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Abstract

Modern myoelectric artificial limbs are sophisticated devices with many of the

degrees of freedom of biological limbs. These devices have great potential to

provide function for people with amputations, assisting them in participating

in a greater number of activities and tasks of daily living. While tremendous

advancements have been made in the control of myoelectric prostheses, the

interface between user and device only allows users to scratch the surface of the

capability of modern prosthetic devices. Importantly to the interface, feedback

of any kind is not widely commercially available from prosthetic devices.

A potential path towards improving user interactions with prosthetic limbs

in the current age of artificial intelligence is to view the device not only as a

tool being used but as a partner assisting the user in their daily life. That is

the goal of this work: to apply real-time machine learning methods to wear-

able assistive robotics to promote collaborative partnerships with users. Most

prior work using machine learning in prostheses has been focused on how users

control the device. Research has been increasing in providing feedback from

devices to users with a focus on communicating sensation, but has not yet

begun to explore how to use machine learning to provide and curate feed-

back. Here the focus is on the application of machine learning to the feedback

pathway—signals from the device to the user. This is an important step to en-

abling bi-directional communication between agents in order to achieve strong

collaborative interactions.

First, this dissertation champions viewing a direct-to-body device such as
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an upper-limb prosthesis as a partner. It outlines the value of viewing the

interaction as a partnership and introduces a framework for the value and

evaluation of strong partnerships between a human and a machine. Following

that, a set of experiments demonstrate the ability of real-time machine feed-

back learning methods to learn something of value to a human user in a pros-

thetic domain for the first time. These experiments also show that machine-

learned feedback can be successfully acquired and adapted in real time during

human-robot interaction. The final two experiments explore the human side

of interactions with a device that is adapting the feedback it provides over

time. Evidence in this dissertation suggests that signals coming from devices

that adapt as a user interacts with them could be the key to encouraging the

user to engage more deeply with their device and initiate positive long-term

interactions. Along with these findings, the methods described in this disser-

tation for understanding the human side of human-prosthesis interaction are

important contributions of this work.

Overall this dissertation demonstrates for the first time the reasons and

benefits of viewing upper-limb prostheses, and indeed many other assistive

technologies, as partners to users rather than resigning them to simply be-

ing tools. Temporal-difference learning methods are shown to be capable of

learning and adapting feedback signals being sent to users in real-time and

are a strong path towards closing the loop between humans and machines to

enable collaborations. Combined with methodological contributions that use

rich data from both machines and humans, this dissertation proposes a shift

in the way we think about human-device interaction in rehabilitation. This

shift towards thinking about and creating collaborations between humans and

assistive technology, especially in upper-limb prostheses, holds the potential

for unlocking greater functional gains wherever humans and devices come to-

gether.

iii



Preface

Ethics

This thesis is an original work of Adam S. R. Parker. The various studies done

over the course of the Ph.D were conducted in accordance with appropriate

ethical oversight.

Chapter 4, “Exploring the Impact of Machine-Learned Predictions on Feed-

back from an Artificial Limb”, was conducted in accordance with the Univer-

sity of Alberta Research Ethics Board, Pro00017008, approved in 2012.

Chapter 5, “Continually Learned Pavlovian Signalling Without Forgetting

for Human-in-the-Loop Robotic Control”, was conducted in accordance with

the University of Alberta Research Ethics Board 2, Pro00085727, approved in

March 2019.

Chapter 6, “Assessing Human Interaction in Virtual Reality With Continu-

ally Learning Prediction Agents Based on Reinforcement Learning Algorithms:

A Pilot Study”, was done following a protocol approved with informed con-

sent via DeepMind Technologies Ltd.’s arms-length IRB for human participant

studies.

Chapter 7, “Understanding Human Interaction with Real-Time Adaptive

Feedback During Simulated Prosthesis Use”, was conducted in accordance with

the University of Alberta Research Ethics Board 2, Pro00123026, approved in

November 2022.

Authorship

This thesis consists primarily of six research manuscripts which have been or

are planned to be submitted for publication.

iv



Chapter 2 is available as:

Parker, A. S. R., & Pilarski, P. M. (2021). Position statement: As-

sistive technology as partners through machine-learned communi-

cation. Workshop on Reinforcement Learning for Humans, Com-

puter, and Interaction (RL4HCI), ACM CHI 2021, 1–3. https :

//sites.google.com/view/rl4hci/position-papers

As first author I conceptualized and wrote this work with the con-

ceptualization, editing, formatting, and figure support from the

supervising author, Patrick M. Pilarski.

Chapter 3 has been published as:

Mathewson, K. W., Parker, A. S. R., Sherstan, C., Edwards, A. L.,

Sutton, R. S., & Pilarski, P. M. (2023). Communicative capital:

A key resource for human–machine shared agency and collabora-

tive capacity. Neural Computing and Applications, 35 (23), 16805–

16819. https://doi.org/10.1007/s00521-022-07948-1

As second author and lead student of record on the final copy of this

work, I contributed heavily to the conceptualization and editing

of this paper. More specifically I outlined the conceptualization

shown in the figures, which is a key contribution of the paper. I

also wrote the section on seeing-eye dogs and contributed heavily

to editing the work to properly develop and outline the concepts.

Chapter 4 has been published as:

Parker, A. S. R., Edwards, A. L., & Pilarski, P. M. (2019a). Explor-

ing the impact of machine-learned predictions on feedback from an

artificial limb. 2019 16th IEEE/RAS-EMBS International Con-

ference on Rehabilitation Robotics (ICORR), 1239–1246. https :

//doi.org/10.1109/ICORR.2019.8779424

As first author, I contributed the experimental design, the physical

experimental setup, the data analysis, and the core of the writing.

v



The physical experimental setup here consisted of the workspace,

getting the robot to move, and providing visual and vibrotactile

feedback, as well as the machine-learning code used. The data was

collected by Ann L. Edwards. As supervising author Patrick M.

Pilarski assisted with conceptualization and editing, most notably

with the machine learning portion of the methods, as well as the

final figures.

Chapter 5 is available as:

Parker, A. S. R., Dawson, M. R., & Pilarski, P. M. (2022). Contin-

ually learned Pavlovian signalling without forgetting for human-

in-the-loop robotic control. NeurIPS Workshop on Human in the

Loop Learning (HiLL). also arXiv:2305.14365 [cs.LG], 1–12. https:

//doi.org/10.48550/arXiv.2305.14365

As first author, I was responsible for the experimental design, im-

plementation, execution, analysis, and the core of the writing. Im-

plementation here included constructing the workspace the experi-

ment was conducted in and modifying the software used to control

the robot to take in signals from the workspace as well as au-

tonomously react to those signals. The machine-learning code was

adapted from Ann L. Edward’s previous work on adaptive switch-

ing. Here I modified this code to use different state information,

and a different learning target, and to implement the look-ahead

version. Micheal R. Dawson previously developed the software and

robot that was used and modified for this study. As supervising

author Patrick M. Pilarski assisted with conceptualization, editing,

as well as the final figures.

Chapter 6 has been published as:

Brenneis, D. J. A., Parker, A. S. R., Johanson, M. B., Butcher,

A., Davoodi, E., Acker, L., Botvinick, M. M., Modayil, J., White,

vi



A., & Pilarski, P. M. (2022). Assessing human interaction in vir-

tual reality with continually learning prediction agents based on

reinforcement learning algorithms: A pilot study. Adaptive and

Learning Agents (ALA) Workshop at AAMAS 2022, 1–8. https:

//doi.org/10.48550/arXiv.2112.07774

I was the only student author of this work. I contributed to the

thought and design of the experiment as well as the entire qual-

itative contribution. This included the qualitative design, data

collection technique, analysis, and write-up.

Chapter 7 is written for submission to Nature Human Behaviour.

Parker, A. S. R., Williams, H. E., Phelan, S. K., Hebert, J. S.,

Shehata, A. W., & Pilarski, P. M. (2024). Understanding human

interaction with real-time adaptive feedback during simulated pros-

thesis use [In preparation]

As first author of this work, I am largely responsible for the de-

sign, execution and writing of this study. The power hand and

prosthesis simulation brace were previously developed in the lab

by Eric D. Wells and Ben W. Hallworth. The software used to in-

terface with the robot was developed by Micheal R. Dawson. The

machine-learning code was adapted from Ann L. Edward’s pre-

vious work on adaptive switching. Here I modified this code to

use selective Kanerva coding, by using a modification of code from

Jaden B. Travnik, for the state space. I also changed the learning

target and configured the code to generate the audible feedback.

The quantitative design was advised by Ahmed W. Shehata and

Jacqueline S. Hebert. The mixed-methods and qualitative design

were supported by Shanon K. Phelan. Phelan also assisted in ques-

tion development. Heather E. Williams assisted in data collection

by assisting in the development of the checklist, as well as operating

the GaMA system. Williams also wrote the portions of the paper

that discuss how GaMA works, as well as provided the statistical

vii



analysis. As supervising author Patrick M. Pilarski assisted with

study conceptualization, and editing.

Additional Works

There are two works that do not contain sufficient writing on my part to be

included directly as chapters, but I played a vital role in their creation. The

ideas of these works will feature heavily in the introduction and conclusion

chapters.

Dawson, M. R., Parker, A. S. R., Williams, H. E., Shehata, A. W.,

Hebert, J. S., Chapman, C. S., & Pilarski, P. M. (2024). Joint

action is a framework for understanding partnerships between hu-

mans and upper limb prostheses. International Conference on

Biomedical Robotics and Biomechatronics (BioRob); also arXiv:2212.14124

[cs.HC]. https://doi.org/10.48550/arXiv.2212.14124

The concept of joint action was introduced to me at a satellite symposium.

I brought the idea back to the lab and discussed with Dr. Pilarski how it might

be valuable to our work with human-prosthesis interaction. These discussions

were crucial in the development of the above paper.

Schofield, J. S., Battraw, M. A., Parker, A. S. R., Pilarski, P. M.,

Sensinger, J. W., & Marasco, P. D. (2021). Embodied coopera-

tion to promote forgiving interactions with autonomous machines.

Frontiers in Neurorobotics, 15 (661603). https://doi.org/10.3389/

fnbot.2021.661603

I was the core collaborator from the BLINC lab on this work. Working

closely with Marcus Battraw, the first student author on the paper, I was

instrumental in collecting and developing the ideas from the brainstorming

session with the full authorship team, as well as brining my on philosophical

insight and understanding of human-machine interaction and relationships.

Beyond these there are several other works I was a part of that fit the

contributions of this work but would not be appropriate to include directly as

viii



chapters. Most of the work listed here is closely related to existing chapters.

The exception being “Learned human-agent decision-making, communication

and joint action in a virtual reality environment”, to which my influence and

ideas were deemed sufficiently crucial to include me on the author list.

Parker, A. S. R., Edwards, A. L., & Pilarski, P. M. (2019b).

Machine-learned predictions assisting human control of an arti-

ficial limb [Abstract and Poster]. 4th Multidisciplinary Conference

on Reinforcement Learning and Decision Making (RLDM)

Parker, A. S. R., Edwards, A. L., & Pilarski, P. M. (2018). Ex-

ploring communication as actions in human-machine partnerships

[Abstract and Poster]. 12th Annual Canadian Neuroscience meet-

ing Satellite 1: CAPnet/CPS

Pilarski, P. M., Butcher, A., Johanson, M., Botvinick, M. M., Bolt,

A., & Parker, A. S. R. (2019). Learned human-agent decision-

making, communication and joint action in a virtual reality envi-

ronment. The 4th Multidisciplinary Conference on Reinforcement

Learning and Decision Making; also arXiv:1905.02691 [cs.AI]. https:

//doi.org/10.48550/arXiv.1905.02691

Pilarski, P. M., Butcher, A., Davoodi, E., Johanson, M. B., Bren-

neis, D. J. A., Parker, A. S. R., Acker, L., Botvinick, M. M., Mo-

dayil, J., & White, A. (2022). The Frost Hollow experiments:

Pavlovian signalling as a path to coordination and communication

between agents. arXiv:2203.09498 [cs.AI]. https ://doi .org/10.

48550/arXiv.2203.09498

Butcher, A., Johanson, M. B., Davoodi, E., Brenneis, D. J. A.,

Acker, L., Parker, A. S. R., White, A., Modayil, J., & Pilarski,

P. M. (2022). Pavlovian signalling with general value functions

in agent-agent temporal decision making. Adaptive and Learning

Agents (ALA) Workshop at AAMAS 2022. https://doi.org/10.

48550/arXiv.2201.03709

ix



To Victoria and Griffon

For giving me a reason to keep going.

x



Acknowledgements

The author wishes to thank and recognize the people who supported him in

this, long, endeavour. Specifically my supervisor Patrick M. Pilarski, and to

Micheal R. Dawson and Ahmed W. Shehata for their support and guidance

throughout. With special mention to Patrick M. Pilarksi for welcoming me

into his research so long ago, and guiding me for so long. Also Richard S.

Sutton and Joseph Modayil for early guidance in how I think about science

generally. I also wish to acknowledge my advisory committee, Shanon K.

Phelan, Kim Adams, and Mahdi Tavakoli, for their wonderful insights, for

guiding my thinking down new pathways, and for their patience with my wild

ideas. In addition my amazing externals Jim T. Enns and James R. Wright

Shanon K. Phelan deserves special mention for opening my eyes to qualitative

research and continuing to be my guide on chaotic, messy, important ground.

A big thank you to everyone from the BLINC lab at the University of Alberta

as well. For all the laughs, celebrations, commiserations, and conversations

throughout the years.

Funding for this work was granted by the Natural Sciences and Engineer-

ing Research Council of Canada (NSERC), Alberta Innovates, the Sensory

Motor Adaptive Rehabilitation Technology (SMART) Network, the Alberta

Machine Intelligence Institute (Amii), and the Canada CIFAR AI Chairs pro-

gram. Their support made this work possible.

xi



Contents

1 Introduction 1
1.1 Learning Devices as Partners

in Rehabilitation . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Contributions and Aims . . . . . . . . . . . . . . . . 6
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Position Statement: Assistive Technology as Partners Through
Machine-Learned Communication 10
2.1 Machine Partners . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Recommendations: Collaboration Through Learned Communi-

cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Impact and Future Potential . . . . . . . . . . . . . . . . . . . 16

3 Communicative Capital: A Key Resource for Human-Machine
Shared Agency and Collaborative Capacity 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Robotic Upper-Limb Prostheses . . . . . . . . . . . . . . . . . 19
3.3 Prostheses as Agents . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Communicative Capital . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Building Capital through Interaction . . . . . . . . . . . . . . 26

3.5.1 Adaptation: Prediction Enhanced Control . . . . . . . 28
3.5.2 Goals: Reward-Based Control . . . . . . . . . . . . . . 31
3.5.3 Models, Shared Agency, and Feedback . . . . . . . . . 33

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6.1 Guide Dogs and Intelligent Assistants . . . . . . . . . . 36
3.6.2 Interactive Approaches to Instruction, Communication

and Control . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 Paradigms for Evaluation . . . . . . . . . . . . . . . . . . . . . 39
3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Exploring the Impact of Machine-Learned Predictions
on Feedback from an Artificial Limb 42
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Robot and Experimental Platform . . . . . . . . . . . . 47
4.2.2 Experimental Procedure . . . . . . . . . . . . . . . . . 47
4.2.3 Machine Intelligence and Prediction Learning . . . . . 50

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.1 Tuning, Training, and Adaptability . . . . . . . . . . . 58
4.4.2 Feedback Modalities . . . . . . . . . . . . . . . . . . . 59
4.4.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . 60

xii



4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Continually Learned Pavlovian Signalling Without Forgetting
for Human-in-the-Loop Robotic Control 63
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . 68
5.2.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.3 Prediction Learning Algorithms . . . . . . . . . . . . . 69

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.6 Additional Materials . . . . . . . . . . . . . . . . . . . . . . . 80

5.6.1 Temporal-Difference Learning Algorithms . . . . . . . . 80
5.7 Extended Results . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.7.1 Future Directions: Learning the Predictive Look-ahead 81

6 Assessing Human Interaction in Virtual Reality With Con-
tinually Learning Prediction Agents Based on Reinforcement
Learning Algorithms: A Pilot Study 83
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2.1 Prior Work on Human Interaction with Learning Systems 85
6.2.2 General Value Functions . . . . . . . . . . . . . . . . . 86
6.2.3 Pavlovian Control . . . . . . . . . . . . . . . . . . . . . 87

6.3 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . 88
6.3.1 Virtual Reality Environment . . . . . . . . . . . . . . . 88
6.3.2 Agent Architectures . . . . . . . . . . . . . . . . . . . 90
6.3.3 Experiment and Analysis Protocol . . . . . . . . . . . 91

