file in sequence and for each experiment they were reloaded in the same order.

For each transition, we saved the reward as well as the activation of the final core layer

of the agent’s network φ, which serves as the input to the Γ-nets. The Γ-net network was

composed of five fully-connected layers of sizes [512, 256, 128, 16, 1], with all but the final

layer using ReLU activation. Training of the Γ-nets proceeded as if the data was generated

in an online fashion, as would be the case during policy learning. That is the agent would

read in transition samples from the file, add them to a prioritized replay buffer, and then

train by sampling from the replay buffer. When a new sample was added to the buffer it was

given the highest level of priority so that its probability of being sampled was high. Like the

policy training we train on a batch of sampled transitions, using n-step returns. To update

the priorities for a given sample in the batch we use the maximum squared loss across Γt.

A Γt of size 8 was used, which always included lower and upper bounds of τ = {1, 100}.
An additional 6 γk were drawn on each timestep. Unless otherwise stated the sampling was

done by drawing 3 γk uniformly from the γ scale on [0, 0.99) and the τ scale on [1, 100) (for

τ we drew from the integer scales, rather than float). Each network was trained for 20 M

frames with network weights saved every 500k frames.
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Parameter Value
Input dim 84x84 pixels
φ dim 512 nodes
Replay buffer size 100k transitions
Batch size 32 samples
n-step 4 transitions
Min-replay history 20k transitions
Frameskip 4 frames/transition
Training rate 1/4 transitions
Sync interval 10k training steps
Sticky-actions 0.25
Terminal on life loss False
Max steps per episode 27k transitions
Consecutive frame pooling True
ε-greedy: policy learning 0.001
ε-greedy: evaluation 0.0001
Adam optimizer: Step-size (learning rate) 6.25e−5

Adam optimizer: eps 1e−8

Table 7.3: Parameters

Various parameters are indicated in Table 7.3.

A brief sweep was made over the step-size parameter (also referred to as learning rate)

for the Centipede@25M policy. Sweeps were made over the probe timescales as well as over

various variants of the Γ-net for 3 seeds each. The values tried were: 6.25e−4, 6.25e−5, 6.25e−6.

It was found that, almost universally, the value 6.25e−5 gave the lowest error when errors

were aggregated over all probe timescales. This is also the step-size used in training the

Rainbow agent. This step-size value was used for all reported experiments. Note that these

sweeps were done on Centipede@25M experiments only.

Dopamine’s implementation of the prioritized replay buffer used fixed discounting for

a single timescale. Thus, we needed to modify this implementation to return the n-step

transitions and then apply discounting afterwards.

We use a frame skip of 4, meaning that when an action is sent to the environment it

is executed 4 times in a row and the resulting final frame is returned as observation. The

implementation also uses frame pooling in which a max pooling is taken over the last 2

consecutive frames in order to deal with flicker in the rendering of the game images. We

used sticky-actions with a probability of 0.25. This means that when an action is sent to the

environment there is a 25% chance that the environment will use the previous action instead.
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Every reset of the ALE environment restores the environment to the same initial state. State

transitions are deterministic. The policy was trained with an ε-greedy value of 0.001, but

for evaluation transitions were generated with ε reduced to 0.0001. Thus, during evaluation

the largest source of stochasticity is due to the sticky-actions. Further, the agent sees the

early states of the episode more frequently than the later states. Like the policy training,

one training update was performed for every 4 steps in the environment. Since every step in

the environment corresponds to 4 frames a training update was performed every 16 frames.

To train the sampled batch of transitions on Γ we pair the samples with each γk. Thus,

for a batch size of 32 sampled transitions and a Γ of 8 the effective batch size is 256. This

does add some additional computation time to the process, but this is also affected by the

quality of the implementation. When sampling from the τ scale for Γt we used the integer

scale rather than float.

Like the policy we use a target network which periodically copies weights from the online

network; it is the online network which is updated on each training step and the target

network which is used for bootstrapping. Note TD learning is typically trained using a semi-

gradient approach in which the gradients are not computed with respect to the bootstrapping.

Evaluation

To evaluate predictive accuracy we created a set of evaluation points for each game. These

were generated by running the agent in evaluation mode over multiple episodes. At the start

of each episode an offset was randomly chosen between [10, 100) steps. Then, starting at

the offset, the state of the environment and agent were saved every 30 steps (120 frames

with 4 frame frameskip). For Centipede@25M a total of 269 evaluation points were cre-

ated in this way including the episode start state. From each of these evaluation points we

ran 1000 episodes till termination and then computed the average return. These were used

as the baseline against which we computed our prediction error. To compute the predic-

tion error for a given evaluation point we restored the agent’s and environment’s state and

recorded the network’s predictions for the probe timescales [1, 2, 5, 10, 20, 40, 60, 80, 100] ts.

For comparison, we trained fixed timescale networks for all the probe timescales (plotted

in fuchsia). These networks used exactly the same architecture as the Γ-net, but did not

provide timescale as input to the network and only trained on the single fixed timescale.

These probe networks also used loss scaling.
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We use a reference configuration of the Γ-net across the different plots. We plot this

series in black and refer to it as direct although the legends may give it a different label to

call out the significance of its configuration for a given comparison. For this configuration

both γ and τ were provided as inputs to the network. Additionally, Γt was populated by

drawing samples from both γ and τ scales and loss scaling was used. For each of the other

configurations only a single setting was modified from this reference.

Plotting

We focus our evaluation on the steady-state performance of the network, computing averages

over the last 5 M frames of the 20 M frame runs (with evaluation at every 500k frames).

Mean-squared error (MSE) for each experiment is presented as a function of the evaluation

probe timescale given in τ (Ex. Figure 7.12a). For each τ we normalize across the different

series by the largest mean error. Thus, the largest mean error for each τ is shown as 1.0.

We do this to be able to clearly show results for all the different timescales in a single plot

despite the large differences in magnitude. As a result, series can only be directly compared

within a plot, not across plots. To rank each for comparison we provide a bar chart (Ex.

Figure 7.12b) which averages the normalized means and normalized variances of the MSE.

That is, we take the normalized mean MSE for each τ and average across all τ . Likewise

we take the variance at each τ , normalize it by the maximum variance for each τ and take

the average across all τ . Note that averaging this way is a biased approach in that it is

dependent on what probe τ are used. For example, if we took many large τ and few small

ones then our results would give more weight to the large τ . In practice, the importance of

errors for different timescales will be task dependent.

While conducting parameter sweeps it was observed that a particular network configu-

ration might produce the lowest value of MSE but not actually be predictive. In this case

the network would learn to always output a fixed value which captured the mean of the

expected returns. Thus, we adopted a two step evaluation process. First, we took the evalu-

ation points and concatenated them in sequence. We then computed the correlation between

their expected returns and the predicted returns made by the network. If a configuration

had a positive correlation then it would be considered for comparison with other architec-

tures. We have also included the plots of correlation by probe timescale (Ex. Fig 7.12c).

Correlation values are easily interpreted with the maximum (best) value of 1. This tells us

122



how closely the shapes of the target sequence and the prediction sequence match.

All series are an average over 6 seeds and the shading indicates max and min values.

Note that, due to the high degree of overlap in many of the figures, color printing is required

to discern individual series. Plots taken with respect to τ are produced by combining two

different x-axes, allowing us to make both short and long timescales discernible. This split

occurs at τ = 10 and is indicated by the vertical black line.

For the Atari@200M results we also included learning curves (rightmost column). These

learning curves take an average of normalized MSE taken across all evaluation timescales.

For each timescale we normalize each of the series by the largest MSE of any series for that

timescale. Then for each series we average the normalized MSE across all the timescales. As

before, shaded areas indicate max and min.

While our evaluation method seeks to discern differences in performance due to the

various configuration, in reality most configurations perform similarly. In order to rank

configurations we first considered the MSE and then variance.

Embedding Comparison.

We compare methods for combining the timescale inputs with the agent’s features, φ, using

an embedding vector ν = ν(φ, γ) (Figure 7.12). The direct embedding performs a concate-

nation, ν = [φ, γ]. Xu et al. (2018) learned a vector, ξ(γ), of size 16 which was concatenated

with φ, which we refer to as l embed . We also considered a Hadamard embedding in which

a learned vector, ξ(γ), the same length as φ, was combined using element-wise multiplication

with φ, that is ν = φ � ξ (h l embed). Finally, we considered a matrix multiplication ap-

proach in which the timescales were given as inputs to a fully connected layer whose output

was a square matrix, Ξ(γ), with dimensions the same size as φ. The embedding was then

formed by matrix multiplication: ν = φ>Ξ. All embeddings were trained as part of the

end-to-end training of the network against the prediction loss. We found little difference

between the approaches in terms of their MSE or correlation. Overall the linear embedding

appears the best choice based on its lower variance, but this did not hold universally for the

other games evaluated (Figure 7.15). Learning and computation were both slower with the

matrix multiplication approach (Figure 7.13) and linear activations were generally slightly

better than ReLU (Figure 7.14).
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(a) MSE (b) Avg Norm MSE (c) Correlation

Figure 7.12: Embedding Comparison. Several approaches for adding the timescale de-
pendency to the network were investigated. direct) Concatenates the timescale with φ.
l embed) Timescale is input to a fully connected layer of length 16 with linear activation
whose output is concatenated with φ. h l embed) Timescale is input to a fully connected
layer the same length as φ with linear activation and then combined with φ by element-wise
multiplication. The l embed approach appears to be slightly better due to its lower variance.
Note that, unlike the square-wave plots, error bars in the Atari plots indicate
max-min.
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(a) (b)

(c) (d)

Figure 7.13: Matrix Embedding. Timescale embedding was performed by matrix multipli-
cation, that is νt;k = φ�

t Ξk(γk). Where the size of Ξ was chosen such that the multiplication
produced an output vector the same size as φ. That is, ||φ|| = 512 and ||Ξ|| = 512 × 512.
The series 2D l embed and 2D relu embed use the matrix multiplication approach with ei-
ther a linear or ReLU activation function. The matrix multiplication approach tends to learn
much slower than the direct, with markedly reduced performance at the higher timescales.
Further, consistent with the other embedding approach, ReLU activation performs worse
than a linear one. Additionally, training the 2D models was computationally expensive and
training was noticeably longer.