6.4 Quantitative Analysis . . . . . . . . . . . . . . . . . . . . . . . 92
6.5 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . 95
6.6 Comparing Quantitative and

Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . 97
6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.8 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.9 Conclusions and Future Work . . . . . . . . . . . . . . . . . . 99

7 Understanding Human Interaction with Real-Time Adaptive
Feedback During Simulated Prosthesis Use 101
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.1.1 Machine Learning in Control . . . . . . . . . . . . . . . 103
7.1.2 Machine Learning in Feedback and Coordination . . . 104
7.1.3 Methodological Overview . . . . . . . . . . . . . . . . . 107

7.2 Experiment and Results . . . . . . . . . . . . . . . . . . . . . 108
7.2.1 Quantitative Findings . . . . . . . . . . . . . . . . . . 112
7.2.2 Qualitative Findings . . . . . . . . . . . . . . . . . . . 116
7.2.3 Data Synthesis . . . . . . . . . . . . . . . . . . . . . . 119

7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.3.1 Limitations and Future Directions . . . . . . . . . . . . 126

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.5.1 Participants and Recruitment . . . . . . . . . . . . . . 128
7.5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . 129
7.5.3 Gaze and Movement Analysis . . . . . . . . . . . . . . 130
7.5.4 Machine Learning Methods . . . . . . . . . . . . . . . 132

xiii



7.5.5 Qualitative Recording . . . . . . . . . . . . . . . . . . 136
7.5.6 Experimental Design and Flow . . . . . . . . . . . . . 136
7.5.7 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . 138

8 Conclusion 140
8.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . 140
8.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . 143

References 145

Appendix A Background Material 164
A.1 Additional Material for Chapter 7 . . . . . . . . . . . . . . . . 164

A.1.1 Interview Questions and Script . . . . . . . . . . . . . 164
A.1.2 Study Checklist . . . . . . . . . . . . . . . . . . . . . . 169
A.1.3 Additional Figures . . . . . . . . . . . . . . . . . . . . 183

xiv



List of Tables

6.1 Statistical analysis results. Comparisons are made across as-
sistant pairings (N = no agent; BC = bit-cascade agent; TCT
= tile-coded trace agent) for each ISI condition. Significance
(α = 0.05) is indicated in bold text. For Friedman’s tests,
χ2
critical(2) = 6.20. . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.1 Eye-hand arrival latency (EHAL) and eye-hand leaving latency
(EHLL) statistical results. EHAL is the time, in seconds, that
the eyes arrive at a target relative to the transport phase, and
EHLL is the eyes leaving a target relative to the transport phase.
This table shows comparisons between groups, direct vs predic-
tive feedback participants, and within groups, comparing the
no-warning vs warning conditions. Results are further broken
down by cup stiffness: heavy (H, which visually distorted the
least), medium (M), and light (L, which visually distorted the
most), as well as all stiffnesses together. Post-hoc significant
differences between compared values (p < 0.05) are denoted in
bold with an asterisk, and underlines mark the improved values.
The table shows minor differences that suggest some increased
user confidence when they use predictive feedback. . . . . . . . 111

7.2 Results comparing the total time in seconds for each phase of
a motion between groups, direct vs predictive feedback partic-
ipants, and within groups, the no-warning vs warning condi-
tions. Results are further broken down by cup stiffness: heavy
(H, which visually distorted the least), medium (M), and light
(L, which visually distorted the most), as well as all stiffnesses
together. Post-hoc significant differences between compared
values (p < 0.05) are denoted in bold with an asterisk, and
underlines mark the improved values. This table shows that
participants using direct feedback performed the task faster. . 112

7.3 Results showing the percent of the total time of a motion spent
was spent in each phase of a motion, comparing between groups,
direct vs predictive feedback participants, and within groups,
the no-warning vs warning conditions. Results are further bro-
ken down by cup stiffness: heavy (H, which visually distorted
the least), medium (M), and light (L, which visually distorted
the most), as well as all stiffnesses together. Post-hoc significant
differences between compared values (p < 0.05) are denoted in
bold with an asterisk, and underlines mark the improved val-
ues. These results show that for the critical phases, grasp and
release, participants using predictive feedback had lower relative
durations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xv



7.4 Percent gaze fixation is the amount of time spend looking at
the dropoff or pickup location. This table shows comparisons
between groups, direct vs predictive feedback participants, and
within groups, comparing the no-warning vs warning conditions.
Results are further broken down by cup stiffness: heavy (H,
which visually distorted the least), medium (M), and light (L,
which visually distorted the most), as well as all stiffnesses to-
gether. Post-hoc significant differences between compared val-
ues (p < 0.05) are denoted in bold with an asterisk, and under-
lines mark the improved values. This table shows provides little
insight directly, but is used to help interpret the other GaMA
results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xvi



List of Figures

1.1 The flow and connection between the chapters that compose
the bulk of this thesis. . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Interactions between humans and their world are now enabled
by tightly coupled partnerships with increasingly complex ma-
chine agents, as perhaps best viewed in the domain of robotic
artificial limbs. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 An individual with an amputation interacting with their envi-
ronment in collaboration with an electromechanical prosthesis—
in this case the Bento Arm (Dawson et al., 2014) and brachI/O-
plexus software (Dawson et al., 2020), a robotic limb suite in-
tegrating reinforcement learning algorithms and classical pros-
thetic control solutions. . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Prostheses examples: (a) robotic upper-limb prosthetic, (b) hu-
man using a research prosthesis (Dawson et al., 2014), (c) hu-
man using a supernumerary limb (A. S. R. Parker et al., 2019a). 20

3.2 The capacity function (dashed grey line) is the relationship be-
tween capacity and agency. (a) The capacity of the partnership
(red) is a function of the contributions from the machine agent
(green) and the human agent (blue). (b) Illustrative example
of how attributes of human and machine agency can relate to
maximum partnership capacity. The light green shaded rect-
angle represents the capacity increase when a machine agent
adapts over time versus when it acts only as a mechanism. The
light blue shaded rectangle represents the increase in capacity
when a human pursues a goal versus when it also models a
machine partner as adapting. . . . . . . . . . . . . . . . . . . 24

3.3 Communicative capital is acquired by the partnership over the
course of ongoing interaction. Prior to the partnership inter-
acting, the human (blue) and machine (green) have acquired
no communicative capital and thus have no realized capacity.
Then, over the course of ongoing interaction (from top to bot-
tom) through modelling, improved predictions, and understand-
ing of the signals of one another, the partnership acquires com-
municative capital which leads to increased realized capacity
(dark red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

xvii



3.4 (a) An illustrative example of how adaptive switching enables a
prosthetic device to model the way a human uses the functions
of a prosthesis and thereby increase agency when compared to
the manual switching condition. The increase in shared agency
from the manual to adaptive mode of interaction corresponds
to increased capacity in terms of (red) time to complete a task,
and (purple) the number of switches required to complete a task.
This plot shows data approximated from Edwards, Hebert, et
al. (2016) for illustrative purposes, and (b) their participant
using the device (Edwards, 2016; Edwards, Dawson, et al., 2016;
Edwards, Hebert, et al., 2016). . . . . . . . . . . . . . . . . . . 29

3.5 Measured capacity for autonomous and adaptive switching for
(a) expert and (b) non-expert humans (plots adapted from Ed-
wards, Hebert, et al. (2016)), summarized in capacity functions
relating to (c) the number of manual interactions and (d) the
total number of switches required to complete a control task,
expert humans realized more capacity than non-experts. . . . 30

3.6 The difference between learned and mechanistic feedback during
control of a supernumerary limb (Fig. 3.1(c)). (a) Adaptive
machine significantly reduced current drawn by the motors of
the robot arm (adapted from A. S. R. Parker et al. (2019a)).
(b) Increased machine agency increase realized capacity of the
partnership through an investment of communicative capital. . 35

4.1 Wearable robot limb system used in these experiments. The
four degree-of-freedom arm is controlled by a joystick in the
user’s hand which sends signals to an ADC and then to a laptop,
which in turn commands the servos. A vibrotactile feedback
sleeve can provide feedback to the user. . . . . . . . . . . . . . 44

4.2 The experimental setup: a confined workspace (red), the robotic
arm (green), and as in Fig. 1, an experimental subject with
attached vibrotactile feedback sleeve (seated to the left of the
workspace, not shown). . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Key finding: the use of predictive feedback reduced the load (a
measure of impact intensity) experienced by the system during
use. The load shown is averaged across all five participants and
the entire duration of each trial. . . . . . . . . . . . . . . . . . 53

4.4 Aggregate results for all five subjects showing (a–c) the fre-
quency of visiting any given servo motor positional bin and (d–
f) the average load in each bin as reported by the servo, using
the frequency of visits to average. . . . . . . . . . . . . . . . . 55

5.1 Schematic of the human-machine-environment interaction loop
and photo of the physical system: a person interacts with a par-
tially observable environment by way of an assistive machine,
wherein their ability to perceive relevant decision-making in-
formation is limited in both time and space; as part of their
interactions with the environment via the device, a continual
prediction learning machine provides signals that allow timely
action based on impending changes in the environment, with
enough time for the person to process and act on these signals
and their current state. . . . . . . . . . . . . . . . . . . . . . 65

xviii



5.2 Contacts in the automatic motion case over time for all 5 trials
for different algorithm settings: (black top) TD(0) (teal, mid-
dle) TD(0.9) (orange, bottom) GTD. Large ticks indicate con-
tact, small ticks indicate generation of signalling tokens based
on learned predictions. . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Contacts (black diamonds), motion (top) and prediction (bot-
tom) for exemplar trials of (a) TD-lambda and (b) GTD to
show the motion getting closer to the contact positions, marked
by the dashed lines around the position, and the predictions
diminishing, and spiking when a new position extreme is moved
into. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 (a) Contacts as in Fig. 5.2, but for TD(0.9), 1 bin look-ahead
(LA1TD), and 2 bin look-ahead (LA2TD). Contacts, position,
and predictions for (b) LA1TD and (c) LA2TD. . . . . . . . . 74

5.5 Participant data for (a) contacts as Fig. 5.2 all three cases
tested with the human participant, and contacts, motion, and
prediction(b) LA4TD and (c) LA2TD. . . . . . . . . . . . . . 74

5.6 Contacts (black), motion (top), and prediction (bottom) for
TD-lambda zoomed in to show the point where contact occurs.
Dashed line across the prediction is the threshold for token gen-
eration. Here the position is as reported by the servo on each
timestep. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.7 Schematic of more advanced learned predictive architecture.
Multiple prediction learners responsible for different parts of
the task and the controller combines them for use in signalling
the user. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1 Depiction of the virtual reality environment. . . . . . . . . . . 89
6.2 A virtual-reality environment made to emulate a beautifully

snowy frost hollow. Snow covers the ground and surrounding
trees. A ice-sculpture heat-gauge is visible left of center. In the
right figure, a top-town view is presented, annotating a center
circle with radius 0.165 m corresponding to the heat genera-
tion region, and a larger 1 m radius circle corresponding to the
hazard region. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3 Representations of time used in this experiment. Time (state)
is represented as a one-hot vector of features which activate
according to a trace function which resets at the falling edge of
each stimulus pulse. . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4 Performance metrics. Bars represent the mean over trials for
each metric, normalized by the maximum possible value of that
metric. Error bars represent the 95% confidence interval. N =
no agent; BC = bit-cascade agent; TCT = tile-coded trace agent. 92

6.5 Data are shown as the mean (solid line) and 95% confidence
interval (shaded region) of the data for each pulse. Due to the
randomization of the starting ISI and fixed trial duration, some
trials with shorter ISIs presented more pulses than others. This
led to the occurrence of one or two trials with high pulse count
(>14), resulting in the large confidence intervals at the ends of
these plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xix



7.1 The brace restricts motion of the wearer’s wrist, which encour-
ages isometric contraction to “simulate” muscles in a residual
limb. The brace also allows the robot hand to be placed in front
of the user’s biological hand. Reusable cups 3D printed from
NinjaFlex with the same shape but different stiffnesses. EMG
signals were captured using the Myo armband. . . . . . . . . . 105

7.2 Gaze and Movement Analysis (GaMA) combines gaze vector
and motion capture data. The participant wears glasses with
eye-tracking cameras, and fixed motion capture cameras record
the motion capture markers on lab equipment. The laptop is
running the robot software. All three data streams are recorded
and synchronized using Lab Streaming Layer. . . . . . . . . . 105

7.3 Participants were randomly assigned to one of two groups; they
used either direct feedback or predictive feedback in the warn-
ing condition. After participants were helped into the simulated
prosthesis and GaMA calibrations were complete, a training ses-
sion using a stiff cup was done. Following that, all participants
progress through the experiment cups from the stiffest, which
visually distorted the least, to the most compliant, which visu-
ally disrted the most, with no warning sound. Following this
was an interview, another training session identical to the first
along with a gaze calibration for GaMA. Participants then again
progressed through the experiment cups in the same order, but
this time with a warning signal. Finally, another interview was
conducted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.4 The total number of breaks for all participants who would later
receive direct feedback in the first condition, break sound only,
followed by warnings for the second condition, the trial with
warnings, and breaks for the second condition. A large drop in
breaks between the trial without and with warnings can be seen. 110

7.5 The total number of breaks for all participants who would later
receive predictive feedback in the first condition, break sound
only, followed by warnings for the second condition, the trial
with warnings, and breaks for the second condition. It can be
seen between this figure and Fig. 7.4 that the breaks in the first
condition, with no warnings, and the warnings received in the
second condition are similar, but there are more breaks in the
second condition when predictive feedback was used. . . . . . 110

7.6 A section of the overlap mapping from the Quirkos qualitative
analysis tool enabled insight into the “Control is Hard” code.
The larger the circle the more quotes there are in the code.
The code at the top is the code being checked for overlap. The
higher other codes are to this code, the more overlap there is.
This suggests the relationships between the struggles partici-
pants experienced with control and the tendency to discuss their
association with the device, most specifically with “othering” it. 116

7.7 Participant 124, who would go on to use predictive feedback,
explaining their frustration with the hand, expressed here as an
entity taking it’s own actions, when the participant struggled
to release the cup. . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.8 Participant 118, who used direct feedback, talking about “the
sound” as separate, but related, to the crushing of the cup. . . 118

xx



7.9 Participant 129 describing what they focused on when they ac-
cidenatlly crushed the cup during their first, no warnings trial.
They mention several signals from the environment that they
used together, as well as suggesting they used the signals to
update their own internal model. . . . . . . . . . . . . . . . . 119

7.10 participant 128 when talking about thoughts or feelings from
the second trial which used predictive feedback warnings. No-
tably they mention the signals struggling initially, but becoming
consistant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.11 participant 114 discussing whether they thought they had pre-
dictive or direct feedback after their second trial which used
direct feedback warnings. Most participants, even those using
direct feedback, thought they were using predictive feedback. . 120

7.12 Participant 129 discussing their experience and switching their
opinion of the predictive feedback from negative to positive af-
ter being told they did in fact have feedback that was adapting
in real time. While there is some leading, the participants en-
thusiastic agreement suggests strong alignment of the sentiment
with the participants experience. . . . . . . . . . . . . . . . . 120

7.13 Contradiction between the recorded warnings and crushes for
the second trial, the warning trial, done by Participant 111
alongside a statement they made about the efficacy of the warn-
ings. The participant things the warnings never occured with-
out a crush, despite this being recorded happening 7 times. This
participant was displeased with their interaction as a result of
control struggles and it seems to have coloured their perception
of the interaction to contradict the measurements made. . . . 121

7.14 An interesting disconnect between the recorded velocity for Par-
ticipant 117’s trials with the lightest cup, which was used last in
the trial order, and their perception of the interaction. The blue
lines are the velocity reported by the servo for all motions with
the light cup, normalized to be between 0 and 1. It is notable
that upon inspection, if there is a difference the trial on the left,
which was without warnings, could be interpreted as slower mo-
tion by the higher number of lower spikes. This suggests the
internalization of feedback has effects on user perception. . . . 122

7.15 Above the machine-learned predictions over a single partici-
pant’s entire warning trial with the stiffest cup (the first one
used) can be seen. Most notably the predictions, in green, can
be seen to start low and rise quickly relative to the load, in
orange, is being predicted. The load does not change over the
course of the trial, only in response to participant motion, which
can be interpreted from the position which is shown in blue. . 133

7.16 The prediction, in green, can be seen to be a similar shape to the
load, in orange, in this closer view. Moreover, the participant
can be seen to open their hand and close it again by the U-
shape in the position, shown in blue. This was presumably
in reaction to the warning crossing the threshold, shown in red.
Despite this abrupt change in motion, the prediction still moves
similarly to the load. . . . . . . . . . . . . . . . . . . . . . . . 134

xxi



A.1 The total trial time for every trial participant 113 did. This
participant used direct feedback. The minor slope in the trend
line in blue suggests that while the participant would have ben-
efited from more training to further stabilize learning, there was
some stability. Comments made by participants about control,
therefore, may still occur in participants with more practice. . 183

A.2 The total trial time for every trial participant 128 did. This
participant used predictive feedback. The minor slope in the
trend line in blue suggests that while the participant would
have benefited from more training to further stabilize learning,
there was some stability. Comments made by participants about
control, therefore, may still occur in participants with more
practice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

xxii



“You need to know where to go,” Sanya said.
“Yes.”