(a) MSE (b) Avg Norm MSE (c) Correlation

Figure 7.14: Linear and ReLU Embedding Activations. If we include Figure 7.13 it
generally appears that linear activations are better than ReLU for the embedding layers.
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Figure 7.15: Atari@200M: Embedding Comparison. We find no consistent difference
between using the direct or l embed approaches.
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Timescale Input Comparison

We examine how the input timescale representation affects prediction performance (Fig-

ures 7.16, 7.17). We consider whether to use γ or τ inputs or both. The γ input values are

naturally scaled between [0, 1) and the τ input values were normalized by dividing by the

max τ , which in these experiments was 100. We consistently see that using only γ produced

the worst performance (Asteroids, in Figure 7.17, is an exception). Providing τ or both τ and

γ performed very similarly, but we consistently observed that providing both representations

performed best for very short timescales and had lower variance.

(a) MSE (b) Avg Norm MSE (c) Correlation

Figure 7.16: Input Comparison. We compare performance of the network when providing
γ, τ or both to the network inputs. We see that providing only γ as the input timescale
does the worst. Providing both γ and τ or just τ perform similarly, but providing both does
better at very short timescales.
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Figure 7.17: Atari@200M: Inputs Comparison. We see that using γ as input gives
better results at very short timescales than τ , but otherwise τ is better. Overall, providing
both γ and τ provides the best performance. Although, the results in Asteroids are notable
exception.
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Distribution Comparison

We look at the effect of drawing Γt from different distributions (Figures 7.18, 7.19). We

use a Γt of size 8, two of which are always the lower and upper bounds τ = {1, 100}. Six

additional γk are drawn from a given distribution. We either draw all six uniformly from

the γ or τ scale or draw half from each. We see that drawing solely from γ performs worst

overall, particularly at longer timescales, as is expected. Surprisingly, γ did not consistently

outperform τ at very short timescales. If we consider all timescales and games evaluated

there is no clear winner between drawing solely from τ or from τ and γ. However, at very

short timescales drawing from both tended to produce better results. Thus, we recommend

drawing from both scales as a default.

(a) MSE (b) Avg Norm MSE (c) Correlation

Figure 7.18: Distribution Comparison. We compare different distributions used to gen-
erate Γt. At lower timescales sampling from the γ scale does better than sampling from
the τ scale and the opposite holds at longer timescales. Sampling from both provides a
compromise in performance.
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Figure 7.19: Atari@200M: Distribution Comparison. Populating Γt from the τ scale is
better than from γ scale except at very short timescales. Drawing samples from both scales
does best overall.
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Loss Scaling

We examined the effect that loss scaling has on network performance. Figure 7.20 shows that

on Centipede@25M there is a clear benefit, with clearly lower MSE and variance. Scaling the

loss was expected to improve short timescale performance. Surprisingly, in terms of MSE,

the greatest impact was on longer timescales. However, such a pronounced difference was not

seen in other Atari games (Figure 7.21). Instead we saw a general trend in which scaling did

improve performance at short scales at the cost of performance at mid and long timescales,

which was in line with our expectations (again, Asteroids was somewhat an exception).

(a) MSE (b) Avg Norm MSE (c) Correlation

Figure 7.20: Scaling Comparison. We examined the effects that scaling the loss by (1−γk)
has. We see that scaling results in lower overall error and variance. Note that such a clear
separation was not observed over other games tested.
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Figure 7.21: Atari@200M: Scaling Comparison. As expected scaling the loss generally
helped improve performance for shorter timescales, at the cost of performance elsewhere.
We note that the error at initialization, which can be see in the learning rate plots, can be
much lower without the scaling. This is due to the division by (1 − γ) used in the scaling
networks, which has the effect of amplifying the noise in the initialization. To counter this
we tried reducing the initial network weights, θ, by multiplying by (1− γ) (scaled δ and θ).
This did improve the initial error and matched the loss scaling for performance. This also
appeared to reduce variance in some cases.
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Estimation by Interpolation

An alternative approach to estimating value at arbitrary timescales is to have multiple pre-

diction heads, each at a fixed timescale, and then linearly interpolate between the nearest

bracketing timescales. In Figure 7.22 we show results for such an interpolation. Here we took

the previously trained probe networks (with scaled loss and the taper network architecture)

and performed linear interpolation for τ = [1.5, 3.5, 7.5, 15, 30, 50, 70, 90]. As examples, to

predict value for τ = 1.5 we linearly interpreted predictions from the probe networks for

the timescales τ = {1, 2} and for predictions at τ = 70 we interpolated with predictions

from τ = {60, 80} probe networks. Because of the non-linear relationship between τ and γ

the linear interpolation gives different weighting depending on whether the interpolation is

done on the τ or γ scale. Interpolating in these spaces is also compared. Results show that

performance was fairly similar between the interpolation scales, but that the Γ-net did not

perform as well. While it might have been expected that the ability of the neural network

used by Γ-net to capture the non-linearity of the timescales would give it an advantage, this

was not shown in this experiment. Rather, we suspect that the increased accuracy of the

probe networks allowed the interpolation approach to win out.

(a) MSE (b) Avg Norm MSE (c) Correlation

Figure 7.22: Interpolated. Predictions are made between the probe timescales by taking
the weighted average of the predictions made by the bracketing probe networks. Due to the
non-linear relationships of γ and τ different weightings are produced if the weighting is done
in either scale. We see that either interpolation produces better results than the Γ-nets.

7.6 Discussion

We have empirically evaluated various approaches to constructing Γ-nets and compared their

predictive accuracy to baseline predictors. While we sought to separate the impacts of the

various approaches, in reality all of the variants we explored performed similarly. We have
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considered several different Atari games with deep learning architectures as well as a robotics

demonstration using a shallow architecture. Overall we found that Γ-nets worked reliably

both for reward and sensorimotor prediction.

Despite the relatively minor differences in performance across the variants we do make

some recommendations for implementation. Since there was no universal difference between

the direct or l embed embedding approaches we recommend just using the simplest, direct. If

looking for a general approach that is not specifically adapted to the task then we recommend

using both γ and τ as inputs to the network as well as drawing samples from both scales

in order to populate Γt. On the other hand, if longer timescales are preferred then it seems

sufficient to use only τ for both input and sampling distribution. With regards to scaling the

loss a clear universal benefit has not been observed and we suggest that further investigation

is required to determine the best way to balance the losses resulting from different timescales.

Such an investigation is a clear opportunity for future work.

Our method is thus far limited to the fixed discounting case. However, one of the key

generalizations of GVFs is to support transition-dependent discounting functions: γt+1 ≡
γ(St, At, St+1) (White, 2017). This allows GVFs to be more expressive in terms of the types

of returns they can estimate. Extending our method to support such discounting is clearly

an important next-step in this work.

There are several ways in which our work and that of Fedus et al. (2019) are compli-

mentary. First, they demonstrated that using value predictions at many different timescales

could serve as useful auxiliary tasks for driving representation learning. A clear next step is

to investigate whether or not Γ-nets could also serve as a useful auxiliary task. Additionally,

they demonstrated that alternative returns, such as hyperbolic discounting, could be formed

by using value estimates at multiple timescales as a basis function; Γ-nets could provide such

a basis function using a single network.

Long timescale predictions can be difficult to learn due to the higher variance of the

observed returns. Romoff et al. (2019) presented an algorithm which computes values for an

ordered set of timescales by predicting the differences between the values using separate net-

work heads. Value estimates are then constructed in a cascade fashion where each timescale

prediction adds to the one that came before it. They showed that their method could im-

prove estimation accuracy for longer timescales by leveraging the accuracy of the easier to

learn shorter timescales. We might expect a similar effect using Γ-nets where long timescale
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predictions could benefit from the short timescales being learned directly in the network.

Our current evaluation approach is not fine grained enough to discern such a benefit. Thus,

this area warrants further exploration.

Γ-nets is related to other works which seek to learn many different predictions simul-

taneously and tractably. The UVFA (Schaul, Horgan, et al., 2015), on which this work is

based, generalizes over goals. The successor representation (SR) (Dayan, 1993) separates

environment dynamics from reward, providing a way to transfer learning across tasks (Bar-

reto, Dabney, et al., 2017; Sherstan, Machado, and Pilarski, 2018). These ideas have been

combined (Mankowitz et al., 2018; Ma et al., 2018) to enable transfer learning over multiple

goals using off-policy learning. However, these methods still use fixed timescales, thus, a

natural extension of Γ-nets is to combine them with these approaches.