“And you are going to consult four large pizzas for guidance.”
“Yes,” I said.

The big man frowned for a moment. Then he said, “There is, I think, humor
here which does not translate well from English into sanity.”

– Jim Butcher, Changes
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Chapter 1

Introduction

1.1 Learning Devices as Partners

in Rehabilitation

A core goal of rehabilitation interventions is for the patient to gain function

(World Health Organization, 2007). The purpose of this function is often to

enable people to participate in activities of daily living such as brushing their

teeth, folding laundry, cooking, or even getting around. Such activities are

easy to take for granted, but make a huge difference on people’s quality of

life. According to contemporary clinical thinking, it is also important that

the function added, as well as how it is added, is done using an individual,

patient-centred approach (Castellini et al., 2014). It is the role of assistive

technologies to change the functioning of users in activities that involve the

device. Ideally, these devices provide function across a wide range of tasks,

and in a way that is easy and comfortable for the participant (Arthanat et al.,

2007). Examples of assistive technologies are wheelchairs, seeing-eye dogs, and

prosthetic limbs (Kalinowska et al., 2023).

As one example, wheelchairs increase mobility for people with many dif-

ferent conditions. When a user receives a wheelchair there is a period of

adjustment, and the wheelchair itself can be adapted to better suit the user’s

needs (Papadimitriou, 2008; Winance, 2006). This is sometimes described as

a process of extending their sense of self to include the wheelchair, despite

there being little anatomical similarity between human locomotion and the

action of the wheelchair (Papadimitriou, 2008). If the person struggles to get
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around because of a sight issue one option is a seeing-eye dog. Seeing-eye dogs

are independent agents that are trained to act in certain ways. They take

responsibility for actions, including disobedience when required, and users are

trained in how to use, interpret, and understand the dogs. Communication

and interaction between the user and the dog is taught to both parties and

adapted in a supervised way (Fishman, 2003; Pfaffenberger, 1976). So, the

tool (the wheelchair) is adapted to best assist, and the agent (the seeing-eye

dog) is, at least initially, coupled to the human in a predetermined way but

uses its agency and decision-making to assist. What this implies is that a

fully independent agent with well-understood communication and interaction

pathways can be a valuable assistant to a user, and tools can be adapted to

best fit a user.

Another assistive technology is prosthetic, or artificial, limbs. Such devices

are intended to assist users in many different tasks of daily living. Of particular

interest in this work are upper limb prostheses. Modern robotic upper limb

prostheses have a vast amount of capability to execute biologically accurate

motion and in some cases the capacity to provide feedback. Despite research

into improving control and feedback for users of prosthetic limbs, we are still

not close to achieving the full potential of modern devices (Biddiss & Chau,

2007b; Cordella et al., 2016; Yamamoto et al., 2019). Taking the perspective

of adding function, and drawing on inspiration from wheelchairs and seeing-

eye dogs, another path appears—to work towards collaborative partnerships

between humans and devices as we explore in the chapters that follow. One

possible way to enable such partnerships could be through adding agency to

the device, such as in the case of the seeing-eye dog. This would allow the

device to adapt itself to user needs, similarly to how with the help of experts

users adapt wheelchairs to their own needs (Winance, 2006). With learning

methods such as those proposed in this dissertation, this could be the gateway

to getting more out of the devices for users while ensuring user-centred care.

Adding agency to artificial limbs has been explored in the context of pros-

thetic limbs previously (Edwards, Dawson, et al., 2016; Pilarski, Dick, et al.,

2013). These studies utilize machine learning techniques to learn about an in-

2



teraction with a user in real-time, and the system takes some action to assist

a user based on this learning. When discussing training times for dexterous

hands, Castellini et al. (2014) called for improved adaptive methods to reduce

learning times for users (Castellini et al., 2014). It is not a significant extension

to suggest that this learning continues during use in real-time.

The machine-learning technique of choice for most of this work is temporal-

difference (TD) learning techniques from the field of reinforcement learning

(RL) (Sutton, 1988; Sutton & Barto, 2018). Such techniques are well suited

to rehabilitation applications and the addition of agency to devices for sev-

eral reasons (Pilarski, Dawson, Degris, Carey, et al., 2013). Most importantly

to rehabilitation, such methods can learn in real-time from interactions with

the user and the environment (Pilarski, Dawson, Degris, Carey, et al., 2013).

These methods learn predictions about the target of learning that are associ-

ated with those interactions. This means devices enabled with TD methods

should be able to learn from a specific user and adapt the assistance they

provide in a user-centered way. While these techniques are from the field of

reinforcement learning, TD methods can be used with signals from the envi-

ronment as the target of prediction learning rather than reward (Sutton et al.,

2011; White, 2015)

Building on this capability to make models of partners and predict interac-

tions with them, we can frame interactions between users and prostheses using

joint action (Dawson et al., 2024). the study of joint action includes the study

of perception and action in a human, social, context. Humans coordinate with

each other regularly using cues, both verbal and non-verbal, and predictive

models of the partner they are working with (Brennan & Enns, 2015; Sebanz

et al., 2006; Sebanz & Knoblich, 2009). Temporal-difference learning meth-

ods, which learn predictions about the world from a real-time sensor stream,

are therefore interestingly positioned to take advantage of the pathways that

already exist in human users to coordinate actions. Brennan and Enns (2015)

has an especially interesting finding that users who worked on a task with a

friend performed better than the combination of each part (Brennan & Enns,

2015). It stands to reason, then, that close partnerships between human and
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machine (prosthetic) agents could lead to better outcomes.

Schofield et al. (2021) further posit that the pursuit of embodiment of

prosthetic limbs does not have to be separate from collaborations between

humans and devices (Schofield et al., 2021). There are biological systems in

our bodies that act autonomously to allow complex coordination of muscles to

achieve grip. Despite this, when it comes to devices and mechanisms external

to ourselves we can be quick to blame the “other” (Jackson, 2002). The pursuit

of knowledge to improve collaboration between user and device, then, could

be crucial to truly connecting people with their devices.

Enabling bi-directional communication between user and device may be

a pivotal step to achieving collaborative partnerships between users and de-

vices, especially in human-robot interaction such as exists with prostheses

(Kalinowska et al., 2023). While it is likely that a user can achieve an under-

standing of a device, depending on the device’s complexity, without receiving

feedback directly from the device, such feedback has inherent advantages (Kali-

nowska et al., 2023). For example, if something unexpected or new happens,

having well-established bi-directional communication between user and device

would be of great value. The goal of designing systems that adapt the feedback

they provide in real-time, then, is to tune the communication to be the most

effective for an individual user, that partnership, in that time. This level of

individualization would be challenging to achieve on a person-by-person basis

with a fixed, non-learned, form of feedback.

Therefore this dissertation explores how to apply temporal-difference meth-

ods to learn in real-time to provide signals to users to assist and promote

collaborations between humans and machines. The signals used in these ex-

plorations are first vibration, then audible feedback. Prosthetic limbs present

a unique challenge to this goal. While they are intended for a wide range

of tasks, there’s often a significant gap between a device’s capabilities and

the functions users actually experience. Prosthetic limbs also have the added

challenge of being compared to previously existing functions that were fully

natural and intuitive to the user. Progress in achieving collaborative relation-

ships between the user and the device in this field should give tremendous
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insight that could be used across assistive technologies used in rehabilitation

to improve outcomes for users.

With this in mind, one of the key contributions in the latter chapters of

this dissertation is a mixed-methods approach to study the interaction be-

tween a human user and a machine-learning agent that is adapting signals

being sent to the user in real time. Mixed methods are of core importance

to the rehabilitation philosophy of patient-centred care as they bring the pa-

tient’s interests, needs, and experiences to the forefront. A key component of

a qualitative study, or the qualitative portion of a mixed methods study, is

the methodology that is used to frame the work (Ponterotto, 2005). A com-

mon methodology used with prosthesis users is phenomenological analysis.

Such methodologies seek to understand a core, shared, “qualia” or “experi-

ences of being” that relate to living with limb difference and using prosthetic

limbs (Murray, 2004; Wilding & Whiteford, 2005) Since the concern in this

dissertation is to understand the interaction, and perhaps the unfolding rela-

tionship between the user and device, a different approach is taken here. The

methodology that these studies in the latter chapters of this dissertation were

approached with varied slightly between them, but could be categorized as

pragmatism with constructivist leanings. What this means is that truth is

seen as “constructed” by individuals, and even co-constructed between agents

when they interact with each other (Schwandt, 1994). That said, when con-

ducting studies involving humans, we can consider two sets of observations.

One set comes from a shared, external space where we can measure and record

numerical data. The other data set comes from an individual’s interpretation

of this shared space and the reality and truth they construct from that inter-

pretation (Dewey, 1908; Goldkuhl, 2012; Kaushik & Walsh, 2019).

At the outset of the research of this dissertation, it was thought that dis-

course analysis would be used for the qualitative portions of these studies.

Discourse analysis would provide insight into how the interactions between

the person and the device were discussed. This is done by first examining the

context in which the comments are made. This context is composed of the the

social or cultural influences surrounded the participant and activity Ballinger
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and Payne, 2000. While this approach could provide valuable insight, studying

and understanding the context of the participant and activity fell outside of

the scope of this work. As such, descriptive thematic analysis modified from

Braun and Clarke’s reflexive thematic analysis was used instead Braun and

Clarke, 2021a, 2021b.

Understanding these two sets of observations—objective data and subjec-

tive experience—is crucial when studying human interaction with assistive

technologies. These devices that are intended to provide function for users

and assist them throughout their day with activities of daily living. Some of

the devices are tools, some have agency and are trained to work with users to

assist them. Machine learning, specifically real-time machine learning methods

can be used to add agency to tools, allowing them to adapt to users to pro-

vide even more specific care for individual users. Bringing agency to artificial

limbs is an additional pathway to unlock the full potential of modern robotic

prostheses, and has great capacity to keep up with future developments as

they occur. This would be accomplished by developing methods of creating

human-machine partnerships in these devices. Collaborations between agents

to provide increased function to users is not unheard of in rehabilitation, and

the addition of agency through machine learning has been explored even in

the prosthetic domain (Edwards, Dawson, et al., 2016; Fishman, 2003; Pi-

larski, Dawson, Degris, Carey, et al., 2013). Strong collaborations between

users and devices, prosthetic limbs or otherwise, utilizing innate human mech-

anisms for joint action, are a promising interaction method to unlock the full

potential of assistive technologies. Therefore, this dissertation seeks to take

crucial steps toward improving patient interactions with assistive technologies

by demonstrating how we can apply real-time machine learning to encourage

collaborative interactions.

1.2 Research Contributions and Aims

At the onset of this research, feedback in upper limb prostheses was of growing

interest. There was little work using machine learning to adapt feedback in
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real time, and even less relating to prosthetic use. There was also some sug-

gestion of viewing an upper limb prosthesis and its users from a multi-agent

standpoint, but this was at the time considered a fringe idea. My dissertation

therefore set out to accomplish three main things. The first was to make a

case for upper limb prostheses as partners, with the goal of the partnership be-

ing to provide function to users. The second was to discover if simple learning

methods could, in real-time, learn something that is of value to the vastly more

powerful thinking agent, the human, that is using it. The third was to discover

how users’ experience interacting with devices is different when the device is

sending signals that are adapting in real-time as opposed to the device sending

a fixed signal. Therefore, this work sought to, for the first time to our knowl-

edge, mix rich quantitative (recordings of robot data, motion, and gaze) with

rich qualitative (guided journalling and semi-structured interviews) data. This

provides a fuller picture of a user’s interactions with a device that is learning

and adapting the feedback the user receives, all in real time. By understanding

how real-time machine learning can be used by people who are using assistive

robotics, we can learn how to facilitate strong human-machine collaboration

and unlock greater potential from our rehabilitation technologies.

1.3 Thesis Structure

This thesis, in keeping with the University of Alberta paper-based thesis for-

mat, is primarily constructed of works that are published, or intended to be

published in the near future. As such, background information for each chapter

is contained in each chapter.

Beginning in Chapter 2, an argument is established for the view of upper

limb prostheses as partners. Following this in Chapter 3 some examples of how

existing work could be viewed in this way are discussed and a framework for

thinking about how we can add function to users through partnerships with

devices is established. Chapter 3 also proposes how we might characterize

the benefits of human-agent partnerships. Next, the question of the value

of machine-learned feedback to a stronger agent, namely a human user, is
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examined in Chapter 4. This chapter uses the temporal-difference learning

methods that will be commonly used throughout this work. The following

chapter, Chapter 5, examines a shortfall of the previous study that is of great

importance to the future of machine learning in prosthetic limbs in general—

that is, having the device adapt in real-time. The final two major chapters

both bring the human user into the examination more closely. Chapter 6 sees

a user collaborating with several different machine agents in virtual reality.

The final chapter, Chapter 7, is the culmination of the years of thought and

research behind the previous work of this dissertation. It presents a detailed

study of humans using a wearable robot hand and interacting with feedback

that is adapting in real time. Finally, the overall conclusions of this dissertation

as a whole are presented along with future directions in the final concluding

chapter. The flow between these elements can be seen in Fig. 1.1
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Chapter 2

Position Statement: Assistive
Technology as Partners
Through Machine-Learned
Communication

As machine-learning is increasingly applied to technologies we interact with,

devices become agents. These agents can learn, adapt, make decisions and

take actions. When our devices can do these things, it is natural to begin to

look at human-machine interaction in a different way than how it has been

historically viewed. Specifically, we can, and should, begin to examine human-

machine interaction in the same was as we do human-human interaction, as

a collaboration between agents. Artificial limbs provide an especially interest-

ing domain to study and apply this viewpoint as they represent an intimate

pairing of human and machine, and artificial limbs are traditionally consid-

ered a replacement rather than a partnership. As a primary contribution of

this chapter, we briefly outline the perspective that artificial limbs can and

should be viewed as collaborative agents, and provide arguments in favour of

using approaches from the field of reinforcement learning to achieve tightly-

coupled collaborations between human and machine. We further outline a set

of recommended first steps for how we might make progress towards achieving

human-machine collaborations by adopting the viewpoint of collaboration as

a real-time, continual learning interaction on the part of both a person and a

machine.
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bilitation there is increasing emphasis being placed on enabling patients to

accomplish tasks, rather than restoring something that is missing or getting

the patient to some predefined “normal” function (World Health Organization,

2007). With that in mind, we propose viewing assistive technology, especially

the human-computer interaction effected through artificial limbs, as adding

function. As artificial limbs now begin to incorporate machine learning in their

regular operation (c.f., Castellini 2014), we submit that their added function

should be in fact viewed as providing the user with an assistant—one that

ideally learns and improves in an ongoing way through a process of interaction

and feedback (c.f., Fig. 2.2).

When real-time machine learning is involved, the interaction between a

user and their prosthesis is now similar to providing a person who is visu-

ally impaired with a cane, or a seeing-eye dog. There are several features of

the person-agent relationship in the seeing-eye dog case that are of particular

interest. One feature is that the seeing-eye dog is expected to take respon-

sibility for actions and situations where it has different information than the

human. Similarly, the dog is expected to refuse commands that may endanger

the owner. Interestingly, both partners, the dog and the human, need to be

trained in this partnership through a process of reward and feedback. The

dog is trained in commands as well as general mannerisms and expectations,

and the human needs to be taught how to interact and communicate with the

dog, in part through the success or failure of their intended daily-life tasks

(Pfaffenberger, 1976) (pp. 85, 88).

The human-human interactions studied in the field of joint action also

provides insight into a collaborative, learning interaction between users and

devices (Pesquita et al., 2018; Sebanz & Knoblich, 2009). One study sug-

gested that participants doing a joint task performed better than the sum

of their independent parts when they had a pre-existing relationship; when

the participants were friends they performed better than pairings of strangers.

This effect was lost when the partners were visually obscured from each other

(Brennan & Enns, 2015). Joint action research also outlines a possible frame-

work for human collaboration on tasks, of which an important aspect is having
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and maintaining a number of predictions of the other agent, their actions, and

their responses to the first agents actions.

With this context in mind, we now return to the core posit of the present

work: that we can best improve artificial limbs by making them cooperative

agents, assistants to humans that can learn how to interact and communi-

cate on a personal level through reinforcement and feedback. More generally,

through the recommendations that follow, we aim to encourage exploration

into how machine agents can learn to use natural human tendencies for co-

operation to make interactions with machines better across a broad range of

domains. If successful, users might be expected to achieve a sense of embodi-

ment or “oneness” with the device as a skilled rider does with their favoured

horse. This pursuit may also provide insight and techniques to further studies

of communication and co-operation in human-human, human-machine, and

machine-machine agent partnerships. If we can satisfactorily claim that a

human-machine interaction is acting as a collaboration between agents, this

opens up new possibilities for research in other collaborative pairings.

2.2 Recommendations: Collaboration Through

Learned Communication

To ground our suggested line of investigation in human-machine interaction,

we turn to the reinforcement learning (RL) literature and specifically meth-

ods of learning by way of a temporal-difference (TD) error (Sutton, 1988).

The RL problem formulation and related algorithms are ideally suited to our

proposed line of study into tightly coupled human-prosthesis interaction for

two main reasons. First, RL approaches are well suited to learning to pre-

dict online and in real-time, such as during an ongoing interaction between

a machine and its environment (Sutton, 1988). This is well in line with the

predictive joint-action model of human cooperation (Pesquita et al., 2018).

Second, RL methods can adapt their predictions about a diverse set of signals

in real-time from the sensory-motor data stream during deployment (e.g., via

the TD learning of generalized value functions, GVFs; (Pilarski, Dawson, De-
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Figure 2.2: An individual with an amputation interacting with their environ-
ment in collaboration with an electromechanical prosthesis—in this case the
Bento Arm (Dawson et al., 2014) and brachI/Oplexus software (Dawson et al.,
2020), a robotic limb suite integrating reinforcement learning algorithms and
classical prosthetic control solutions.

gris, Carey, et al., 2013; Sutton et al., 2011)). This is vital for tightly coupled

cases of human-machine interaction. Previous work by our group and others

with RL techniques applied to artificial limbs and other neuroprostheses have

indicated the natural fit to the human-machine setting, with areas of improve-

ment including control, feedback, and lessening the cognitive load (Castellini &

Van Der Smagt, 2009; Dalrymple et al., 2020; Edwards, Dawson, et al., 2016;

Pilarski, Dawson, Degris, Carey, et al., 2013; Pilarski, Dick, et al., 2013).

Recommendation 1: As a first recommendation to our community for

next steps in studying the tightly coupled interaction between a human and a

prosthesis, we suggest detailed investigation is required to determine in what

ways real-time machine learning can be applied to prosthetic limbs so that

a limbs is in fact able learn something of lasting value to the human user.

There are three aspects of a tightly-coupled sensorimotor interaction wherein

an agent might learn something valuable: the task, the machine itself, and the

human (Pilarski, Dawson, Degris, Carey, et al., 2013). Preliminary work by
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A. S. R. Parker et al. (2019a) on learning about the task, user, and machine

showed that a machine could learn forecasts about how a participant uses a

robot arm to navigate a physical environment which is obscured from them in

some way. In this prior work, GVF predictions learned via TD methods were

used as feedback signals to a user to help them complete a task they would

have difficulty completing on their own or through conventional techniques.

This work would benefit from expansion, exploring more algorithms, algorithm

features, and types of feedback as well as combinations thereof.

Recommendation 2: After establishing that machine-learning can learn

something that is of value to a human user in a direct-action sensory-motor

sense, we recommend that a natural next step is to pursue deeper understand-

ing as to a machine’s ability to learn to communicate with its user. This com-

munication will ideally be individual to a single user (Castellini et al., 2014; Pi-

larski, Dick, et al., 2013). We suspect this kind of personalized communication

is the key, or at the very least the first step, to establishing strong partnerships

between human and machine agents. Previous studies have shown interesting

results with machine agents learning to communicate with each other and suc-

cessfully collaborate to accomplish a task (Cao et al., 2018; Lazaridou et al.,

2016). We suggest learning to communicate with a human should first be

done with a defined lexicon, and then explore something akin to body lan-

guage; having the device learn how to use its motors and the features of its

control algorithm in order to communicate with the human user.

Recommendation 3: We suggest that a final key component to estab-

lishing strong partnerships between humans and closely-connected devices is

pairing the quantitative data collection with qualitative studies. Our pref-

erence is to use discourse analysis (interviews). This is to explore the rela-

tionship that is developing between the human and the machine, and how

differing machine-learning approaches can impact the relationship. Quantita-

tive metrics of success alone will not do here; if the user is performing better

but strongly dislikes the device then we have not established a favourable re-

lationship that is likely to continue. Qualitative results will be used to inform

algorithm design and implementation in subsequent studies. Iterating between
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qualitative and quantitative findings in this way should bring us closer to ideal

interactions between humans and their devices.

2.3 Impact and Future Potential

We believe the outcomes impact of our recommended line of research extends

beyond artificial limbs into any partnership between a human and a machine

that unfolds in real time through ongoing interaction. Further, we believe the

RL problem setting is an ideal lens by which to study tightly coupled interac-

tions of all kinds. Lessons learned on the highly specific and intimate pairing of

human and artificial limb will be relevant to any interaction between a human

and a device that is capable of the required levels of computation for continual

learning. There may even be a natural decrease in the complexity required of

the machine agent when the interaction with a human is less intimate, which

further suggests prosthetic limbs as a sound place to begin such studies. The

potential exists for research on RL as applied to tightly coupled human ma-

chine interaction to revolutionize how humans and machines interact across a

broad range of fields, creating strong partnerships that dramatically increase

human ability in collaboration with increasingly powerful computing devices.
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Chapter 3

Communicative Capital: A Key
Resource for Human-Machine
Shared Agency and
Collaborative Capacity

In this work, we present a perspective on the role machine intelligence can

play in supporting human abilities. In particular, we consider research in re-

habilitation technologies such as prosthetic devices, as this domain requires

tight coupling between human and machine. Taking an agent-based view of

such devices, we propose that human-machine collaborations have a capacity

to perform tasks which is a result of the combined agency of the human and

the machine. We introduce communicative capital as a resource developed by

a human and a machine working together in ongoing interactions. Develop-

ment of this resource enables the partnership to eventually perform tasks at a

capacity greater than either individual could achieve alone. We then examine

the benefits and challenges of increasing the agency of prostheses by surveying

literature which demonstrates that building communicative resources enables

more complex, task-directed interactions. The viewpoint developed in this

chapter extends current thinking on how best to support the functional use of

increasingly complex prostheses, and establishes insight toward creating more

fruitful interactions between humans and supportive, assistive, and augmen-

tative technologies.
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3.1 Introduction

Technology can be used to amplify natural human abilities, provide access to

new abilities, and supplement abilities changed due to injury or illness (Belfiore,

2010; Brooks, 2002; Dewdney, 1998; Doidge, 2007; Geary, 2002; Moss, 2011).

Various tools and technological interventions are well known to support hu-

mans in physically interacting with their world, improving perceptual abilities,

and supporting decision-making and memory (Clark, 2008; Geary, 2002; Os-

iurak & Badets, 2016; Risko & Gilbert, 2016). Interventions to provide people

with the functions they require for daily life are a core area of interest in

rehabilitation, as outlined by the International Classification of Functioning,

Disability and Health (ICF) (Jette, 2006; World Health Organization, 2007).

For example, Geary (2002) describes ways that technology is used to enhance

sight, touch, hearing, taste, smell, and mental processes. Millán et al. (2010),

Castellini et al. (2014), and Carmena (2012) further present views on the use

of technology to supplement and enhance motor and sensory abilities for peo-

ple who have lost body parts or body functions. Of interest to this work are

technological advances in assistive or augmentative technology involving tight

coupling (Licklider, 1960) between a person and a machine with the capacity

to learn. This coupling affects the ability of the combined human-machine

partnership to have, seek, and achieve goals.

We present the perspective that a human’s ability to have, seek, and achieve

goals can be supported using machine intelligence, specifically by combining

human ability with reinforcement learning agents (Sutton & Barto, 2018).

We term this human-machine shared agency. This perspective suggests that a

human and their machine counterpart should be viewed as partners attempting

to accomplish a shared task, where the agency of each partner combines to

allow for greater potential capacity to accomplish tasks.

As a main contribution, we introduce communicative capital: a re-

source that is built up over time in a human-machine partnership

that allows the partners to eventually perform tasks at a capacity

greater than either individual could achieve alone. The resource can
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consist of accumulated propositional or procedural knowledge, conventions,

beliefs, models, and predictions of the other agent. Communicative capital is

represented within each agent and is stored within the individual memory of

both agents. Communicative capital directly affects the behavioural collabo-

rative capacity of the human-machine partnership.

In this chapter, we specifically consider the case where the resource is in

the form of predictions learned over time from interaction between human and

prosthetic devices. While our setting of interest is human-machine interaction,

a helpful motivating example is a human-guide dog partnership that allows

both independent agents—human and canine—to accomplish a greater range

and complexity of shared tasks (discussed in Section 3.6.1).

3.2 Robotic Upper-Limb Prostheses

Robotic prostheses and other examples from the field of rehabilitation tech-

nology help us focus our thinking on direct human-machine interactions that

can be well supported by machine intelligence. The rehabilitation technology

setting is appealing in that it involves a direct, immediate, tightly coupled

collaboration between a human and their technology to achieve a goal (Lick-

lider, 1960; A. S. R. Parker & Pilarski, 2021). Examples of assistive reha-

bilitation devices include semi-autonomous wheelchairs (Millán et al., 2010;

Viswanathan et al., 2014), robotic manipulators and locomotors (Castellini

et al., 2014; Ortiz-Catalan et al., 2020), exoskeletons (Herr, 2009), smart liv-

ing environments (Rashidi & Mihailidis, 2013), and socially assistive robotic

coaches (Feil-Seifer & Matarić, 2011). The representative example of assistive

rehabilitation technology we focus on in the present work is robotic upper-limb

prostheses: assistive electromechanical devices attached to the body of indi-

viduals with amputations (Pilarski & Hebert, 2017) (Fig. 3.1). Despite the

evolution of prosthetic devices from iron hands to more dexterous mechanical

manipulators, and improvements in quality of life for some users, state-of-

the-art devices have yet to create a satisfactory solution for many individuals

(Castellini et al., 2014; Peerdeman et al., 2011; Williams III, 2011; Ziegler-
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(a) (b) (c)

Figure 3.1: Prostheses examples: (a) robotic upper-limb prosthetic, (b) human
using a research prosthesis (Dawson et al., 2014), (c) human using a supernu-
merary limb (A. S. R. Parker et al., 2019a).

Graham et al., 2008; Zuo & Olson, 2014).

In the prosthetic setting, movement control contributions from both hu-

man and machine must combine effectively in order for the device to benefit

the human user. In this setting challenges result from the limited number of

degrees of human control and the lack of feedback from the device (Castellini

et al., 2014; Schofield et al., 2014). The coupling of human and device is

further complicated by the dynamic, non-stationary nature of human environ-

ments (Saridis & Stephanou, 1977). This coupling has been improved by mus-

cular, neural, and osseointegration allowing for a more direct, high-bandwidth

connection between human and machine (Castellini et al., 2014; Hochberg et

al., 2006; Ortiz-Catalan et al., 2020; Ortiz-Catalán et al., 2014; Zuo & Olson,

2014). To provide a bidirectional flow of information between prostheses and

their users, cameras have been used to augment perception (Marković et al.,

2014), microphones and speakers have been used to facilitate natural language

interactions (Kollar et al., 2010), and both surgical practices and prosthetic

feedback approaches have evolved (Hebert et al., 2014; Schofield et al., 2014).

Prosthetic devices of the future will receive an unprecedented density of data

about human users and their environment, and they should be well equipped

to translate such data into actions which support the goals of the users.

Despite the potential of advanced prostheses to support human abilities,

current neuroprosthetic literature describes that one remaining limitation on
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the interaction between human and machine is the number of independent

signals flowing between human and machine partners (Castellini et al., 2014).

This constrains control strategy design of upper-limb prostheses to a small

number of degrees of freedom, actuated by classification or regression algo-

rithms for real-time control. Giving the upper-limb prostheses some autonomy

in their control mechanism has been shown to allow for simultaneous control of

multiple degrees of freedom while still using the same number of independent

human generated control signals (Castellini et al., 2014). For example, pattern

recognition-based controllers have provided an improvement over conventional

controllers in standardized tasks in randomized clinical trials in part because

of their ability to learn to interpret and act upon diverse collections of signals

provided by a human user (Hargrove et al., 2017; Vu et al., 2020). Importantly,

these systems therefore require upfront investment on the part of both the de-

vice and the user in the form of initial training and subsequent adjustments

in order to see the autonomy-related improvements they offer. Increasing the

autonomy of a prosthetic device has been shown in many specific cases to signif-

icantly increase the capacity of the human-prosthesis partnership to efficiently

and effectively accomplish functional tasks (Castellini et al., 2014). Perhaps

surprisingly then, given the diverse data streams and automation capabilities

noted above, the specific consequences of prostheses themselves being con-

sidered to have and share in agency during human prosthesis interaction has

remained relatively under-explored. We now examine the relationship between

agency and capabilities in human-prosthesis partnerships.

3.3 Prostheses as Agents

In this section, we consider the implications of treating a prosthetic device

as an agent—an autonomous goal-seeking system. This is not a common

perspective—it suggests both sides of a tightly coupled human-machine in-

terface should be thought of as agents with goals. Drawing insight from rela-

tionships found in human-human joint action and interaction (Knoblich et al.,

2011; Pesquita et al., 2018; Pezzulo et al., 2013; Sebanz et al., 2006), treating a
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human-prosthesis interaction in this way is in fact not as unfamiliar as it might

first seem; with an agent-centric view, each agent would be expected, within

its capability, to grow to understand the capabilities of the other and predict

how to act accordingly. That is, each agent would naturally and, to the best

of its ability, explicitly model the agency of the other to increase the capacity

of the partnership in a continual and incrementally increasing fashion. This

form of model building and adaptation is present in rather constrained ways in

existing state-of-the-art upper-limb prostheses, and something the community

hopes to enhance within future prosthetic systems (Castellini et al., 2014).

We first delineate degrees of agency and the resulting capabilities that each

side of the prosthetic human-machine partnership may obtain. Here, the hu-

man and the machine are considered analogous to co-actors in a joint action

task (Knoblich et al., 2011; Pesquita et al., 2018; Pezzulo et al., 2013; Sebanz

et al., 2006) or the leader and follower in a two-agent partnership (Candidi

et al., 2015); this collective shared agency is cooperation between a natural

and an artificial system (Misselhorn, 2015). We define agency as the degree to

which an autonomous system has the ability to have, seek, and achieve goals.

This definition is inspired by the Belmont Report (Brady & Jonsen, 2014),

wherein a system assumes agency if it is “capable of deliberation about per-

sonal goals and of acting under the direction of such deliberation”. Hallmarks

of agency include the ability to take actions, have sensation, persist over time,

and improve with respect to a goal. These hallmarks give rise to an agent’s

ability to predict, control, and model its environment and other agents. By

taking prior perspectives on agency into consideration (Tosic & Agha, 2004),

along with the nuances of the prosthetic setting of interest, we focus on five

attributes of agency that may be present in the human or machine agent.

1. Be a mechanism: The agent acts in a predetermined way in response

to stimulus. For example, a myoelectric controller that processes electromyo-

graphic (EMG) signals via a fixed linear proportional mapping to create control

commands for prosthetic actuators (P. A. Parker et al., 2006).

2. Adapt over time: In addition to being a mechanism, the agent has the

capacity to adapt in response to the signals perceived. Through adaptation,
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the agent may acquire knowledge about its situation (e.g. by modelling and

adapting to perceived signals). Adaptation can occur during training, as in

the supervised learning of a pattern recognition classifier, or during ongoing

experience (Castellini et al., 2014; Pilarski, Dawson, Degris, Carey, et al.,

2013).

3. Pursue a goal: The agent has defined goals and an intent to optimize

some measure of its own situation. One example of the pursuit of a goal is

the maximization of a scalar reward signal, as in computational and biological

reinforcement learning (Sutton & Barto, 2018).

4. Model the other agent as adapting: The agent views the other

agent as adapting during ongoing interaction. This can alter the way one agent

presents signals to the other. For example, a human user trains a pattern

recognizing prosthetic with knowledge that the device is adapting to their

signals.

5. Model the other agent as pursuing a goal: The agent views the

other agent as not only changing in response to received signals, but also as

pursuing its own objectives. This preliminary theory of mind further alters

the way that the one agent presents signals to the other agent.