The original motivation for this work was to use Γ-nets to create GVFs which form a

predictive representations of state for use by the agent’s policy. It now seems that the best

approach would be to use multiple heads with predictions at fixed timescales and let the

policy network learn to generalize over those predictions as it needed. Such an approach

could be costly in terms of network weights and Γ-nets might accomplish the same thing

with a smaller network.

7.7 Conclusion

We presented Γ-nets, a simple technique for generalizing value estimation across timescale.

This technique allows a system to make predictions for values of any timescale within the

training regime of the network. We expect that this ability will be useful in areas such as

predictive representations of state—i.e., modelling the world as a collection of predictions

about future sensorimotor signals. In complex environments complete models are not feasi-

ble, thus, being able to query for predicted outcomes at any timescale makes a model poten-

tially more compact and expressive. An investigation of Γ-nets in different control learning

scenarios is an important area for future work, and we believe they may be of benefit to

ongoing research in planning and lifelong learning. In particular Γ-nets are complimentary

to approaches which seek to learn many things about the world simultaneously such as the

successor representation and universal value functions, suggesting that Γ-nets may provide

us with a functional new tool for the pursuit of knowledgeable intelligent systems.
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Part III

Driving Representation Learning with
GVFs
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In the third and final part of this dissertation we consider how GVFs can be used to

drive representation learning. GVFs can be used as auxiliary tasks whose gradients assist

in training a core representational network that is shared with an agent’s policy. Auxiliary

tasks have been shown to improve agent learning in many different works. In Section 8.2

we look at the use of Γ-nets as auxiliary tasks and in Section 8.3 we experimentally test the

effect that the prediction timescale of a GVF-based auxiliary task has on performance.
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Chapter 8

GVFs as Auxiliary Tasks

Thus far, we have considered two aspects of representation and GVFs. Part I looked at

representation with GVFs and Part II looked at how GVF answers might themselves be rep-

resented and learned. A third consideration is how GVFs can be used to drive representation

learning, which is the focus of this chapter. We present two investigations on the topic. In

Section 8.2 we show experimentally that Γ-nets, introduced in Chapter 7, can improve policy

learning in Atari games when used as an auxiliary task. In Section 8.3 we ask the question

of how the timescale parameter of GVF-based auxiliary tasks affects policy learning and

present experimental results.

8.1 Introduction

In reinforcement learning (RL), an agent tries to learn how to act so as to maximize the

amount of reward it will receive over the rest of its lifetime. RL agents are dependent

on their representations of state — their description, in vector form, used to describe the

configuration of its external and internal environment.

In end-to-end training of deep reinforcement learning (DRL) the agent’s representation,

policy, and value estimates are trained simultaneously from reward received in the environ-

ment. Despite the successes in DRL, representation learning remains a serious challenge.

A recent line of research is to use auxiliary tasks to aid in driving the optimization process

(Jaderberg et al., 2017; Fedus et al., 2019; Le et al., 2018; Bellemare, Dabney, Dadashi,

et al., 2019; Hernandez-Leal et al., 2019; Kartal et al., 2019; Veeriah et al., 2019). Let us

define a task as any output of the network for which a loss function is attached. A primary

task is then any task that is directly related to an agent improving its policy. In value-
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Representation
Network

π, V

Aux Tasks

Input

Figure 8.1: Auxiliary Tasks. Gradients (pink) flow back from both the primary tasks (π and
V) and the auxiliary tasks. In this dissertation, we assume that the output of the auxiliary
tasks serve no purpose except to compute losses and provide gradients.

based methods, this would include the value estimate, while in policy gradient methods this

might include policy, value, and entropy losses (used to prevent early collapse of the policy).

While what qualifies as an auxiliary task is open to interpretation, for the purposes of this

dissertation let us define them as any task whose sole purpose is to assist in driving represen-

tation learning by providing additional gradients. These ideas are illustrated in Figure 8.1

where both the primary tasks and auxiliary tasks depend on the same shared representation

network and provide gradients for training the value-based reinforcement learner’s network.

In this chapter we say that one representation is better than another if it enables either:

1) better final performance of the policy or 2) faster learning of the same policy. In this

context, auxiliary tasks have been shown to both help and hinder performance (Fedus et al.,

2019). At present, it is not well understood what tasks make good auxiliary tasks or why

they help in general.

One example, where auxiliary tasks might help, is in the sparse reward setting, in which

informative reward is infrequently observed. Auxiliary tasks may help by providing denser

gradients. For example, an autoencoder auxiliary task (Jaderberg et al., 2017) can provide

training gradients on every training sample. Let us distinguish two cases then. In one case,

the auxiliary task helps the network find the same representations as it would otherwise find,

but faster. This may occur because the auxiliary task gradients drive the network towards the

good representation faster or because they make the representation easier to learn (e.g., the
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additional gradients have the effect of reducing variance in the updates or make it easier to

escape local minima (Suddarth and Kergosien, 1990)). In another case, these dense gradients

impact the optimization process such that the representation found is in fact different, and

possibly better. While we do not consider this setting here, a representation might also be

considered “better” if it produces features that are more disentangled and generalize better

in the transfer learning setting (Le et al., 2018). One of the results observed by Jaderberg

et al. (2017) was that auxiliary tasks could make policy learning more robust to variations

in learning parameters. We report on a similar effect in Section 8.3.

In this chapter we present two related works which investigate how GVFs as auxiliary

tasks can affect policy learning. An oft suggested use for Γ-nets, introduced in Chapter 7, is as

auxiliary tasks. In Section 8.2 we show that Γ-nets can indeed improve policy learning when

used in this way. The Γ-nets training algorithm trains against a wide range of timescales. A

natural question to ask is whether or not there is a relationship between the auxiliary task

prediction timescale and performance. This question is explored in Section 8.3.

8.2 Gamma-nets as Auxiliary Tasks

(a) (b)

Figure 8.2: Percent improvement over DQN calculated by where score is the mean over a)
the last 100 training episodes, b) all time.

It has often been suggested that Γ-nets would be useful as auxiliary tasks. In fact, related

work by Fedus et al. (2019) suggests that predictions at multiple timescales provides useful

auxiliary tasks. In their work multiple predictive heads hang off a single network and each
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head predicts value at a different, fixed timescale. They evaluated performance across the

entire ALE (Bellemare, Naddaf, et al., 2015) suite of games and saw clear improvements on

some games as well as negative impacts on others. While we do not make a comparison to

this approach we do present results on five ALE games using Γ-nets as auxiliary tasks. In

all of the games we examined we saw improved policy performance.

To isolate the effect Γ-nets have on performance we train our agent using the standard

DQN setup (Mnih, Kavukcuoglu, et al., 2015) rather than the Rainbow algorithm used in

Chapter 7. Specifically, the changes added by Rainbow, which are not added here, are n-step

prediction targets, prioritized replay sampling, and distributional value function representa-

tion. The core network consists of three convolutional layers with {32, 64, 64} filters and a

kernel size of {8, 4, 4} respectively. This is then followed by a fully connected layer of 512

nodes with ReLU activation. The output of this layer is considered the output of the shared

core network, which we refer to as φ. DQN uses Q-learning, that is, it predicts the state-

action values for each state and action pair. Our policy network takes φ(s) as input and

passes it through a single fully-connected layer with linear activation. This layer consists of

|A| nodes, one corresponding to each Q(s, a)∀a ∈ A. Like in Section 7.5.3 we provide both

γ and τ representations as inputs to the Γ-net. That is, for a given timescale, say γk, we

compute τk and then concatenate both as inputs. The timescales are then linearly embedded

by passing through a fully-connected layer of size 16 with linear activation. The output of

the linear timescale embedding is concatenated with the output of the core network (a total

of 528 features) to serve as the input to the Γ-net. The Γ-net network consists of a fully-

connected layer of 256 nodes with ReLU activation and finally a fully-connected layer with

linear activation which makes the predictive output, V (St, γk). To train the Γ-net we sample

eight timescale each from both the γ and τ scales for a total of 16 training timescales. Each

training update of the entire augmented DQN network consisted of sampling 32 transitions

from the replay buffer. Thus, for each update the effective batch size of the Γ-net is 512 (32

transitions * 16 timescales).

When combining auxiliary tasks with the core tasks it is typical to apply a scaling factor

to each loss. Intuitively this is done to adjust the relative importance of each task in the

optimization process. Practically, this is treated as an algorithm meta-parameter which is

tuned by parameter sweeps. For all core tasks we use a scaling of 1 and for the Γ-net we

apply a scaling β, which was swept over β ∈ {0.01, 0.1, 0.5} on the game Space Invaders. For
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Game DQN DQN + Γ-net
Space Invaders 1003.29 (99.40) 1710.38 (207.87)
Seaquest 2304.38 (784.24) 4047.37 (1617.34)
Breakout 114.81 (26.53) 124.18 (29.70)
Centipede 3399.53 (202.95) 3673.02 (167.78)
Asterix 2531.70 (234.22) 2961.30 (298.46)

Table 8.1: Performance over the last 100 training episodes after 200M frames for DQN and
DQN + Γ-net. Results are averaged over 10 seeds and standard deviation between runs is
reported in parentheses.

each value of β we carried out 5 runs of 200M frames of experience and determined β = 0.1

performed best based on the final 100 episodes. Loss for both the core value network and

the Γ-net used the Huber loss, which uses the squared loss for magnitudes below 1 and the

absolute loss for magnitudes above. Unlike in Section 7.4 we did not applying loss scaling

to the Γ-net.

Each agent is trained for 200M frames on five Atari 2600 games: Asterix, Breakout,

Centipede, Space Invaders, and Seaquest. We follow the experimental methodology outlined

in Machado, Bellemare, Talvitie, et al. (2018). The specific hyperparameters used are listed

in Table 8.2. The performance of each agent was measured over the last 100 episodes of

training from 200M frames of agent experience. Each experiment was further averaged over

10 distinct seeds.

Like Fedus et al. (2019) we saw improvements in the learned policies on several Atari

games (Figure 8.2). In all the games we tested, average performance was better with Γ-nets

as auxiliary tasks, whether considering final performance or performance over the entire run

(Table 8.1). Figure 8.3 shows the average learning curves. In some cases the difference in

performance is apparent from early on, while in others it is a gradual improvement. Here

too it is clear that the auxiliary tasks helped performance. All results are averaged over 10

seeds.
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Figure 8.3: Training curves for DQN baseline and DQN + Γ-net. The x-axis is the number of
frames during training. The y-axis is cumulative reward. Shading indicates 95% confidence
intervals.
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Table 8.2: Hyperparameters for Aux-task Γ-net experiments on the Arcade Learning Envi-
ronment

DQN Parameters
Frame stack 4
Frame skip 5
Replay buffer size 1, 000, 000
Replay buffer sampling Uniform
Target update frequency 4
Batch size 32
Optimizer RMSProp
RMSProp ρ 0.95
RMSProp ε 0.01
ε decay horizon 1M frames
ε initial 1.0
ε final 0.01
DQN γ 0.99
Sticky action probability 0.25

Γ-net Parameters
Loss scaling β 0.1
γ sampling interval γ ∈ [0, 0.99)
Γ batch size 16
Embedding size 32
Network layers FC 256 → ReLU → FC 1
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8.3 The Effect of Prediction Timescale on Representa-

tion Learning

Predictive auxiliary tasks have been shown to improve performance in numerous reinforce-

ment learning works, however, this effect is still not well understood. The primary purpose

of this section is to investigate the impact that an auxiliary task’s prediction timescale has on

the agent’s policy performance. We consider auxiliary tasks which learn to make on-policy

predictions using temporal-difference learning. We test the impact of prediction timescale

using a specific form of auxiliary task in which the input image is used as the prediction

target, which we refer to as temporal-difference autoencoders (TD-AE). We empirically eval-

uate the effect of TD-AE on the A2C algorithm in the ViZDoom environment using different

prediction timescales. While we do not observe a clear relationship between the prediction

timescale on performance, we make the following observations: 1) using auxiliary tasks al-

lows us to reduce the trajectory length of the A2C algorithm, 2) in some cases temporally

extended TD-AE performs better than a straight autoencoder, 3) performance with auxiliary

tasks is sensitive to the weight placed on the auxiliary loss, 4) despite this sensitivity, aux-

iliary tasks improved performance without extensive hyper-parameter tuning. Our overall

conclusions are that TD-AE increases the robustness of the A2C algorithm to the trajectory

length and while promising, further study is required to fully understand the relationship

between auxiliary task prediction timescale and the agent’s performance.

8.3.1 Hypothesis

Numerous works have included predictive auxiliary tasks (Jaderberg et al., 2017; Veeriah et

al., 2019; Fedus et al., 2019; Hernandez-Leal et al., 2019; Kartal et al., 2019). However, the

relationship between the prediction timescale and policy performance has not been studied.

Our hypothesis is that having auxiliary tasks that predict the future on extended timescales

will enable the agent to learn better policies. Further, we hypothesize that as the predic-

tion timescale increases, from reconstruction towards the policy timescale of the agent, we

should expect improved policy performance. This is motivated by the belief that on-policy

temporally extended auxiliary tasks will share similar or even the same feature dependencies

as the policy.
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8.3.2 Contributions

To test our hypothesis we use temporally extended predictions of the agent’s input image as

auxiliary tasks, which we refer to as temporal-difference autoencoders (TD-AE). We evaluate

the impact of these auxiliary tasks on three scenarios in ViZDoom, a 3D game engine, using

the A2C algorithm (Mnih, Badia, et al., 2016). Our experiments do not conclusively support

or disprove our hypothesis, however, we make several observations. Our first, and most

notable observation, is that using TD-AE makes the learning more robust to the length of

the trajectories, n, used in training. Reducing n should allow the agent to adapt its policy

more quickly and allows us to approach a more online algorithm. However, reducing n from

128 to 8 steps causes the baseline algorithm to fail. By including TD-AE auxiliary tasks

the trajectory length can be reduced to 8 steps and still achieve performance which meets

or exceeds that of the baseline. Our second observation is that, while we do not observe a

direct relationship between auxiliary task timescale and policy performance, we do observe

instances where the use of predictive auxiliary tasks outperform reconstructive tasks (i.e.

TD-AE(γ = 0)). Our third observation is that the performance with auxiliary tasks is

highly sensitive to the weighting placed on their losses. Finally, despite this sensitivity, the

TD-AE auxiliary tasks are shown to generally improve performance even when the weighting

is not well-tuned.

8.3.3 Background

In RL, an agent learns to maximize its lifetime reward by interacting with its environment.

This is commonly modelled as a Markov Decision Process (MDP) defined by S,A, P, r, γ,

where S is the set of states, P describes the probability of transitioning from one state, s,

to the next, s′, given an action, a, from the set of actions A, that is P (s′|s, a). The reward

function generates a reward as a function of the transition: r
.
= r(s, a, s′). Finally, γ ∈ [0, 1]

is a discount term applied to future rewards.

The agent’s goal is to maximize the sum of undiscounted future rewards (γ = 1.0), known

as the return. In practice we often use the discounted return instead:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . . (8.1)

Measuring the goodness of being in a particular state and acting according to policy π
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is given by the state-value—the expected return from the state:

vπ(s)
.
= Eπ

[
Gt

∣∣∣∣St = s

]
. (8.2)

The goodness of taking an action from a state and then following policy π, known as the

state-action value, is given as:

qπ(s, a)
.
= Eπ

[
Gt

∣∣∣∣St = s, At = a

]
. (8.3)

Temporal-difference (TD) methods (Sutton and Barto, 2018) update a value estimate, V ,

towards samples of the discounted bootstrapped return by computing the TD-error as:

δt = Rt+1 + γVπ(St+1)− Vπ(St). (8.4)

An n-step TD-error, which is used in A2C, uses n samples of the return before bootstrapping:

δt =

( n∑
i=1

γi−1Rt+i

)
+ γnVπ(St+n)− Vπ(St). (8.5)

Sutton, Modayil, et al. (2011) broadened the use of value estimation by introducing

general value functions (GVFs). GVFs make two changes to the value function formulation.

The first is to replace reward with any other measurable signal, which is now referred to as

the cumulant, C. The second change is to make discounting a function of the transition,

γt ≡ γ(St, At, St+1) (White, 2017). Thus, the value function now estimates the expectation

of the following return:

Gt = Ct+1 + γt+1Ct+2 + γt+1γt+2Ct+3 + . . . .

GVFs model elements of an agent’s sensorimotor stream as temporally extended predic-

tions. They can be learned using standard temporal-difference learning methods (Sutton

and Barto, 2018).

Advantage actor-critic (A2C) (Mnih, Badia, et al., 2016) is an algorithm that employs

a parallelized synchronous training scheme (e.g., using multiple CPUs) for efficiency; it is

an on-policy RL method that does not use an experience replay buffer. In A2C multiple

agents simultaneously accumulate transitions using the same policy in separate copies of the

environment. When all workers have gathered a fixed number of transitions the resulting

batch of samples is used to train the policy and value estimates. A2C maintains a parame-

terized policy (actor) π(a|s; θπ) and value function (critic) V (s; θv), parameterized by θπ and
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θv respectively. The value estimate is updated using the n-step TD-error (Eq. (8.5)). It is

common to use a softmax output layer for the policy head π(At|St; θπ) and one linear output

for the value function head V (st; θv), with all non-output layers shared (see Figure 8.1). The

loss function of A2C is composed of three terms: policy loss, Lπ, value loss, Lv and negative

entropy loss, LH . Entropy is treated as a bonus to discourage the policy from prematurely

converging; the policy is rewarded for having high entropy. Each of the losses is weighted by

a corresponding scalar, λ. Thus, the A2C loss is:

LA2C = Lπ + λvLv + λHLH ,

where each loss component is weighted by a scalar λ with λv = 0.5, λH = 0.001.

8.3.4 Temporally Extended Auxiliary Tasks

Consider writing value in the following form:

Vπ(s) =E[Rt+1] + γE[Rt+2] + γ2E[Rt+3] + . . .

+ γT−t−1E[RT ] + γT−tVπ(ST ),

where each expectation is conditioned on St = s and taken over the policy π. The value

function does not directly observe state s, but instead uses a feature vector φ to describe

the state, thus, φt ≡ φ(St). Let us further say that to predict the expected reward k steps

in the future requires some feature vector φ(St; k), which contains all information required.