We present this list of attributes with the caveat that it is likely not ex-

haustive. We can imagine that there may be higher order attributes of agency

which mirror the recursive theory of mind. Additional attributes may parallel

high order intentionality and reasoning, as in research in animal ethology, ma-

chine theory of mind, and cultural intelligence (Cultural General Intelligence

Team et al., 2022; Heyes, 1998; Rabinowitz et al., 2018; Zhu et al., 2021). This

line of thinking is discussed further in Section 3.5.3.

We now outline a schema (Fig. 3.2) for considering degrees of agency

and relate agency to the combined capacity of a human-machine partnership.

Capacity and agency in this schema are agnostic to the units of measurement

and the exact attributes of agency, so as to be compatible with, and still helpful

across, multiple definitions of agency.

Capacity is a measure of task performance accomplished by the human-

machine partnership as quantified by some metric. Maximum capacity is the
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As an illustrative example, Fig. 3.2 uses this agency-capacity schema to

compare a human-mechanism partnership (without shaded rectangles) to a

partnership where the machine is able to adapt (with shaded rectangles). Note

how the maximum capacity of the partnership is greater than either could

achieve on their own. That capacity may be initially unrealized and change

over time, or it might only be realized if both agents can model the other as

pursuing a goal.

The way that the goals of the human and machine align is a problem related

to team formation in human-human and human-animal partnerships (Fish-

man, 2003). Such alignment can occur during normal sensorimotor interac-

tions between agents (Pezzulo & Dindo, 2011; Pezzulo et al., 2013; Sebanz

et al., 2006; Sebanz & Knoblich, 2009). To examine the process by which such

alignment might occur during human-machine interaction, we now introduce

the idea of communicative capital. Communicative capital is a resource built

up through ongoing interactions between a human and their machine counter-

part that correspond to how well both agents understand each other and the

partnership (Pilarski et al., 2015).

3.4 Communicative Capital

As depicted in Figs. 3.2 and 3.3, the agency of the human and the machine

contribute to the capacity of the partnership. Communicative capital is a re-

source built through interaction between both sides of the partnership. It

enables a partnership to eventually perform a task at a capacity greater than

either individual could achieve alone. Accumulating communicative capital

requires investment to establish and maintain (see the ‘cost of signalling’ de-

scribed by Pezzulo and Dindo (Pezzulo et al., 2013)). The cost of investing in

communicative capital may be incurred passively during the interactions of a

partnership, or, in many cases, through dedicated effort tangentially related

to the ultimate goals of the partnership. For example, users of prosthetic de-

vices learn about the use of their prosthesis before they take it home for use

in activities of daily living. In advanced devices that use pattern recognition,
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teaching both sides of a partnership to engage in a system of meaning-by-

convention (Santoro et al., 2021) (e.g., a series of commands to a prosthesis

phrased in terms of patterns of myoelectric signals) may require significant

additional time and energy but lead to increased future efficiency.

Building communicative capital can also be viewed as a process of compres-

sion and decompression, or via the lens of Scott-Phillips et al. (Scott-Phillips,

2014; Scott-Phillips et al., 2009), one related to ostension and inference. One

agent takes an action and thereby encodes information into a signal. The other

agent must decode the signal as it arrives, and thereby recover the associated

information. To begin to form communicative capital, at least one of the two

agents must be able to adapt. Further, we expect the greatest opportunities to

build communicative capital will exist when both the human and the machine

exhibit the highest possible degrees of agency. We now discuss how commu-

nicative capital can be built and used to progressively realize more capacity

in prosthetic human-machine partnerships.

3.5 Building Capital through Interaction

So far we have considered settings where a communication channel exists be-

tween the human and the machine. While this channel can be either unidi-

rectional or bidirectional, two-way communication is often beneficial for in-

teractions between multiple goal-seeking agents. If the agent’s goals are not

furthered by the information received, then it may ignore the received infor-

mation. If one agent’s goals are not furthered by what the other agent does

with received information, it will choose to not send such information in the

future. The agent can send many possible things, and can therefore choose

how to balance the cost of sending information with the expected outcomes

for itself and the partnership (Pezzulo et al., 2013). It follows that both agents

should vary their communication to send information that results in both im-

proving with respect to their goals. The variation of communication could be

independent, or guided by other parties—e.g., the work of clinical staff to train

a patient for prosthesis use, or an instructor helping someone collaborate with
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mechanisms like pattern recognition systems in commercially available pros-

theses, and then we detail interactions with goal-seeking prosthetic agents.

3.5.1 Adaptation: Prediction Enhanced Control

First, we consider communicative capital in adaptive control paradigms—

specifically, machine learning based prosthetic controllers. There are multiple

examples where the human views the machine as adapting and where the ma-

chine models and predicts information about the human to better fulfill the

human’s intentions (Castellini et al., 2014; Edwards, 2016; Edwards, Dawson,

et al., 2016; Pilarski, Dawson, Degris, Carey, et al., 2013).

In commercial prostheses with pattern recognition, the human engages in

a training phase to inform the device about the preferred motions to perform

in response to complex patterns of myoelectric activity recorded from the hu-

man’s body (Castellini et al., 2014; Scheme & Englehart, 2011). The use

of pattern recognition can provide users with more intuitive control of their

prosthesis (Castellini et al., 2014). The human becomes more skilled at pro-

viding clear training commands, in part because of their knowledge that the

machine is learning and adapting from the ongoing interaction. The result is

improved capacity due to an increase in communicative capital: the number

of human controllable functions can now exceed the number of available de-

grees of control available in conventional myoelectric control which depends

on antagonistic muscle pairs for each degree of freedom (Smith et al., 2016).

A second example is adaptive and autonomous switching (Edwards, 2016;

Edwards, Dawson, et al., 2016; Edwards, Hebert, et al., 2016). In this setting,

a machine learns to make ongoing predictions about how and when a human

will decide to switch between controlling one functional joint of a prosthetic

device (e.g. the wrist, elbow, or shoulder) and another (Fig. 3.4). In manual

switching, the human uses a separate biophysical control interface to send a

‘change currently controlled joint to the next in a fixed list’ signal to the device.

In adaptive switching, the device adapts to the human by suggesting which

joint it predicts the user might want to control next. The human’s ability to

quickly perform tasks is improved by these suggestions. The device improves
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move the arm in collaboration with the human’s own actions (Sebanz et al.,

2006).

As a final example of adaptive assistive technology related to the upper-

limb prosthetic setting, Xu et al. (2013) describe a walking-aid robot designed

to autonomously adapt to different users. The robot uses reinforcement learn-

ing to adjust the relative control of the human in real-time for smoother, faster

movement. Smoothness of motion, system safety, and intuitive control can all

be viewed as different capacity functions that are improved by the adaptive

nature of the machine.

3.5.2 Goals: Reward-Based Control

Goal-seeking behaviour on the part of both the human and the machine—

behaviour driven by processes of reinforcement learning—enables a more de-

tailed progression of interactions than is possible with an adaptive, but not

goal-seeking, machine. What follows is one hypothetical progression of the

training of an assistive machine, where both the human and the machine are

goal-seeking agents, and where the human starts to model the device as a goal-

seeking agent. This modelling and adaptation can be observed behaviourally

as in the previous section.

1. At the outset, the human can only provide positive feedback (i.e. reward)

signals indicating their approval; no other signals have any agreed upon

meaning.

2. Using these rewards, the machine can learn a function that maps signals

from the human, or other environmental cues, to a valuation that is

grounded in cumulative reward (a value function, as detailed by Sutton

and Barto (2018), and used in face valuing by Veeriah et al. (2016)).

3. Using this value function, the human teaches the machine a convention

that may be used to interact at a low level—e.g., simple commands, body

language, cues like pointing, and the basics of shifting between different

functions of a system. The human begins to model how their behaviour

affects the learning and adaptation of the machine.

31



4. Using these developed conventions, higher-level abstractions can be es-

tablished between the human and the machine. These built-up con-

ventions are one component of communicative capital which enable the

realization of additional partnership capacity.

With this progression in mind, there are a variety of compatible ways to

incorporate human knowledge into a learning system (Amershi et al., 2014;

Chernova & Thomaz, 2014; Pilarski & Sutton, 2012; Thomaz & Breazeal,

2008). Starting with the idea of training based on primary reward, as in the

progression described above, Knox and Stone (2012) introduced the Interactive

Shaping Problem, wherein an agent is acting in an environment and a human

is observing the agent’s performance and providing feedback to the agent such

that the agent must learn the best possible way to act based on that feedback

(Knox & Stone, 2012). The interactive shaping problem is related to com-

municative capital, as it is a readily observable case of information sharing

between two goal-seeking systems with a limited channel of communication.

Goal-seeking behaviour in a machine, and developing communicative cap-

ital through the human’s modelling of the machine as goal-seeking agent, in-

creases the maximum capacity of a partnership. A human’s interactions with a

machine are supported by a channel of communication with defined semantics

(e.g., the reward channel in reinforcement learning (Sutton & Barto, 2018))

that allows the human to shape the machine’s behaviour in ways that are

not possible for an adaptive, non-goal-seeking machine. This communication

channel is integral to realizing the goal-seeking agent’s capacity to deal with

non-stationary tasks, changing problem domains, and novel environments, in

a way that aligns with the human’s goals. Providing the means by which to

shape behaviour can also reduce the amount of pretraining for the system, as

interactions are now accompanied by online, real-time human feedback. Re-

ward allows the human to shape the machine learning agent to perform the

task in a personalized, and situation-specific way—an adaptive goal-seeking

agent has the ability to incorporate engineered knowledge, but also move be-

yond it.
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Previous work has demonstrated how both predefined and human-delivered

reward could be provided to a goal-seeking agent to gradually improve the con-

trol capabilities of a myoelectric control interface (Pilarski, Dawson, Degris,

Carey, et al., 2013; Pilarski et al., 2011). By using a goal-seeking reinforce-

ment learning agent to control the joints of a prosthesis, informed by predic-

tions about future movement, the human-machine partnership was found to

be able to progressively refine the simultaneous multi-joint myoelectric con-

trol of a robotic arm. In these studies, human approval and disapproval was

delivered to the machine with full knowledge of the machine’s learning capa-

bilities. These initial results have been extended to more complex settings

which informs how mutual, goal-seeking behaviour supports myoelectric con-

trol (Mathewson & Pilarski, 2016). These results demonstrate the value of

developing communicative capital through the explicit incorporation of hu-

man feedback signals. In this representative work communicative capital led

to an increased partnership capacity.

3.5.3 Models, Shared Agency, and Feedback

Beliefs about the nature of internal and external signals are a kind of knowl-

edge that we broadly denote as models. Models are required for the higher

level attributes of agency; it is useful for a machine to represent, or construct

a model, of its partner and the world, in order to achieve more effective in-

teraction. Agent models, as they apply to a human-prosthetic partnerships,

may take many forms. They may include, for instance, a collection of learned,

temporally extended predictions about the dynamics of the world and the

behaviour of the human (Pilarski & Sherstan, 2016; Sutton & Barto, 2018;

Sutton et al., 2011).

As described by Pezzulo and Dindo (Pezzulo & Dindo, 2011) shared rep-

resentations may be a critical part of communication during human-machine

interaction, and central to the formation of more effective models in terms of

beliefs, actions, and intentions. This moves us towards developing a theory of

mind—an agent predicting the internal beliefs, motivations, and thoughts of

another especially as applied to observable sensorimotor interactions (Candidi
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et al., 2015; Pezzulo & Dindo, 2011; Pezzulo et al., 2013). Recursive theory

of mind might imply higher levels of agency, as presented in Section 3.3, and

parallel higher order intentionality (Cultural General Intelligence Team et al.,

2022; Heyes, 1998; Rabinowitz et al., 2018; Zhu et al., 2021). Future work

may explore this other-modelling and how it can be leveraged to build shared

knowledge.

As one example of how models can impact a human-machine partnership,

Bicho et al. (2011) describe a shared construction task in which a robot and

a human must work together to assemble a toy. Completion of the assembly

task required actions from both agents. The robot infers the goal of the human

from contextual clues and acts accordingly, communicating its intention at

each point during the task using a speech synthesizer. This allows the human

to further model the internal processes of the machine. Another example of

a joint task in which a robot infers the goal of the human comes from Liu

and Hedrick (Liu & Hedrick, 2016). In their work, participants and virtual

robots collaborate to accomplish a task, and the robot infers the human’s goal

based on motion. This research suggests that goal inference (i.e., the modelling

goals) decreased the time required to finish tasks and improved other measures

of performance, including human-machine trust.

The impact of feedback from an adaptive prosthetic is quantified in work by

A. S. R. Parker et al. (2019a). In their work, three different kinds of feedback

were used to supply a human with information about how best to control the

movements of a wearable robot in the form of a supernumerary limb (see Fig.

3.1(c))—no feedback, mechanistic feedback, and adaptive feedback in the form

of predictions. The human needed to move the robot in a confined work space,

coming as close as possible to the work space’s walls without making physical

contact. The human was blindfolded and was acoustically isolated by way of

noise-cancelling headphones, so that they only received information about the

world via the machine’s feedback.

The two capacity functions of interest in A. S. R. Parker et al. (2019a) mea-

sured: the current drawn by the motors due to impacts with the work space

walls, and the number of times the human was able to use the arm to fully
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actions of multiple agents to achieve a goal.

3.6.1 Guide Dogs and Intelligent Assistants

A guide dog could be the oldest documented example of an assistive technology

with agency, with an early depiction on the wall of a house excavated in Pom-

peii dated from c. 79 CE (Fishman, 2003; Pfaffenberger, 1976). A guide dog

needs to be part of an active partnership—it must have the capability to will-

ingly disobey an instruction when it perceives a danger. The agent in charge

of the interaction, human or dog, needs to be able to change from moment-to-

moment in order for the partnership to be effective. Because of these desired

and atypical behaviours, both the dog and the future owner must be explicitly

trained. The human must be taught not only the precise vocabulary under-

stood by the guide dog, but what to expect in response. This requires both

parties, human and dog, to invest in communicative capital and learn each

others’ idiosyncrasies in order to approach an effective partnership (Serpell &

Hsu, 2001).

Computers, whether desktops, tablets, or smartphones, all augment our

cognitive abilities. At present, there is significant effort to develop virtual

assistants on such devices. Such assistants may have some level of agency;

these assistants may be adaptive, changing their behaviour and suggestions to

meet the user’s needs (Markoff, 2015). To date, existing computer interfaces

have largely remained fixed and unadaptive. However, thanks in part to in-

creases in available computation, computers are now improving in their ability

to predict user needs and to provide users with the information and interfaces

that are most needed at any given moment (Langley, 1997; Markoff, 2015).

With increased agency, these systems now begin to demonstrate some of the

hallmarks of human-human joint action established by the related literature

(Knoblich et al., 2011; Pesquita et al., 2018; Vesper et al., 2010).
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3.6.2 Interactive Approaches to Instruction, Communi-
cation and Control

There are multiple ways that a human and a machine—e.g., an assistive

robot like a prosthesis—can beneficially interact to achieve the human’s ob-

jectives (Argall et al., 2009; Pilarski & Sutton, 2012; Thomaz & Breazeal,

2008). A pertinent family of methods, broadly classified as interactive machine

learning (IML), has demonstrated the potential to increase the capabilities of

decision making systems in complex, dynamic, and novel environments.2 In

much of the existing IML literature, feedback channels are used as a means

by which a non-expert can train, teach, and interact with a system without

explicitly programming it. Shaping allows for the human to learn how the

system accepts and interprets feedback and for the system to learn the goals

of the human (Thomaz & Breazeal, 2008).

IML has produced a number of important milestones. With respect to

goal-driven systems, trial-and-error machine learning has been shown to be

accelerated through the presentation of human-delivered reward and forms of

intermediate reinforcement. Examples include the use of shaping signals (Ka-

plan et al., 2002), the delivery of reward from both a human and the environ-

ment (Knox & Stone, 2012), multi-signal reinforcement (Thomaz & Breazeal,

2008), and combinations of both direct control and reward-based feedback

(Mathewson & Pilarski, 2016; Pilarski, Dawson, Degris, Carey, et al., 2013;

Pilarski et al., 2011). As described in Sec. 3.5.2 above, an agent’s learning

can be facilitated by a human host through interactive reinforcement learn-

ing (Knox & Stone, 2009, 2012; Knox et al., 2013). Griffith et al. (2013)

built on the earlier work of Knox and Stone (Knox & Stone, 2009) with a

framework to maximize the information gained from human feedback. Loftin

et al. (2014) expanded the space of human interaction through detailed inves-

tigation of human teaching strategies and developed systems which model the

human feedback. Their systems have been shown to learn faster and with less

2Though, some argue that all machine learning is interactive machine learning

because humans interact with machines through every step of the design, development,
deployment, and dissemination of such systems (Mathewson & Pilarski, 2022).
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feedback than other approaches. Interactive learning from demonstrations and

instructions have also been shown to help teach different ways of behaving to

a learning machine (Abramson et al., 2020; Argall et al., 2009; Chao et al.,

2010; Judah et al., 2010; Kaplan et al., 2002; Lin, 1991, 1993).