That is, to accurately predict E[Rt+k|St = s] requires all the information represented by

φ(St; k). While φ might be independent for all k, Vπ(s) depends on the entire set of φ for

all k. Thus, for a given cumulant and policy, value estimates at all timescales depend on

the same features and the gradients produced during optimization should ideally lead to

representations which capture all the same feature dependencies as required by the policy.

However, the discounting term γ places more emphasis on near term rewards (for all

γ < 1.0), thus the features for near term rewards have a stronger impact on the value

estimates performance. This dependency is further modulated by the magnitude of the

rewards at each timestep in the future. Thus, the optimization will focus on some of these

features over the others. Therefore, given that our RL agents care about reward off into the
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future—typical values of γ are 0.9, 0.95, 0.99—it is reasonable to think that auxiliary tasks

that share the same temporal feature dependencies would drive the network towards the

same representation.

8.3.5 Methods

To study the effects of the auxiliary task temporal prediction length on representation learn-

ing, we first need to define prediction targets. Here we simply choose the image input, Xt,

as the prediction target, giving us the GVF defined as:

Ψπ(s) = Eπ

[
Xt + γΨπ(St+1)|St = s

]
. (8.6)

This requires a small change in the GVF definition. While the cumulant is usually defined

as a function of the transition, Ct+1(St, At, St+1), here, instead, the cumulant is only depen-

dent on the start of the transition and is thus subscripted by t (similar to the form used for

defining the successor representation (Sherstan, Machado, and Pilarski, 2018)). This GVF,

which we refer to as TD-AE(γ), has the form of a temporally extended autoencoder. Note

that when γ = 0 the target is simply the reconstruction of the input, i.e., an autoencoder.

This GVF can be learned using standard TD methods and throughout the experiments in

this section we use TD(0), where the loss is:

δ2t = (Xt + γΨπ(St+1)−Ψπ(St))
2.

TD-AE is a conceptually unusual prediction target. When the input is an image, the

sum of future discounted images has no obvious interpretation. However, we can instead

think of each pixel in the image as a GVF cumulant, in which case the TD-AE is a collection

of a large number of GVFs with well defined target signals. Each GVF predicts the sum of

discounted future values for a certain pixel. In the GVF setting this is straightforward and

does not require an easily interpreted description.

Sherstan, Dohare, et al. (2020) proposed a method for scaling TD losses by their timescale

such that losses and corresponding gradients for different timescale value estimates are ap-

proximately of the same magnitude. We use this scaling here, which involves two modifi-

cations. The first is to rescale the network output by explicitly dividing by (1 − γ). The
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Figure 8.4: The effect of sequence length on performance on the K-Item 2 scenario in ViZ-
Doom. Legend indicates the length of the sequence length used for training. As the sequence
length reduces the baseline becomes increasingly likely to fall into a failure mode.

second is to multiply the TD-error by the same factor. An average loss is taken across all d

pixels of the image. Thus, in our experiments, the loss used for the TD-AE is computed as

follows:

LTD−AE =
1

d

d∑
i

[(1− γ)(Xt:i + γΨπ;i(St+1)−Ψπ;i(St))]
2.

Combining this loss with the A2C loss gives:

L = LA2C + λTD−AELTD−AE

Where λTD−AE is a loss scaling parameter we sweep over in our experiments.

8.3.6 Experiments

Setting

ViZDoom (Kempka et al., 2016) is an open source implementation of the Doom video game.

This is a customizable 3D first-person environment. For evaluation in the ViZDoom envi-

ronment, we used the A2C base code from Beeching et al. (2019). In our experiments, 16

agents run simultaneously collecting transition samples that are used for batch training of

the agent. The baseline uses a fairly long update sequence: 128 steps. Thus, each training

batch consists of 2048 transition tuples obtained from 16 sequences of 128 steps. The agent’s

policy’s discount was γ = 0.99.
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(a) K-Item 2 (b) Labyrinth 13 (c) Two Color 5

Figure 8.5: Performance with and without TD-AE auxiliary task on three ViZDoom scenar-
ios. The original baseline with n=128 is given in black. The baseline with n=8 is given in
yellow and we see that it collapses and is not able to learn. Adding the TD-AE restores the
performance of the network and in some cases even outperforms the original baseline. For the
performance of the various TD-AE we chose the best λTD−AE from our sweeps (Table 8.3).

The core network consists of 3 convolutional layers followed by a fully connected layer

with each layer using ReLU activation. This is fed into a GRU memory layer whose output

is used as input to the policy, value, and TD-AE heads. The decoder for the TD-AE is

composed of 3 fully connected layers with sigmoid activations. The sizes of the first two

layers are 256 and 512 and the final layer, which has a linear activation, outputs the same

size and shape as the original input images (64 × 112 pixels with 3 color channels).

Each experiment was run over 10 seeds for 20 million frames (using 16 CPUs ≈ 10 hrs

per run). Our figures use shading to indicate the standard error. While 10 seeds is not

enough to give statistical certainty of the mean, we use standard error here for display

purposes. Thus, shading should be considered as a scaled indication of the variability about

the mean. Evaluations for the plots were performed by intermittently running test phases

(approximately every 2 M frames). For each test phase 50 games were run with frozen

network weights and the average episode return was reported.

Multiple ViZDoom scenarios were investigated, including K-Item 2, Labyrinth 13, and

Two Color Maze 5 (see descriptions in Beeching et al. (2019)). These scenarios were chosen

as they required memory of the past and were thus expected to have long-term dependencies.
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Figure 8.6: Effect of auxiliary loss weighting.

Reducing Sequence Length n

We observe a consistent behavior in all of the tasks: when we reduce the length of the

update sequence performance suffers (Figure 8.4). However, adding an auxiliary task can

restore baseline performance and in some cases exceed it. Figure 8.5 shows this behavior

across different ViZDoom scenarios. The default performance, with no auxiliary tasks and a

sequence length of 128, is listed as baseline n128. In all tasks decreasing the sequence length

to n = 8, baseline n8, significantly reduces performance. Adding in the TD-AE consistently

restores performance, and in some cases exceeds the performance observed on baseline n128.
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Table 8.3: Values of λTD−AE swept over. Optimal value for each γ is indicated in bold. The
size of these weights are much larger than reported in other works; this is due to the loss
scaling of 1− γ we described in Section 8.3.5

γ λTD−AE
K-Item 2 and Labyrinth 13
0.0 {1, 10, 100, 500, 1000}

0.5, 0.9 {10, 100, 500, 1000}
Two Color 5

0.0, 0.5, 0.9 {10, 100, 500, 1000}

The performance reported for each series uses the best λTD−AE found in our sweep. While

we do not see a clear relationship between the timescale of the TD-AE prediction we do

observe that in two of the scenarios using a γ > 0 outperforms an autoencoder, γ = 0.0

(Figures 8.5a, 8.5c).

Reducing the sequence length has the effect of reducing the batch size. In Figure 8.5a

we show an additional experiment, baseline 256w, which used no auxiliary tasks, n = 8, and

256 workers, producing the same batch size as baseline n128. Simply restoring the batch size

did not restore the performance.

Sensitivity to Loss Weighting

For each scenario, we swept over λTD−AE (see Table 8.3) and found the performance of the

policy could be sensitive to this term. This is shown in Figure 8.6 which depicts performance

for different γ and weighting. Too little or too much weighting reduced performance. This

is consistent with results found by others (Hernandez-Leal et al., 2019). However, we note

that in some works the same weighting is used for all scenarios. This could be problematic

as our results showed that the same weighting was not optimal in all our scenarios. We

might speculate on the reason for this sensitivity as follows. If there is too little weight

the resulting gradients are too small and result in smaller update steps, making it slower to

learn the policy and decreasing the likelihood of escaping local minima or failure modes. On

the other hand, if there is too much weight then the gradients of the auxiliary losses might

interfere with those of the policy (Schaul, Borsa, et al., 2019).
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Figure 8.7: The mean and standard error can hide the fact that the returns split into two
different modes (K-Item2, baseline n32). Each series indicates a different random seed. Here
six of ten seeds are in the failure mode.

Bi-Modal Performance

In the plots we have shown the mean of multiple runs along with the standard error. How-

ever, this hides the underlying behavior. The performance of the agent would generally

fall into two distinct modes. In the first mode, which we’ll refer to as the learning mode,

the performance curve continues to improve with more training, for example baseline n128.

In the second mode, which we refer to as the failure mode, learning quickly plateaus and

generally does not seem to recover, for example baseline n8. Figure 8.4 suggests that as

n decreases, the likelihood of achieving the learning mode decreases. Thus, presenting the

mean masks the underlying distribution of returns like those shown in Figure 8.7, which

shows the performance of each seed for baseline n32. We see that six out of the ten seeds

resulted in the failure mode. Thus, the mean underestimates those times when the policy

learning succeeds and overestimates the failure mode.

TD-AE Predictions

Figure 8.8 considers auxiliary predictions of two different pixels. Transitions were gathered

sequentially starting from an episode reset and potentially spanning several task terminations

and resets. The true return is shown in blue and the predictions of TD-AE(0.9) are given in

orange. While some predictions matched the target well, Figure 8.8a, others failed and were

not even predictive, such as the pixel shown in Figure 8.8b which is a constant value.

154



(a) (b)

Figure 8.8: Prediction quality for individual pixels for TD-AE(0.9) (Two Color 3). For some
pixels the prediction (orange) matches the target (blue) very well as in (a), while for other
pixels the prediction does very poorly as in (b).

8.3.7 Discussion and Future Work

We set out to test the hypothesis that temporally extended auxiliary tasks improve policy

learning. We expected that as the timescale of the auxiliary task became longer, improvement

would increase. If this hypothesis held true it would give some direction on the kinds of

auxiliary tasks to use in a learning system.

We observed that even autoencoders (TD-AE(0.0)), a commonly used auxiliary task (Le

et al., 2018; Shelhamer et al., 2016), significantly improved learning. Further, in some cases,

we saw that TD-AE with γ > 0 had a greater effect on performance. However, we did not

observe any trend where larger γ consistently performed better. Thus, additional study is

required to validate or disprove our hypothesis. There are several directions in which this

work could proceed. The first is to consider other domains, particularly settings with longer

time dependencies. It may be that in the settings we studied, all of the relevant information

could be captured by short timescale dependencies and longer ones added no additional

information. Also, studying our hypothesis with the architecture in this section may have

been complicated by the use of the GRU memory unit that was employed. It may be clearer

to study simpler architectures which lack explicit memory structures.

Instead, our primary contribution is the observation that adding auxiliary tasks allows

us to shorten the trajectory length used in the A2C update. Shortening the trajectories

may be useful for enabling the agent to update its policy more frequently, adapting quicker

155



to changes in the environment. We believe this represents a general trend that auxiliary

tasks can make policy learning less sensitive to parameter settings. This sort of reduced

sensitivity, or increased robustness, was previously reported by Jaderberg et al. (2017); our

work supports that observation.

One of the unanswered questions from our experiments is why does learning fail when

the trajectory length is shortened? Generally, as the trajectory length was shortened, per-

formance degraded. However, it did not degrade smoothly, but instead appeared to fall

into failure modes where, after a short period of learning, the policy was unable to improve

further.

Policy performance can be sensitive to the weighting placed on the auxiliary tasks. Fur-

ther, the optimal weighting is not the same for all games. This points out a potential problem

in works that select a fixed weighting by sweeping across a subset of environments and then

use the same weighting across all experiments thereafter. Consider that in the worst case,

where an auxiliary task would interfere with the learning of the representation needed by

the policy, the optimal weighting would be zero. Thus, it seems that any auxiliary task,

with a properly tuned weighting, should, at worst, have no effect on policy performance and

otherwise improve it. Therefore, reporting negative impacts on performance by an auxiliary

task does not necessarily provide information about the usefulness of the auxiliary task, but

rather is likely an indicator that the weighting is poorly tuned. Thus, it would be beneficial

to use an algorithm that automatically tunes the weighting parameters, such as the meta-RL

algorithm employed by Xu et al. (2018).

We close by restating our observations: 1) adding TD-AE tasks can improve the robust-

ness of the A2C algorithm to its trajectory length parameter setting, 2) temporally extended

TD-AE can sometimes help more than just an autoencoder, 3) performance of the policy is

sensitive to the weighting placed on its loss, and 4) even poorly tuned weightings enhanced

agent performance.

8.4 Discovering GVF Auxiliary Tasks

This chapter would be incomplete without reporting on recent work by Veeriah et al. (2019).

In their work GVF auxiliary tasks are learned in an end-to-end manner using a meta-gradient

approach. Their system contains two deep neural networks. The first is the standard core
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network, which consists of a shared representation network off of which the policy, value, and

auxiliary tasks hang. The second network, the question network, learns to output cumulants

and discounts as a function of the agent’s observations. The outputs of this network then

define the GVFs auxiliary tasks of the core network, which are learned in an on-policy

manner along with the usual actor-critic updates. For details on how these networks are

trained the interested reader should see the paper.

Their experiments demonstrated that, on their own, without gradients from the primary

tasks, the learned auxiliary GVFs were sufficient to drive representation learning; their agent

achieved comparable performance to the baseline agent which was trained with gradients

from the primary task. Further, by combining gradients from both the primary and auxiliary

tasks the agent was able to outperform the baseline in some scenarios. Perhaps the most

interesting contribution of their paper is that it demonstrates an approach in which GVFs

can be discovered directly from data, without designer intervention.

8.5 Conclusion

This chapter presented investigations into using GVFs as auxiliary tasks for driving repre-

sentation learning. In Section 8.2 we demonstrated that Γ-nets could be used effectively as

an auxiliary task, improving policy performance in the five Atari games that were tested. In

Section 8.3 we sought to understand the effect that the prediction timescale of an auxiliary

task has on the representation, as measured by changes in policy performance. While we did

not see any clear relationship between the prediction timescale and policy performance it

appears that generally predictive auxiliary tasks may outperform strictly reconstructive ones

such as the autoencoder. However, more research is required to confirm this. Additionally,

an important observation is that adding the auxiliary tasks increased the robustness of the

learning algorithm, allowing us to reduce the batch trajectory lengths. This result, combined

with those reported by Jaderberg et al. (2017) suggest that a major benefit of auxiliary tasks

may be to reduce the sensitivity of our learning algorithms to parameter settings. This may

be a valuable tool towards creating more general learning systems.

These works were clearly preliminary and more research is required to understand auxil-

iary tasks in general. As well, the question we posed in Section 8.3, what is the relationship

between auxiliary task prediction timescale and representation learning, remains unanswered.
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Chapter 9

Conclusion

My dissertation has focused on the relationship between general value functions (GVFs)

and representation. Capturing knowledge as a GVF consists of two parts: 1) the predic-

tive question 2) the estimated answer; this dissertation contributes understanding to both

the question and the answer. In Part I, several contributions to GVF questions were pre-

sented. In Chapter 3, I proposed that internally generated signals should be candidates for

prediction targets, just as external sensorimotor signals are. These introspective measures

and predictions might then be used to enhance an agent’s state representation allowing the

agent to learn general policies to control its own learning process. In Chapter 4, I presented

several empirical investigations of different introspective measures and predictions that sug-

gested ways in which they might be used to enhance an agent’s decision making abilities.

Chapter 5 then presented a new method for directly estimating the variance of the return by

predicting the squared TD-error of a value learner. This showed how a GVF could be used

to predict statistical properties of the agent’s environment conditioned on its own policy.

Part II provided several contributions to how GVF questions can be answered. Chapter 6

demonstrated that using the successor representation to represent GVFs allows incremen-

tally added GVFs to be learned faster by leveraging existing knowledge about the dynamics

of the agent’s environment. Chapter 7 demonstrated Γ-nets, a method for generalization

GVF estimation over timescale by including timescale as part of the function approxima-

tor’s inputs, allowing a single estimator to make predictions for any fixed timescale within

its training regime. In Chapter 8, I presented investigations on how GVFs could be used

as auxiliary tasks for driving representation learning and thereby improving policy learn-

ing. Section 8.2 showed that Γ-nets could improve policy learning in the deep reinforcement
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learning setting on Atari when used as auxiliary tasks. Finally, Section 8.3 examined the

effect that prediction timescale of GVF auxiliary tasks has on policy learning. While we

were unable to find a clear relationship between the GVF timescale and policy performance

we did observe that GVF auxiliary tasks helped make the learning algorithm more robust.

The majority of contemporary research in RL focuses on evaluations on single tasks and

compares algorithms by their expected returns. In contrast, the work presented in this

dissertation is motivated, if not evaluated, in the continual learning (CL) setting. In CL

an agent that learns adequate competencies that are transferable across many settings is

preferred to an agent that can optimally solve exactly one task. The works presented in this

dissertation represent small pieces to solving this bigger puzzle, but they are not meant to

be taken on their own; they should be viewed as part of a larger system.

Modelling the world is not a new idea in AI, nor are predictions, in fact these problems

are fundamental. What sets GVFs apart is that they provide a way to ground a predictive

syntax in a well-known formulation—the value function. Indeed, with only three compo-

nents: a policy, a cumulant, and a continuation function, we are able to describe a wide

variety of predictive questions—questions that are grounded in an agent’s own experience

and representation. Further, TD algorithms provide a computationally efficient and well

known way for learning GVF answers. Thus, the appeal of GVFs is that they provide two

things: 1) an expressive formalism capable of describing a great deal of world knowledge that

is grounded in the agent’s own sensorimotor experience, 2) known computational methods

for efficiently learning estimates of GVF answers.

As of the writing of this dissertation there remain many open questions in GVF research.

One of the biggest is how to use them. Should they be a state-representation in and of

themselves or is it enough to have them drive learning of a state-representation as auxiliary

tasks? How can they be used in planning? The majority of existing works, including those

presented here, have focused on demonstrating that they can be learned or showing how to

improve their learning or expressiveness. What remains to be seen is a clear demonstration

that they are in fact useful. While unsatisfying from the perspective of research in CL,

one of the clearest uses for GVFs is in conjunction with hand-crafted policies such as the

demonstrations of Pavlovian control referenced in Chapter 2. To summarize, the idea is

that prescripted control policies are triggered when a particular GVF prediction crosses a

threshold. These sorts of predictions have been used effectively in a number of situations
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and have a strong basis in animal reflexes. They have been used for learning to avoid

motor over-current situations in autonomous mobile robots (Modayil and Sutton, 2014).