Humans can utilize a number of different approaches to effectively commu-

nicate their goals to machine learning agents. Through interactive learning,

information from a human can help a machine learner to achieve arbitrary

user-centric goals, can improve a system’s learning speed, and can increase the

overall performance of a learning system. Advances in IML provide a basis for

increasing the rate with which a human-prosthetic partnership may develop

communicative capital and thereby realize capacity, and, in certain cases, can

also be expected to increase the maximum capacity of a partnership.

3.6.3 Limitations

There are challenges and limitations in creating machine agents that can build

up communicative capital to collaborate more effectively with their human

partners. In this section, we highlight several critical areas of focus that

should be addressed in future work. Of particular note are challenges related

to safely deploying machine learning algorithms in the real-world, especially

when deployed on robots tightly coupled to human users. Future work on

these algorithms is needed to empirically demonstrate how they are provably

robust to a wide variety of environmental factors. As well, mechanisms to

align the goals of the human and the machine are critical in shared agency

settings. It has been shown in previous research how increasing agency of the

machine increases the cognitive demands placed upon the human (Mathewson

& Pilarski, 2016). Human’s often expect machines to function as mechanisms,

unaffected by adaptation. There can be significant implications on their cog-

nitive load once they are required to carry out their own actions as well as

model the learning agent (Hedlund et al., 2021). Finally, algorithms deployed

in human-machine partnerships will need to adapt quickly to information and

signals from the human. Both for reasons of safety, but also because a lack

of quick adaptation could lead to human disengagement if the human doesn’t
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perceive the machine as learning fast enough. Future work on safety, align-

ment, rapid adaptation, understanding human expectations, and making con-

nections between these systems and modern theories of agency is needed as

human-machine partnerships move from the laboratory and into the world.

This is true for both prosthetic devices and for collaborative machines more

generally.

3.7 Paradigms for Evaluation

We expect that increasing the agency of a prosthetic device and investing in

communicative capital will allow a collaborative partnership to accomplish

tasks faster, easier, more safely, and more efficiently. Work is now needed

to test this hypothesis and identify the contributions and practical utility of

agency and goal-seeking behaviour on the part of machine learning partner

agents. It is our recommendation that researchers design experiments varying

the level of agency of both human and the machine in a controlled fashion

to assess the contributions from each component of agency. As described in

Sec. 3.5.2, increased agency on the part of the machine enables increased

shared agency. This increase is depicted as relative changes in the agency and

capacity of both agents.

One means by which to test agent contributions is through the conven-

tional outcome measures used to assess the impact of rehabilitation interven-

tions (Hebert et al., 2009; Light et al., 2002; Resnik, 2011; Resnik et al.,

2012). Outcome measures provide a clearly defined notion of capacity. Fur-

ther, prosthetic outcome measures are already used to study the benefits of

pairing patients to systems with different mechanistic levels of agency (e.g.,

during prosthetic fitting and patient assessment). In the majority of clinically

deployed prostheses, the control approach and system design of the device is

fixed. The communicative capital of the mechanism—how it interprets body

signals and maps them to actuators—provides immediate realized capacity at a

level determined by the mechanism’s designers. Measures like the Southamp-

ton Hand Assessment Procedure, the Box-and-Blocks Task, and others are
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used to provide a quantitative assessment of the impact of these prosthetic

mechanisms (Light et al., 2002; Mathiowetz et al., 1985). Recent develop-

ments in the assessment of gaze and movement have further shown concrete,

capacity-related metrics that evaluate user-prosthesis abilities via changes in

the relationship between biomechanics and visual attention, as well as other

measurable correlates of perceived control and agency (Hebert et al., 2019;

Marasco et al., 2021; Williams et al., 2019, 2021). Some of these measures have

been shown to serve as proxies for the state of human predictive models of their

machine partner, and thus may provide a way to quantify communicative cap-

ital as it is built by the human side of a human-machine partnership (Marasco

et al., 2021). Rigorous, incremental testing of agency is therefore highly com-

patible with existing approaches, and will be significantly extended as more

comprehensive motor, sensory, and cognitive outcome measures are developed.

One fruitful avenue for experimentation, as explored in A. S. R. Parker

et al. (2019a), is to deliberately reduce the agency of the human by removing

control options and/or sensory inputs as they complete a task. In this way, the

authors were able to elucidate how different levels of agency in the machine

contribute to the performance of the partnership. A second, complementary

paradigm is to dramatically increase the agency of the machine beyond what is

technically possible, so as to study the outcomes and conditions that support

shared agency. One way to do this is a type of sham trial known as a Wizard-

of-Oz experiment (e.g. Viswanathan et al. (2014)). Paradigms for evaluating

human-machine partnerships will continue to develop as technology supporting

shared agency evolves. We now conclude with several brief reflections.

3.8 Conclusions

We argue that tightly coupled human-machine partnerships, such as humans

and prostheses, should be thought of as adaptive multi-agent systems where

the agency of human and machine combine to achieve more capacity than ei-

ther could independently. We present an agency-capacity schema that relates

shared agency to the capacity of human-machine partnerships, and we show
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how communicative capital is the key resource that a partnership needs to in-

vest in to access the full capacity of the combined agency of the pairing. Using

examples from the literature, we illustrate how increases in the agency of a

prosthesis can tangibly improve the capabilities of its human user. We high-

light three main conclusions from this work as novel contributions supporting

human-prosthesis interaction: 1) we propose that designing assistive devices

as goal-seeking agents improves the range of possibilities for robust and flexi-

ble interaction, 2) we argue that an agent-based viewpoint of human-machine

interaction enables a structured progression toward more capable partnerships

between people and devices, and 3) we describe how communicative capital

is a resource built through ongoing human-machine interaction which enables

a partnership to eventually perform tasks at a capacity greater than either

could individually. Machine intelligence enables the acquisition and use of

communicative capital in human-prosthesis partnerships to more effectively

and more efficiently accomplish tasks. We believe the agency-based viewpoint

on assistive technology proposed in this work contributes unique and comple-

mentary ideas to the development of highly functional human-machine part-

nerships. Designers and developers should construct systems which actively

invest in communicative capital as such investment will lead to increases in

shared agency to achieve more capacity than they would be able to otherwise.
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Chapter 4

Exploring the Impact of
Machine-Learned Predictions
on Feedback from an Artificial
Limb

Learning to get by without an arm or hand can be very challenging, and exist-

ing prostheses do not yet fill the needs of individuals with amputations. One

promising solution is to improve the feedback from the device to the user. To-

wards this end, we present a simple machine learning interface to supplement

the control of a robotic limb with feedback to the user about what the limb will

be experiencing in the near future. A real-time prediction learner was imple-

mented to predict impact-related electrical load experienced by a robot limb;

the learning system’s predictions were then communicated to the device’s user

to aid in their interactions with a workspace. We tested this system with five

able-bodied subjects. Each subject manipulated the robot arm while receiv-

ing different forms of vibrotactile feedback regarding the arm’s contact with

its workspace. Our trials showed that using machine-learned predictions as a

basis for feedback led to a statistically significant improvement in task perfor-

mance when compared to purely reactive feedback from the device. Our study

therefore contributes initial evidence that prediction learning and machine in-

telligence can benefit not just control, but also feedback from an artificial limb.

We expect that a greater level of acceptance and ownership can be achieved

if the prosthesis itself takes an active role in transmitting learned knowledge
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about its state and its situation of use.

4.1 Introduction

The loss of a limb, especially an upper limb, can have a significant impact on

an individual. A person may be missing a limb from birth, or it could be the

result of illness or injuries sustained over the course of one’s life. Artificial

limbs, also called prosthetic limbs, are often seen as a means of mitigating

the absence of a biological limb. In all cases, but particularly when a limb is

lost later in life, it can be very difficult to adapt to interacting with the world

through a mechanical or electronic device (Antfolk et al., 2013; Hebert et al.,

2014; Micera et al., 2010; P. A. Parker et al., 2006; Peerdeman et al., 2011;

Resnik et al., 2012; Scheme & Englehart, 2011; Williams III, 2011). There are

many prostheses on the market that attempt to fill the needs of individuals

with amputations, and many of these have tremendous potential to restore lost

functionality and independence to the user; however, even the best prosthe-

ses currently available have limitations (Peerdeman et al., 2011; Resnik et al.,

2012; Williams III, 2011). There are two major areas where current prostheses

begin to show the strain of insufficient technology to properly support them.

The first area is a lack of feedback(Antfolk et al., 2013; Hebert et al., 2014;

Micera et al., 2010; Peerdeman et al., 2011)—e.g., the sense of touch—and

more important to this work, lack of proprioception when using a prosthesis

(Antfolk et al., 2013; Williams III, 2011). The second area is insufficient con-

trol (Micera et al., 2010; P. A. Parker et al., 2006; Peerdeman et al., 2011;

Scheme & Englehart, 2011; Williams III, 2011). Under most current tech-

niques, the person who needs to control the limb has fewer control channels

available to them than their device has functions (Micera et al., 2010; P. A.

Parker et al., 2006; Scheme & Englehart, 2011). This leads to some clever, but

non-natural, control solutions such as routing some of the control channels to

alternate locations on the user’s body. A final challenge which results from the

first two is acceptance of the prosthesis by the user (Peerdeman et al., 2011;

Resnik et al., 2012; Williams III, 2011). Despite the great clinical potential of
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Figure 4.1: Wearable robot limb system used in these experiments. The four
degree-of-freedom arm is controlled by a joystick in the user’s hand which
sends signals to an ADC and then to a laptop, which in turn commands the
servos. A vibrotactile feedback sleeve can provide feedback to the user.

many modern prostheses, as a result of the first two limitations a prosthetic

can be perceived by the user as insufficient or as a reminder of the functional-

ity that they lost and that the device simply cannot restore (Peerdeman et al.,

2011; Resnik et al., 2012; Williams III, 2011). Lack of acceptance is especially

prominent in the newer myoelectric (EMG) prostheses, i.e., electrically driven

robot limbs, versus the older mechanical types despite the increased potential

that myoeletric prostheses have in overcoming the other challenges (Scheme &

Englehart, 2011; Williams III, 2011).

Operating a device that interacts with the world is a learned motor func-

tion. As infants, we learn the way our limbs interact with our environment

through general motion and play (Flanagan et al., 2003; Wolpert et al., 2001;

Zacks et al., 2011). This develops the control channels and models required for

us to use our bodies to sense and manipulate the world we live in (Wolpert et
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al., 2001). This interaction involves two parts (Flanagan et al., 2003; Wolpert

et al., 2001). The first is the internal forward copy of the action—in effect,

knowledge that moving specific muscles will cause a motion which results in

the desired sensory feedback. There is also a reverse copy that is processed

at the same time. The reverse copy starts at the desired interaction with the

environment and links the required muscle action to it. In order to skillfully

interact with the environment, both the forward and reverse models must be

present (Flanagan et al., 2003; Wolpert et al., 2001).

Artificial intelligence offers a promising solution to the control problems

encountered by the users of electromechanical prostheses (Pilarski, Dawson,

Degris, Carey, et al., 2013). Offline machine learning in the form of pattern

recognition is for the first time seeing use in commercial prostheses, and is

considered to be the state-of-the-art in controlling multiple prosthetic joints

(Micera et al., 2010; Scheme & Englehart, 2011). Real-time machine learning

has also recently been used to ease the control burden on a user by learning

joint activation sequences as a limb is being used (Pilarski et al., 2012; Pilarski,

Dick, et al., 2013); as one example, predictions about a user’s control choices

have been learned so as to minimize the number of switches between joints,

and consequently the time required to perform a task (Pilarski et al., 2012).

A lack of feedback is frequently responsible for abandonment of prosthetic

devices, especially upper-limb prostheses (Biddiss & Chau, 2007b). Feedback

is an important aspect of control, and how to provide feedback from upper-

limb prostheses to individuals with amputations is an active area of research

(Antfolk et al., 2013; Schofield et al., 2014). There are many modalities and

means of feedback that are being explored currently. Some examples are sub-

stitution, where a signal that is not meant to imitate the lost physiological

system is used, and modality matched, where an attempt is made to imitate

the physiological sensations (Schofield et al., 2014). Providing feedback in

these ways has been shown on subjects without amputation to improve per-

formance on grasping tasks, as outlined by Schofield et al. (2014)

The primary contribution of the present work is to suggest that machine in-

telligence can be used to enhance not just control—the focus of most prosthesis-
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related machine intelligence research to date—but also feedback from a prosthe-

sis. This feedback was part of a user’s intact biological system, and contained

information used in operation of their natural limb. In the case of a pros-

thetic limb, motor awareness and forecasting are now at least partly encoded

in the hardware of the prosthesis rather than in a user’s biology. Therefore,

we may need to provide assistance to the natural system in interfacing with

its electronic components. We suggest that machine intelligence can be used

to take the internal state of the assistive device and interpret it in ways the

biological system cannot do naturally; the results of this interpretation can be

communicated to the user in a variety of ways to improve their control over

the device. Thus, using machine intelligence, we can help create a forward

prediction of an action electrically and communicate it to the user, similar to

the operation of the intact biological system.

This work therefore contributes a preliminary exploration of the application

of machine-learned predictions, expanding upon the work started by A. S. R.

Parker et al. (2014). A simple system for communicating machine-learned pre-

dictions via vibro-tactile feedback is used to assist a user in refining their own

forward model of motor actions while using a prosthetic limb analog. Specif-

ically, temporal-difference learning is used to generate a prediction about the

electrical load the servos of a human controlled robot arm will experience as

they near a potentially dangerous collision with objects in the user’s environ-

ment. This prediction is communicated to the user through a vibration motor.

In this way, we emulate the forward predictive model present in a biological

limb’s motor function. We expect that, similar to the way that the biological

operation of a limb is dependent on its forward copy, the addition of an elec-

tronic/computational equivalent during human-robot collaboration will yield

control improvements over purely reactive feedback. In this study, the amount

of load experienced by a servo over the course of an experimental run when the

user receives this predictive feedback is compared to the same user receiving

the same indication when the servo is actively experiencing high load (reactive

feedback).
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4.2 Methods

4.2.1 Robot and Experimental Platform

The experimental platform used in this work was a custom-designed robotic

arm called the ExArm (Fig.4.1), which was wearable by individuals without

amputation. The arm was designed to model the gross motor functionality of

joints in a human arm. It had four controllable actuators: shoulder, elbow,

wrist flexion, and hand open/close (AX-12/18+ Dynamixel servo motors).

Subjects used a 2-axis thumb joystick (SparkFun) to control the motion of

the ExArm’s joints, and pressing the joystick could change the active joint.

The joystick was connected to an ADC (DI-149 data acquisition starter kit,

DATAQ Instruments), which digitized the 3.3 V signal modified by the user’s

control of the joystick. The resulting output signal was sent via USB to a

computer, which interpreted the signals and sent commands to the robot’s

servos. The control software only utilized information from a single axis of

the joystick for motion, as well as the joystick button press to indicate a joint

switch, to emulate EMG control of a prosthetic limb. The velocity of motion

was fixed for all participants in all trials; speed of arm motion was a constant

value.

AX-12/18+ servos used in the design of the ExArm provided several useful

output signals, including their angular position, angular velocity, motor tem-

perature, voltage, and load. To communicate feedback about these sensors to

the user, we designed a custom sleeve embedded with four vibration motors

(termed tactors) similar to those used in a cellphone or pager. With the sleeve

donned, one tactor each was located over the user’s shoulder, elbow, wrist,

and hand, as shown in Figs. 4.1 and 4.2. The platform therefore emulated

the capacity for actuation in many commmon prosthetic devices while adding

vibrotactile feedback.