Dalrymple et al. (2020) used GVF predictions to trigger gait transitions in a state-machine

used to produce walking by electrically stimulating an animal’s spinal cord. Daftry et al.

(2016) used GVF like predictions to trigger safety procedures in autonomous drones. It

seems natural that these ideas could readily be carried forward to other situations, even

those deployed in real-world settings.

In this dissertation I have motivated work on GVFs as part of an agent that incremen-

tally constructs its own predictive model of the world over time. However, with very few

exceptions, there has been little work on GVF discovery—the creation of new GVFs over

time. This is a major hurdle to validating the premise of GVFs. There are two main ap-

proaches to this work. The first is a generate-and-test approach that randomly generates

GVFs and then later evaluates if they are useful (Schlegel, White, and White, 2018). Several

experiments have shown that random generation can produce useful representations (Sutton

and Whitehead, 1993; Mahmood and Sutton, 2013). However, this approach ignores the

wealth of data that exists in the agent’s sensorimotor stream. In addition to random gener-

ation, or possibly instead of it, I believe that GVF generation should include a data driven

method. The only known demonstration of data-driven GVF generation is that of Veeriah

et al. (2019). They use a meta-gradient method to train a network to output cumulants

and discounts for on-policy GVFs. These GVFs are then used as auxiliary tasks for driving

representation learning in the core network. These auxiliary tasks were shown to improve

learning of the primary task. This work demonstrated that useful GVFs could be learned

directly from data. GVF generation, or discovery, represents an under-explored opportu-

nity for research. However, the reason it is under-explored is because it is difficult. The

work presented in this dissertation may contribute to GVF generation by suggesting ways

in which the GVFs should be represented. For example, by factoring GVF representation

with the SR, as done in Chapter 6, we can clearly separate policy and cumulant discovery.

Further, the application of question embeddings, as was done with the timescale parameter

in Chapter 7, may provide a general mechanism for specifying GVF parameters and learning

generalized estimates.

GVFs in their current form have been studied for nearly a decade, however, the underlying

motivations for their use have yet to be validated. While this might be discouraging it is not
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an indicator that the approach is misguided or fruitless. GVFs are attempting to address one

of the fundamentally difficult problems of AI—how does an agent construct a representation

of the world from its own experience. This is not a trivial problem and has itself been

studied for many more decades. I continue to believe that the study of GVFs and predictive

models in general is a worthy research path and one that will ultimately pay off. I anticipate

numerous advances in this field in the next decade and believe that the work presented in

this dissertation will assist in their discovery.
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Mankowitz, D. J., Ž́ıdek, A., Barreto, A., Horgan, D., Hessel, M., Quan, J., Oh, J., van Has-
selt, H., Silver, D., & Schaul, T. (2018). Unicorn: Continual Learning with a Universal,
Off-policy Agent. arXiv, 1802.08294.

McCracken, P. & Bowling, M. (2006). Online Discovery and Learning of Predictive State
Representations. In Conference on Neural Information Processing Systems (NeurIPS)
(pp. 875–882). Vancouver, Canada.

Mihalkova, L. & Mooney, R. (2006). Using Active Relocation to Aid Reinforcement Learning.
In FLAIRS Conference (pp. 580–585). Melbourne Beach, USA.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D., &
Kavukcuoglu, K. (2016). Asynchronous Methods for Deep Reinforcement Learning. In
International Conference on Machine Learning (ICML) (pp. 1928–1937). New York,
USA.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves,
A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015).

165



Human-level Control Through Deep Reinforcement Learning. Nature, 518 (7540), 529–
533.

Modayil, J. & Sutton, R. S. (2014). Prediction Driven Behavior: Learning Predictions that
Drive Fixed Responses. In AAAI Workshop on AI and Robotics. Quebec City, Canada.

Modayil, J., White, A., & Sutton, R. S. (2014). Multi-Timescale Nexting in a Reinforcement
Learning Robot. Adaptive Behavior, 22 (2), 146–160.

Ng, A. Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger, E., & Liang, E.
(2004). Autonomous Inverted Helicopter Flight via Reinforcement Learning. In Inter-
national Symposium on Experimental Robotics (ISER) (pp. 363–372). Singapore.

Ngo, H., Luciw, M., Förster, A., & Schmidhuber, J. (2013). Confidence-Based Progress-
Driven Self-Generated Goals for Skill Acquisition in Developmental Robots. Frontiers
in Psychology, 4, 1–19.

Oudeyer, P. Y., Kaplan, F., & Hafner, V. V. (2007). Intrinsic Motivation Systems for Au-
tonomous Mental Development. IEEE Transactions on Evolutionary Computation,
11 (2), 265–286.

Oudeyer, P.-Y. & Kaplan, F. (2009). What is Intrinsic Motivation? A Typology of Compu-
tational Approaches. Frontiers in Neurorobotics, 1, 1–14.

Parker, A. S., Edwards, A. L., & Pilarski, P. M. (2019). Exploring the Impact of Machine-
Learned Predictions on Feedback from an Artificial Limb. In IEEE International Con-
ference on Rehabilitation Robotics (ICORR) (pp. 1239–1246). Toronto, Canada.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., & Chintala, S. (2019). Py-
Torch: An Imperative Style, High-Performance Deep Learning Library. In Conference
on Neural Information Processing Systems (NeurIPS) (pp. 8024–8035). Vancouver,
Canada.

Pilarski, P. M., Dick, T. B., & Sutton, R. S. (2013). Real-Time Prediction Learning for the Si-
multaneous Actuation of Multiple Prosthetic Joints. In IEEE International Conference
on Rehabilitation Robotics (ICORR) (pp. 1–8). Seattle, USA.

Pilarski, P. M. & Sherstan, C. (2016). Steps Toward Knowledgeable Neuroprostheses. In
IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)
(p. 220). Singapore.

Pitis, S. (2018). Source Traces for Temporal Difference Learning. In AAAI Conference on
Artificial Intelligence (AAAI) (pp. 3952–3959). New Orleans, Louisiana, USA.

Pouget, A., Drugowitsch, J., & Kepecs, A. (2016). Confidence and Certainty: Distinct Prob-
abilistic Quantities for Different Goals. Nature Neuroscience, 19 (3), 366–374.

Prashanth, L. A. & Ghavamzadeh, M. (2013). Actor-Critic Algorithms for Risk-Sensitive
MDPs. In Conference on Neural Information Processing Systems (NeurIPS) (pp. 252–
260). Lake Tahoe, USA.

Rafols, E. J., Ring, M. B., Sutton, R. S., & Tanner, B. (2005). Using Predictive Represen-
tations to Improve Generalization in Reinforcement Learning. In International Joint
Conference on Artificial Intelligence (IJCAI) (pp. 835–840). Edinburgh, Scotland.

Riedmiller, M., Hafner, R., Lampe, T., Neunert, M., Degrave, J., Van de Wiele, T., Mnih, V.,
Heess, N., & Springenberg, T. (2018). Learning by Playing - Solving Sparse Reward
Tasks from Scratch. Proceedings of Machine Learning Research, 80, 4344–4353.

166



Ring, M. B. (1994). Continual Learning in Reinforcement Environments (Doctoral disserta-
tion, The University of Texas at Austin).

Ring, M. B. (1997). CHILD: A First Step Towards Continual Learning. Machine Learning,
28 (1), 77–104.

Romoff, J., Henderson, P., Touati, A., Ollivier, Y., Brunskill, E., & Pineau, J. (2019). Sepa-
rating Value Functions Across Time-scales. Proceedings of Machine Learning Research,
97, 5468–5477.

Russek, E. M., Momennejad, I., Botvinick, M. M., Gershman, S. J., & Daw, N. D. (2017).
Predictive Representations Can Link Model-based Reinforcement Learning to Model -
free Mechanisms. PLoS Computational Biology, 13 (9), 1–42.

Sakaguchi, Y. & Takano, M. (2004). Reliability of Internal Prediction/Estimation and its
Application. I. Adaptive Action Selection Reflecting Reliability of Value Function.
Neural Networks, 17 (7), 935–952.

Sato, M., Kimura, H., & Kobayashi, S. (2001). TD Algorithm for the Variance of Return
and Mean-Variance Reinforcement Learning. Transactions of the Japanese Society for
Artificial Intelligence, 16 (3), 353–362.

Schaul, T., Borsa, D., Modayil, J., & Pascanu, R. (2019). Ray Interference: a Source of
Plateaus in Deep Reinforcement Learning. arXiv, 1904.11455.

Schaul, T., Horgan, D., Gregor, K., & Silver, D. (2015). Universal Value Function Approx-
imators. In International Conference on Machine Learning (ICML) (pp. 1312–1320).
Lille, France.

Schaul, T., Quan, J., Antonoglou, I., & Silver, D. (2016). Prioritized Experience Replay.
arXiv, 1511.05952.

Schaul, T. & Ring, M. (2013). Better Generalization with Forecasts. In International Joint
Conference on Artificial Intelligence (IJCAI) (pp. 1656–1662). Beijing, China.