4.2.2 Experimental Procedure

Five subjects were asked to participate in experiments with the ExArm, and

gave informed consent in accordance with the study’s institutional review
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Figure 4.2: The experimental setup: a confined workspace (red), the robotic
arm (green), and as in Fig. 1, an experimental subject with attached vibro-
tactile feedback sleeve (seated to the left of the workspace, not shown).

board approval. Each user wore the sleeve containing the vibration tactors

and controlled the back-and-forth motion of the robotic arm’s shoulder joint

using the thumb joystick. The other joints of the arm as well as the joint

switching functionality were not used for this experiment to restrict the mo-

tion of the arm to a single path. The ExArm was affixed to a stationary

mannequin as shown in Fig. 4.2 to ensure each experiment began with the

robotic arm at a constant position and to mitigate the effect of a user’s trunk

movement. Thus, for this initial work, the position and movement of the user

was unrelated to the outcome of the experiment. The workspace was a sub-

space of the shoulder joint’s total range of motion, bounded by a 27 cm square

box that was fastened in place. Prior to each experiment, the end effector was

centered with respect to the workspace, perpendicular to the rear wall of the

box and equidistant from the left and right walls. Each subject was asked to

perform four separate five-minute tasks, structured as follows:
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Training Task

The first task was designed to provide users with practice controlling the

ExArm. For this training task, the user was asked to move the arm repet-

itively from one side of the box to the other using the joystick, pausing briefly

(≤1 second) upon reaching the center of the workspace. At the left and right

walls of the box, the user was tasked with pushing the robotic arm against the

wall until the arm was fully flexed, causing a temporary increase in the load

reported by the servo motor. The user’s shoulder vibration tactor was pro-

grammed to vibrate at a load threshold of 650 out of a maximum reportable

load reading of 1024. This vibration communicated to the user that the load

had exceeded the maximum threshold considered safe for the robotic arm, and

the arm should be moved away from the wall. In addition to providing each

user with practice manipulating the arm, this task produced the source data

for prediction learning (described below).

No-Feedback Task

Each subject performed the second task without any knowledge of the position

of the arm within the workspace other than its starting location. In order to

establish a baseline with no visual, auditory, or tactile feedback, subjects were

given a blindfold and listened to music through earphones throughout the

task. The volume of the music was increased to a comfortable level at which

they could not hear the arm tapping the walls of the box. During this task,

vibratory feedback about load was also turned off. The instruction given to

the user for this task and those that follow was to avoid excessive load on the

servos by not colliding with the barriers too harshly while approaching the left

and right walls closely in an alternating fashion.

Reactive-Feedback Task

The next task was identical to the no-feedback task; participants were blind-

folded and sound isolated and asked to navigate from wall to wall without

stressing the servos with collisions. For this trial the participant was provided
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with reactive vibration feedback when the current load experienced by the

robot arm’s shoulder servo reached a threshold of more than 420, determined

experimentally. The maximum value of the load recorded during the trials was

827.87, which means the threshold was 50.7% of the maximum experienced.

Thus, the tactor triggered every time the user hit a wall but not during travel

in between. This task provided an indication of the effectiveness of having

reactive tactile feedback only, and specifically examined how well the user

could approach each wall without incurring a forceful impact when feedback

was delivered at the moment the arm first contacted the wall.

Predictive-Feedback Task

For the final task given to participants, users were again blindfolded and sound-

isolated, and given the same task as the previous two trials. In this case, they

were provided with tactile feedback from predictions of the electrical load

on the robot’s arm servo motor. Predictions were provided by a real-time

machine learning system trained while the participant was performing task 1.

This prediction learning system is described in the following section. When

the load prediction rose above 900, determined experimentally, the shoulder

tactor was programmed to vibrate. The maximum prediction during the trial

was 3857.5, which means the threshold was 23.3% of the maximum prediction

value. This task was designed to determine how communicating the learned

prediction of load changed the user’s ability to approach the wall without

incurring a forceful impact.

All load and prediction thresholds used were determined from the analysis

of data prior to experiments. We determined the noise level of the load signal

while traversing the workspace and set the thresholds so they would not trigger

during travel. The prediction threshold and learning parameters were also set

so as not to signal an impending high load event too early in travel.

4.2.3 Machine Intelligence and Prediction Learning

The main component of this study is an incremental prediction learner to

generate expectations about future impact given learned knowledge about the
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user’s previous motion choices, their outcomes, and the current state of the

robot arm. To make predictions about the world, intelligent systems require

sensory inputs. These inputs can then be divided into discrete states for

increased or decreased resolution. The shoulder joint of the ExArm has a

rotation range of 300o. In our protocol, we used the servo encoders value to

determine the position of the shoulder joint as a sensory input, divided into 32

distinct states (termed bins). These states were motion-dependent; as such,

each of the 32 states was further expanded into three: one set of 32 position

bins used to represent the state when the servo is moving clockwise, a second

set to represent the position while the servo is moving counter-clockwise, and

a third set that represent the position when the servo is not moving. The

immediate state of the arm was noted in a feature vector (denoted x, of length

96) as a single active bit indicating the current position and direction; this

feature vector also contained a single active baseline unit. A weight vector

of corresponding length, denoted w, was used to store the learned predictions

about the interactions between the robot arm and the walls of the workspace.

The weight vector w was learned from data using standard techniques from

temporal-difference learning and recent generalized value function methods, as

outlined for the prosthetic setting in Pilarski, Dawson, Degris, Carey, et al.

(2013) and more generally in Modayil et al. (2014). Weights w were updated

on each time step according to the temporal difference between the instan-

taneous load being reported by the servo (denoted τ) and predictions about

the immediate and next load readings (the inner products wT

t xt and γwT

t xt+1,

respectively, where γ is the timescale or level of temporal abstraction for the

prediction of interest). The update to the weight vector on each timestep t

was done according to:

wt+1 = wt + α(τt+1 + γwT

t xt+1 − wT

t xt)xt,

where α represents a step-size (learning rate, set to α = 0.1 in these ex-

periments). The temporal abstraction for predicting the load signal of interest

was set to γ = 0.92; this means the prediction learner was acquiring knowledge

about the exponentially discounted expectation of the electrical load experi-
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enced by the robot’s shoulder servo motor over the next ∼12 time steps, or 0.6

seconds; the system learned and operated within a control cycle of roughly 20

Hz (50 ms time steps). This knowledge could then be retrieved and used in

predictive feedback by reporting the prediction as the inner product wT

t xt. As

noted above, in the predictive feedback task, vibratory feedback to the user

was triggered when the prediction’s value exceeded a fixed threshold, indicat-

ing an impending collision with the walls of the workspace.

Learning was only enabled during the training task, such that the system

acquired and updated user-specific predictions about servo motor load while

each subject was performing their first task. Learning weights were then frozen

(i.e., α = 0) during all remaining tasks, including the predictive feedback

task. Learning could in principle continue during all tasks; however, for clear

assessment of the principles of interest, our experimental protocol featured

defined training and testing periods.

4.3 Results

When compared to the case where purely reactive feedback was given to the

user, giving learned predictive information as feedback was found to reduce

the load experienced by the shoulder actuator of the robot limb. One way re-

peated measures ANOVA was used to analyze the difference in load when the

feedback system was triggered differently. As shown in Fig. 4.3, the average

load across all participants (N = 5) for each entire trial was significantly less

with predictive feedback than with reactive feedback. For these comparisons,

Maulchy’s W indicated sphericity could be assumed (0.602). The uncorrected

F statistic was F(2, 8) = 16.385, p = 0.001. The difference is specifically be-

tween the predictive feedback case and the other two (no feedback to predictive

feedback p = 0.031, reactive feedback to predictive feedback p = 0.038). No

significance was found between the no feedback and reactive feedback cases.

There was a notable increase in visits to more central positions when using

predictive feedback. Figure 4.4(a–c) shows the frequency of visits to each

position as seen by the system (bin). Results shown are the average for each
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Figure 4.3: Key finding: the use of predictive feedback reduced the load (a
measure of impact intensity) experienced by the system during use. The load
shown is averaged across all five participants and the entire duration of each
trial.

trail across all five participants, where again a one way repeated measures

ANOVA was used for statistical analysis. Maulchy’s W indicated sphericity

could not be assumed (< 0.050). The Greenhouse-Geisser epsilon was < 0.75

(0.081), so this correction was used. The corrected F statistic was F(2, 9) =

4.994, which is above the critical value of 4.26, and significance was detected (p

= 0.030). The N = 5 potentially interferes with some bins being significant,

as the variance is high. Despite this however, significance is noted in bins

15–19. Significance was not found on the extreme end bins, 13 and 22, due

to the high variance. When using reactive feedback, subjects were observed

to contact both walls of the workspace with approximately even frequency as

can be seen in Fig. 4.4(b), with the robot arm deflecting noticeably on both

sides due to the contact. When predictive feedback was provided to the user,

the robot arm was also observed to approach the two sides of the workspace

symmetrically, but with much less or no visible deflection to the arm upon

contact. The figures show increased visits in central regions of the workspace

under predictive feedback compared to the other feedback modes.
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The edges of the workspace show less average load for the predictive feed-

back case than the other feedback cases examined here. The relationship be-

tween the feedback type, position, and load can be seen in Fig. 4.4(d–f). The

load is shown as an average across all 5 participants, using the visits per bin to

average the load in each bin individually. As with previous analyses, one way

repeated measures ANOVA was used to determine any statistical significance.

Again, Maulchy’s W indicated sphericity could not be assumed (< 0.050), but

the Greenhouse-Geisser epsilon was again < 0.75 (0.088) so was again used to

correct the results. The Greenhouse-Geisser correction returns an F statistic

of F(2,10) = 6.805 compared to a critical value of 4.10, with p = 0.010. Ex-

amined on a bin by bin basis, significance was found in bins 13, 20, and 21.

Bin 22 was not found have statistically different results between the feedback

types. The figures show greater load on the extreme ends of travel for the no

feedback and reactive feedback cases. This is the region where collisions with

the barrier of the workspace would occur. The load that is incurred in this

region is not seen in the predictive feedback case. The visitation frequencies in

Fig. 4.4(a–c) appear to coincide with the lower load experienced by the system

in the end region.

4.4 Discussion

Feedback is an important aspect of skilled control. As noted above, we de-

fined the control of the robotic device to be successful and skilled if the load

experienced by the device while moving near the border of the work area is

low—the task objective given to our subjects during testing was to closely

approach but not impact the walls of the workspace. With different forms of

feedback or different settings, we expected a subject might never get near the

wall (overly sensitive predictions, thresholds, or too much temporal extension),

that they might do so with high variability (as when operating with minimal

feedback), or that they might impact the wall consistently but forcefully if

feedback comes too late (e.g., with overly delayed or reactive feedback). Our

observations support these expectations.
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(a) (b)

(c)

(d) (e)

(f)

Figure 4.4: Aggregate results for all five subjects showing (a–c) the frequency
of visiting any given servo motor positional bin and (d–f) the average load in
each bin as reported by the servo, using the frequency of visits to average.

When the machine-learned predictions about collisions were used in pro-

viding feedback to the user, the user was able to reduce the overall strain on

the system. Figure 4.3 demonstrates the effect that different types of feedback
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had on skilled control of the robotic device. In the no feedback case, the load

experienced by the device was large and variable (the maximum load that can

be reported by the servos is 1024). The variance improved in the reactive feed-

back case, but while the overall load decreased, it was not enough improvement

for a study with N=5 to find statistical significance. No matter how sensitive

the threshold is to initiate the reactive feedback, the user must still perceive

the feedback and act in an appropriate, timely way; load is inevitable since it

is already occurring. The strain on the system can potentially be reduced via

fast human reaction time—subject-specific reaction time is one possible source

of the variance in Fig. 4.3.

The similarity in the means of the no feedback and reactive feedback cases

has interesting implications. It seems that if we only cared to limit the load

experienced by the system during operation that there is little reason to use

reactive feedback, which would be a typical first solution, over no feedback.

This has major implications as to the importance of feedback in the operation

of prosthetic devices. The significance of the predictive feedback case is a

little surprising for the small sample size. Increasing the sample size may

begin to differentiate the no feedback and reactive feedback cases, but that

there is significance in the predictive feedback case with such a small sample

size suggests it’s power. The simple machine learning agent is capable of

learning something that when communicated to the human user improved their

performance according to at least one outcome measure.

The source of the overall reduced load can be seen in how participants

moved the arm differently using the different feedback sources. A more de-

tailed indication of the motion of the device is illustrated in Fig. 4.4(a–c).

In particular, the figures highlight differences in the feedback modes in the

area of travel between the borders of the workspace (between bins 14 and 21).

Specifically in bins 15 to 18 the bin-by-bin cumulative visits are shown to be

higher for predictive feedback than the same measures using reactive or no

feedback. Despite this, all three modes have similar grand means, as would

be expected for the constant fixed velocity motion the participants used. The

higher frequency of visits in the central region is an indication of successful
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operation, as it shows that the device spent a greater portion of the moving

time during the trial transitioning from border to border rather than impact-

ing the walls, under which condition the servo can move a small amount while

the arm flexes. This observation is further supported by the differences that

can be seen between the types of feedback at and beyond bins 13 and 21—the

borders of the workspace. With predictive feedback, the user moved into the

borders of the workspace less frequently (Fig. 4.4c)). The impact this had on

the load can be seen in the bin by bin comparisons of Fig. 4.4(d–f). As a result

of the system visiting the border cases less frequently the system experienced

significantly less (or no) load in bins 13 and 21–22 (Fig. 4.4(c–f)), indicating

less time spent under impact conditions or flexing of the physical device. The

similarities in average load reported by the servo for the central bins, bins 15 to

18 is expected as these bins are where the arm would be moving steadily with

no perturbations to cause changes in the load experienced. This also aligns

with the area more frequently visited with predictive feedback. There is some

discontinuity in the load and position values for bins 20-22 when compared to

bins 13 and 14. This may be the result of the discretization of the encoder

positions not being related to the physical workspace—the difference in load

reported on the left and right sides may be because the physical workspace

barrier fell in between two bins, causing the load from contact with the wall

to divide between two locations as perceived by the system.

The lack of notable difference between the no feedback and reactive feed-

back cases is also seen in Fig. 4.4. Despite having no awareness of the robot

arm during the no feedback trail, participants still navigated the full space be-

tween the boundaries of the workspace, although with much greater variance.

For this low sample size, the way participants moved under the no feedback

and reactive feedback cases can be seen to be similar. It took the addition

of machine-learned predictions to minimize the load and improve participants

ability to travel inside the workspace. This reinforces the importance good

feedback solutions for device users; machine-learned predictions, we suggest,

are one such solution.
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4.4.1 Tuning, Training, and Adaptability

With predictive feedback and the settings described above, we qualitatively

observed subjects stopping the robot arm’s motion such that it made only

light, unloaded contact with the wall. This level of contact could be modified

by varying the learning parameters of the artificial intelligence, and parame-

ters could be adjusted in a number of ways to achieve a number of outcomes.

There is no one “correct” setting for sensitivity; instead, there are a number of

possibilities for how the device can assist the user in achieving their objectives.

Learning parameters could be tuned to provide feedback behaviour that du-

plicates that of the reactive feedback case. The converse is not true—reactive

feedback is not capable of providing preemptive feedback about future events.

Also, when using predictive feedback, we observed that the threshold for in-

dicating an impending load could be made more sensitive than the equivalent

reactive load, a lower threshold, without incurring false positives. The reactive

threshold was set to the lowest value that would not be triggered by the nor-

mal noise of motion. As the learned predictions are mathematical expectations

conditioned on servo position, they are not affected by spurious load variance

or noise due to motion, as would be a purely reactive approach, and allowed

us to set a much lower threshold for triggering feedback in the predictive case.

For clarity of assessment, the artificial intelligence system in this prelimi-

nary study only acquired and updated its predictive knowledge during a de-

fined training period. In any machine learning setting with a fixed training

period, variability in training can noticeably affect learning system perfor-

mance, but should not affect fixed or reactive approaches. Differences to the

training of the learning system or a slight shift in the experimental setup may

have resulted in an earlier feedback prompt to this user in terms of absolute

servo-motor position on one side of the workspace. Omissions during training

or changes to the domain of use may be corrected or updated through the

use of continuing or ongoing machine learning. This has been suggested in

prior work (Pilarski, Dawson, Degris, Carey, et al., 2013), and is a natural

way to robustly extend the present study. As learning is already done in a
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per-time-step, incremental way during training, there are no technical or al-

gorithmic barriers to continuing the learning of feedback-related predictions

during operational use. Specifically, off policy algorithms would allow the sys-

tem to learn in real time during the trials. The issue with the current learning

approach is that when the system is successful in avoiding collisions with the

workspace, it “forgets” the workspace is there. Off-policy learning offers a

solution to this issue, and will be tested in a subsequent study. While many

offline or batch prediction learning methods could potentially be used to gen-

erate expectations for use in feedback (e.g., the work of Pulliam et al. (2011)),

the continuing and computationally inexpensive nature of our chosen learning

approach makes it well suited for use in a prosthetic environment (Pilarski,

Dawson, Degris, Carey, et al., 2013). Our prediction learning approach is suit-

able for subject-specific, task-specific learning with no requirement for a priori

domain knowledge; it is also well suited for adapting to ongoing changes in a

task or a user’s behaviour during persistent, real-time use.

4.4.2 Feedback Modalities

As noted above, much work is being done to restore missing feedback to pros-

thesis users (Antfolk et al., 2013; Hebert et al., 2014; Schofield et al., 2014).