Schlegel, M., White, A., Patterson, A., & White, M. (2018). General Value Function Net-
works. arXiv, 1807.06763.

Schlegel, M., White, A., & White, M. (2018). A Baseline of Discovery for General Value
Function Networks under Partial Observability. In NeurIPS Workshop on Reinforce-
ment Learning under Partial Observability): Montreal, Canada.

Schmidhuber, J. (1991). Curious Model-Building Control Systems. In IEEE International
Joint Conference on Neural Networks (IJCNN) (pp. 1458–1463). Singapore.

Shelhamer, E., Mahmoudieh, P., Argus, M., & Darrell, T. (2016). Loss is its Own Reward:
Self-Supervision for Reinforcement Learning. arXiv, 1612.07307.

Sherstan, C. (2015). Towards Prosthetic Arms as Wearable Intelligent Robots (Master’s the-
sis, University of Alberta).

Sherstan, C., Ashley, D. R., Bennett, B., Young, K., White, A., White, M., & Sutton, R. S.
(2018). Comparing Direct and Indirect Temporal-Difference Methods for Estimating
the Variance of the Return. In Conference on Uncertainty in Artificial Intelligence
(UAI) (pp. 63–72). Monterey, USA.

Sherstan, C., Dohare, S., MacGlashan, J., Günther, J., & Pilarski, P. (2020). Gamma Nets:
Generalizing Value Estimation over Timescale. In AAAI Conference on Artificial In-
telligence (pp. 5717–5725). New York, USA.

167



Sherstan, C., Kartal, B., Hernandez-Leal, P., & Taylor, M. E. (2020). Work in Progress: Tem-
porally Extended Auxiliary Tasks. In Adaptive and Learning Agents (ALA) Workshop
at AAMAS. Auckland, New Zealand (Virtual).

Sherstan, C., Machado, M. C., & Pilarski, P. M. (2018). Accelerating Learning in Construc-
tive Predictive Frameworks with the Successor Representation. In IEEE International
Conference on Robots and Systems (IROS) (pp. 2997–3003). Madrid, Spain.

Sherstan, C., Machado, M. C., Travnik, J., White, A., Vasan, G., & Pilarski, P. M. (2017).
Confident Decision Making with General Value Functions. In Reinforcement Learning
and Decision Making (RLDM). Ann Arbor, USA.

Sherstan, C., Machado, M. C., White, A., & Pilarski, P. M. (2016). Introspective Agents:
Confidence Measures for General Value Functions. In Artificial General Intelligence
(AGI) (pp. 258–261). New York, New York, USA: Springer International Publishing.

Sherstan, C., Modayil, J., & Pilarski, P. M. (2015). A Collaborative Approach to the Si-
multaneous Multi-joint Control of a Prosthetic Arm. In International Conference on
Rehabilitation Robotics (ICORR) (pp. 13–18). Singapore.

Silver, D., van Hasselt, H., Hessel, M., Schaul, T., Guez, A., Harley, T., Dulac-Arnold, G.,
Reichert, D., Rabinowitz, N., Barreto, A., & Degris, T. (2017). The Predictron: End-to-
end Learning and Planning. In International Conference on Machine Learning (ICML)
(pp. 3191–3199). Sydney, Australia.

Sobel, M. J. (1982). The Variance of Discounted Markov Decision Processes. Journal of
Applied Probability, 19 (4), 794–802.

Stachenfeld, K. L., Botvinick, M. M., & Gershman, S. J. (2017). The Hippocampus as a
Predictive Map. Nature Neuroscience, 20, 1643–1653.

Storck, J., Hochreiter, S., & Schmidhuber, J. (1995). Reinforcement Driven Information
Acquisition in Non-Deterministic Environments. International Conference on Artificial
Neural Networks (ICANN), 2, 159–164.

Suddarth, S. C. & Kergosien, Y. (1990). Rule-Injection Hints as a Means of Improving
Network Performance and Learning Time. In Neural Networks (pp. 120–129). Springer.

Sutton, R. S. & Whitehead, S. D. (1993). Online Learning with Random Representation. In
International Conference on Machine Learning (ICML) (pp. 314–321). Amherst, MA,
USA.

Sutton, R. S. (1988). Learning to Predict by the Methods of Temporal Differences. Machine
Learning, 3 (1), 9–44.

Sutton, R. S. (1995). TD Models: Modeling the World at a Mixture of Time Scales. In
International Conference on Machine Learning (ICML) (pp. 531–539). Tahoe City,
USA.

Sutton, R. S. & Barto, A. G. (2018). Reinforcement Learning: An Introduction (2nd ed.).
The MIT Press.

Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs and Semi-MDPs: A Framework
for Temporal Abstraction in Reinforcement Learning. Artificial Intelligence, 112 (1),
181–211.

Sutton, R. S., Rafols, E. J., & Koop, A. (2006). Temporal Abstraction in Temporal-difference
Networks. In Conference on Neural Information Processing Systems (NeurIPS) (pp. 1313–
1320). Vancouver, Canada.

168



Sutton, R. S., Maei, H., & Precup, D. (2009). Fast Gradient-Descent Methods for Temporal-
Difference Learning with Linear Function Approximation. In International Conference
on Machine Learning (ICML) (pp. 993–1000). Montreal, Canada.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A., & Precup,
D. (2011). Horde: A Scalable Real-time Architecture for Learning Knowledge from
Unsupervised Sensorimotor Interaction. In International Conference on Autonomous
Agents and Multiagent Systems (AAMAS) (Vol. 2, pp. 761–768). Taipei, Taiwan.

Sutton, R. & Tanner, B. (2005). Temporal-Difference Networks. In Conference on Neural
Information Processing Systems (NeurIPS) (pp. 1377–1384). Vancouver, Canada.

Tamar, A., Castro, D. D., & Mannor, S. (2016). Learning the Variance of the Reward-To-Go.
Journal of Machine Learning Research, 17 (13), 1–36.

Tamar, A., Di Castro, D., & Mannor, S. (2012). Policy Gradients with Variance Related Risk
Criteria. In International Conference on Machine Learning (ICML) (pp. 1651–1658).
Edinburgh, Scotland.

Tamar, A. & Mannor, S. (2013). Variance Adjusted Actor Critic Algorithms. arXiv, 1310.3697.
Tanaka, S. C., Doya, K., Okada, G., Ueda, K., Okamoto, Y., & Yamawaki, S. (2016). Predic-

tion of Immediate and Future Rewards Differentially Recruits Cortico-Basal Ganglia
Loops. Behavioral Economics of Preferences, Choices, and Happiness, 7 (8), 593–616.

Tang, H., Houthooft, R., Foote, D., Stooke, A., Chen, X., Duan, Y., Schulman, J., Turck,
F. D., & Abbeel, P. (2017). # Exploration: A Study of Count-Based Exploration
for Deep Reinforcement Learning. In Conference on Neural Information Processing
Systems (NeurIPS) (pp. 2753–2762). Vancouver, Canada.

Thrun, S. B. & Mitchell, T. M. (1993). Lifelong Robot Learning. In NATO Advanced Study
Institue on the Biology and Technology of Autonomous Intelligent Agents. Trento, Italy.

van Hasselt, H., Guez, A., Hessel, M., Mnih, V., & Silver, D. (2016). Learning Values Across
Many Orders of Magnitude. In Conference on Neural Information Processing Systems
(NeurIPS) (pp. 4287–4295). Barcelona, Spain.

van Seijen, H. & Sutton, R. S. (2014). True Online TD (λ). In International Conference on
Machine Learning (ICML) (pp. 692–700). Beijing, China.

Vasan, G. & Pilarski, P. M. (2018). Context-Aware Learning from Demonstration : Using
Camera Data to Support the Synergistic Control of a Multi-Joint Prosthetic Arm. In
IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)
(pp. 199–206). Enschede, The Netherlands.

Veeriah, V., Hessel, M., Xu, Z., Lewis, R., Rajendran, J., Oh, J., van Hasselt, H., Silver, D.,
& Singh, S. (2019). Discovery of Useful Questions as Auxiliary Tasks. In Conference
on Neural Information Processing Systems (NeurIPS) (pp. 9306–9317). Vancouver,
Canada.

White, A. (2015). Developing a Predictive Approach to Knowledge (Doctoral dissertation,
University of Alberta).

White, A., Modayil, J., & Sutton, R. S. (2014). Surprise and Curiosity for Big Data Robotics.
In AAAI Workshop on Sequential Decision Making with Big Data (pp. 19–23). Quebec
City, Canada.

White, M. (2017). Unifying Task Specification in Reinforcement Learning. In International
Conference on Machine Learning (ICML). Sydney, Australia.

169



White, M. & White, A. (2010). Interval Estimation for Reinforcement-Learning Algorithms in
Continuous-State Domains. In Conference on Neural Information Processing Systems
(NeurIPS) (pp. 2433–2441). Vancouver, Canada.

White, M. & White, A. (2016). A Greedy Approach to Adapting the Trace Parameter for
Temporal Difference Learning. In International Conference on Autonomous Agents and
Multiagent Systems (AAMAS) (pp. 557–565). Singapore.

Xu, Z., van Hasselt, H., & Silver, D. (2018). Meta-Gradient Reinforcement Learning. In
Conference on Neural Information Processing Systems (NeurIPS) (pp. 2396–2407).
Montreal, Canada.
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