Focus has been placed on restoring touch, including sensations such as pres-

sure, texture, temperature, and even pain. A large body of this research has

explored feedback using sensory substitution, wherein one sensation is replaced

with another different sensation that the user must be trained to skillfully in-

terpret; use of this approach is largely due to the physiological constraints

of prosthetic human-machine interaction (Antfolk et al., 2013). Modality-

matched feedback is also receiving growing attention; in matched feedback,

sensations are restored either invasively or non-invasively to the natural or

proxy locations that convey sensations of the lost or damaged biological sys-

tem as closely as possible (Antfolk et al., 2013; Hebert et al., 2014; Schofield

et al., 2014).

Our present study can be thought of as a form of substitution feedback—

predictions about the electrical current drawn by the device during operation
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(perhaps thought of as the device’s “pain” or motor fatigue) are communicated

to the user via a vibratory buzzing sensation in order to prompt the user to

take action to prevent it. This buzzing is not a natural sensation, and it is

not communicated at an equivalent natural location on the user’s body. What

separates this choice from the usual form of sensory substitution is that fact

that the information being transmitted from the user to the device is not a

biological sensation—it is specific to the internal hardware of the device and

encodes a prediction about future changes to that hardware. While communi-

cating these anticipations is helpful to the successful operation of the device, it

is not a natural thing for the user to feel; as with most substitution feedback, it

takes training to interpret such a sensation (as noted in Hebert et al. (2014)).

This training need was perhaps minimized for our participants because of the

precedent in modern society to interpret the vibration of personal device as a

prompt to act (e.g., cellphone vibration in response to a new text message).

However, our work should not be thought of solely in terms of sensory

substitution. Our study is intended to be a small window into a larger area

for research: the use of machine intelligence as a method for filtering, selecting,

and communicating salient information about the internal state of a complex

device. This communication can be thought of as a form of transparency, as

used by Thomaz and Breazeal (2008). Communication of such non-biological

knowledge to the device’s user—e.g., prompts regarding a device’s internal

state, decisions, and anticipatory knowledge—promises to streamline human-

machine interaction in many domains, and should be equally suited to feedback

via both sensory substitution and modality-matched percepts.

4.4.3 Future Work

The results presented in this work are preliminary, and there is much room

for further study in this area. The incremental learning algorithm used in this

experiment was effective but monolithic. If a control-learning system were

used in conjunction with the present prediction-learning algorithm, it may be

possible for a device to adapt the timing and magnitude of its feedback to

better suit its domain of use. For instance, the feedback threshold or level of
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temporal abstraction γ could be tuned on the basis of reward-like signals of

approval or disapproval delivered by the user, using techniques from related

work on the human training of machine learners (Knox & Stone, 2013; Pilarski

et al., 2011; Thomaz & Breazeal, 2008); predictive load information could be

communicated at distances from the collision which have been learned to be

appropriate for a specific user and their task preferences. Exploration could

also be done into how effective the predictive feedback is when it is learned in

real time while the user is doing the task, rather than freezing learning during

the trials. Further, as artificial intelligence use in artificial limbs becomes

more prevalent, finding ways of communicating the actions that the system

has learned to the user, rather than solely a predefined environmental signal,

may help allow more control to pass to the prosthetic—the case of shared

control and sliding-scale autonomy. Transparent communication between the

operator and their device could be the keystone which allows an intelligent

prosthetic and a human user to co-operate, combine processing power, and

more effectively restore lost function.

4.5 Conclusions

Feedback is important to prosthetic limb control. While machine intelligence

has been used to improve the interpretation of control signals given to a limb

from the user, its use in modulating feedback is often overlooked. This article

contributed a look at the potential value of predictions and machine learning

in feedback to close the loop between a human and their artificial limb. To our

knowledge, this is the first study investigating the use of real-time prediction

learning in the feedback path of a human controlled robotic limb, and suggested

the potential value of continuing this line of exploration.

When compared to strictly communicating momentary electrical load to

the user, communicating a machine-learned forecast of the same load was

found to decrease the load experienced by a robotic limb as a result of impacts

with a workspace, and to increase the ability of our subjects to navigate the

limb despite the absence of all other feedback. The increase in precision in
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terms of both position and load for the predictive feedback case over the no

feedback case was dramatic, especially given the low subject pool. Addition-

ally, the improvement in load minimization over purely reactive feedback was

significant. Though preliminary, these results promise two related outcomes

for the user of a prosthetic limb. First, we expect that increased communi-

cation from the device about its internal state and setting of use may allow

the user more personalized and more trustworthy options for control. Over

the long term, predictive feedback could therefore lead to greater acceptance

and assimilation of the device as part of the user. Further, by creating a com-

putational predictive forward copy of an action and communicating it to the

user, operating an assistive device may become more precise. These expec-

tations remain to be verified during the use of predictive feedback in real-life

functional tasks.
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Chapter 5

Continually Learned Pavlovian
Signalling Without Forgetting
for Human-in-the-Loop Robotic
Control

Artificial limbs are sophisticated devices to assist people with tasks of daily

living. Despite advanced robotic prostheses demonstrating similar motion ca-

pabilities to biological limbs, users report them difficult and non-intuitive to

use. Providing more effective feedback from the device to the user has there-

fore become a topic of increased interest. In particular, prediction learning

methods from the field of reinforcement learning—specifically, an approach

termed Pavlovian signalling—have been proposed as one approach for better

modulating feedback in prostheses since they can adapt during continuous

use. One challenge identified in these learning methods is that they can for-

get previously learned predictions when a user begins to successfully act upon

delivered feedback. The present work directly addresses this challenge, con-

tributing new evidence on the impact of algorithmic choices, such as on- or

off-policy methods and representation choices, on the Pavlovian signalling from

a machine to a user during their control of a robotic arm. Two conditions of

algorithmic differences were studied using different scenarios of controlling a

robotic arm: an automated motion system and human participant piloting.

Contrary to expectations, off-policy learning did not provide the expected so-

lution to the forgetting problem. We instead identified beneficial properties of
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a look-ahead state representation that made existing approaches able to learn

(and not forget) predictions in support of Pavlovian signalling. This work

therefore contributes new insight into the challenges of providing learned pre-

dictive feedback from a prosthetic device, and demonstrates avenues for more

dynamic signalling in future human-machine interactions.

5.1 Introduction

There are many sophisticated devices designed for people who have lost an

upper limb to assist them in their daily lives. These devices, prosthetic arms

and hands, can take the form of advanced robotic limbs capable of mimicking

many, if not all, of the degrees of freedom of a biological limb. Despite the

potential of these technologies because of difficulties in control and general use

they are sometimes abandoned and therefore unable to fulfill their function

(Biddiss & Chau, 2007a; Smail et al., 2021). A prosthetic limb is intended

for frequent use and close collaboration with the human user; such devices are

attached to the body and are intended to be considered a part of the user.

The intended closeness of the connection is what makes this particular case of

human-machine interaction interesting, and challenging.

Machine learning has been actively pursued for some time as a way of im-

proving the control of prosthetic upper limbs in various ways, many of which

are outlined by Castellini et al. (2014). Pattern recognition, for example,

learns to associate patterns of muscle activation, often read by surface elec-

tromyography (EMG) electrodes, with motions of the prosthesis (Castellini

et al., 2014; Scheme & Englehart, 2011). Because the connection between the

control signal coming from the user and the motions of the device are learned,

pattern recognition allows individually tailored solutions for users, which is a

highly desirable trait in rehabilitation medicine (Castellini et al., 2014). These

methods require training offline however, which means that if there is a change

to the user’s body or the way they generate control signals the system needs to

be retrained to resume proper functionality. A more experimental technique is

adaptive switching (Edwards, Dawson, et al., 2016), which learns in real-time
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providing feedback from the prosthesis to the user remain under explored.

Feedback from a limb to the user, such as vibro-tactile or audible signals,

can be an important aspect of control as well as user experience. Sensory feed-

back has been shown in some studies to improve user outcomes, as it closes the

loop between the user’s control and the device’s execution. The comprehensive

review by Schofield et al. (2014) covers many methods and modalities of pro-

viding feedback. Non-biological feedback, such as sound relating to direction

of motion, can also help with the development of internal models, which are

hypothesized as being what the central nervous system uses feedback to de-

velop and are potentially responsible for the performance gains when feedback

is available (Shehata et al., 2018a). Feedback of this type can be thought of

less as feedback in the sense one might have from a biological limb and more

along the lines of signalling between two agents. To date most of the explo-

rations into providing feedback have used a fixed mapping between the sensor

and the feedback device that does not change or adapt over time.

There are other domains where interactions between a human and a device

have shown adaptive feedback to be helpful to the human (Crandall et al.,

2018). These domains are beginning to include machine learning, and explore

how it might signal a human user to assist in accomplishing a task the human

would otherwise struggle with (Brenneis et al., 2022; Crandall et al., 2018).

Early explorations of this kind used what has been recently termed as Pavlo-

vian signalling1: a fixed signalling response (a token) emitted by one agent—or

part of an agent—to another in response to the magnitude of a learned predic-

tion about the environment or a task (Pilarski et al., 2022) (Fig. 5.1). Studies

have been done where a machine agent is learning about a task and providing

the human user with a signal they then use to successfully complete the task

(Brenneis et al., 2022; A. S. R. Parker et al., 2019a; Pilarski et al., 2022). In

this way the human and the machine can be seen as partners in accomplishing

the task, and effective, reliable, communication is key.

An earlier study by A. S. R. Parker et al. (2019a) (Chapter 4 of this dis-

1This is outlined in greater detail as a contribition of Chapter 6, as well as Pilarski et al.
(2022) and Butcher et al. (2022)
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sertation) took a very simple approach to Pavlovian signalling in human ma-

chine interaction, specifically the task of navigating a robot arm in a confined

workspace without touching the walls (A. S. R. Parker et al., 2019a). The

paper used TD learning—an on-policy method, i.e., one that learns about the

actual policy or behaviour being followed—to acquire GVF predictions, but

found that learning had to be done during a training session and frozen during

a trial. This was because when the machine agent was succeeding at help-

ing the human avoid contacts with the work space, the machine agent was

also avoiding those contacts and so unlearning them or “forgetting” they were

there. While the results showed that the machine agent could learn something

that assisted the human users in accomplishing the task, being unable to learn

continually in real-time undermines the benefits of using continual learning

techniques like TD learning. It was theorized that off-policy learning would

overcome this limitation, i.e., that forgetting during continual learning could

be mitigated by the use of learning algorithms that learn about a target policy

different from the policy being followed, capturing “what if” style predictions

(Sutton et al., 2011) about user behaviour even when the user is performing

well in a task or setting. In this study, we extend prior work to contribute

a detailed examination of hypothesized differences between on- and off-policy

TD learning in the context of forgetting during Pavlovian signalling in ongoing

robotic control. As this work is interested in exploring the application of ma-

chine reinforcement learning techniques in a rehabilitation setting in order to

investigate solutions that adapt with the user over time to become individual,

personalized, user experiences, the findings on the single human participant

are not meant to be generalized. They are, however, worth bearing in mind as

if something doesn’t work for even one person, then this impacts the ability of

the technique to become a personal solution for at least that individual (Mook,

1983).
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5.2 Methods

5.2.1 Experimental Setup

The robot arm used for these experiments was the Bento Arm (Dawson et

al., 2014). This arm is a 5-degree-of-freedom open-source 3D printed device

that uses servo motors for actuation at the shoulder, elbow, wrist, and hand

as shown in Fig. 5.1. For this work, the Bento Arm hand was replaced

with a rod wrapped in conductive tape. The work space for the arm was

a square interaction region constructed of wood and lined with conductive

tape, which is also shown in Fig. 5.1, with these conductive elements all

connected to analog inputs of an Arduino Leonardo. For human-participant

interaction, the thumb-stick of an Xbox 360 controller was used to control

the shoulder joint of the arm; built-in vibration of the controller was used to

signal the participant that a trial was complete. Contact, or the prediction

of contact, between the conductive rod and the workspace was signalled to

the participant using a sound effect delivered over a set of noise-cancelling

headphones with ambient white noise playing in them. The Bento Arm, Xbox

360 controller, and Arduino were connected to a laptop via USB. The laptop

ran a modified version of the control software brachI/Oplexus (Dawson et al.,

2020). This software package designed for use with the Bento Arm with built-

in functionality for multiple control sources, as well as the ability to map

control inputs to the Bento Arm.

5.2.2 Procedure

Two different settings were used to study the impacts of the algorithmic de-

cisions made in this work: machine-machine control interactions and single

case of human-in-the-loop control. For machine-machine interactions which

provided a clear baseline for algorithmic comparison, we used a version of

brachI/Oplexus that included a motion sequencer feature that allowed the re-

searcher to program step-by-step arm motions, where upon reaching a set posi-

tion the arm automatically transitions to the next movement in a list. This was

modified for the autonomous trials to use the signal from the Arduino’s analog
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inputs to move on to the next motion on the list. After a contact or prediction

were observed to be above a threshold, the next motion was to back-off a pre-

determined amount, and then move in the opposite direction. One complete

motion involved moving to the right, backing off the pre-determined amount,

moving to the left, then backing off again. For human-in-the-loop comparisons,

a single human participant was recruited, who provided informed consent and

the study was approved by the Research Ethics Board of the University of

Alberta (Pro00085727).

The goal in both settings was to control the robot arm to move from

side-to-side without making contact with the workspace edge, following the

protocol established in A. S. R. Parker et al. (2019a). Both the human par-

ticipant and automotion sequence moved the robot’s shoulder actuator from

left to right and back again within the workspace. Signalling tokens relat-

ing to contact with the workspace and predicted contact (described below)

were provided as feedback in both the human and machine case (Fig. 5.1).

For the human participant, the task was made partially observable for them

by having them face away from the workspace while being sound isolated

in noise-cancelling headphones with background white noise—they needed to

rely completely on the feedback system to perceive the outcomes of their robot

control commands. Similarly, the automotion controller was given no infor-

mation about the workspace other than the tokens provided through feedback

signalling. One trial consisted of 50 back-and-forth motions. Each learning

technique was run for five trials by automotion and the human participant did

three trials of each of the algorithms they tested.

5.2.3 Prediction Learning Algorithms

Algorithm 1 presents the main loop of the Pavlovian signalling process that oc-

curred during user-robot interaction: observations from the robot and workspace

were sampled and used to generate predictions; should these predictions rise

above a threshold (or actual contact be made), a token was generated and

sent to the user of the robot (automotion or human) that informed and/or

changed their control of the system (c.f., Pilarski et al. (2022)). For the hu-
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Algorithm 1 Pavlovian Signalling

set thresh for Pavlovian signalling
loop

observe contact
observe GVF prediction value
if contact or prediction > thresh then

generate signalling token

if signalling token then
if human trial then

signal with audible feedback

if automated motion then
back-off motion
change direction

clear signalling token

update all predictions

man participant, this took the form of an audio cue proactively alerting them

to contact with the workspace; for the automotion case, this took the form of

the robot arm backing slightly away and changing direction. All predictions

were then updated according to the information obtained during the time step.

The threshold empirically chosen (400) and constant across all conditions.

Predictions themselves were learned via temporal-difference (TD) reinforce-

ment learning techniques (Sutton, 1988; Sutton & Barto, 2018; Sutton et al.,

2011) to generate predictions about the expectation of future contact (A. S. R.

Parker et al., 2019a). These learning algorithms learned from experienced data

in real time during each trial; there was no training period before any of the

trials. Three different implementations of GVF learning approaches were ex-

amined and compared for their ability to avoid contact events, and continue to

avoid contact events over repeated motions: TD(λ), GTD(λ) (Sutton & Barto,

2018), and a variant we term look-ahead TD(λ). All three approaches used the

same representation which consisted of the shoulder position, shoulder veloc-

ity, elbow position, and elbow velocity as reported by the servos responsible

for motion of the Bento Arm. To construct the representation the allowed

range of motion and velocities of the shoulder and elbow were normalized to

produce a value between zero and one with zero being the left-most limit of
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5.3 Results

Figure 5.2 shows the contact events, the dark lines, and the prediction going

above the threshold value, the light lines. The three initial algorithms for the

study, TD(0), TD(0.9) and GTD. TD(0) requires the most contacts to learn

the boundaries of the workspace in the first place, and continues to make

contact frequently. GTD initially learns fast, but continues to make frequent,

though less frequent, contact. TD(0.9) also learns to avoid contact quickly,

but makes contact much less frequently over the duration of each trial. In Fig.

5.3, we can see the contacts as they relate to the position of the shoulder for

TD(0.9) and GTD. The position, shown in the top part of each plot is the

location where the servos reported stopping, which typically occurred during

changes of direction. Primarily of note is how the extremes of position can be

seen expanding by bin sizes of position until contact, the location of which is

shown by the dashed envelope around the position. After a contact is made

the motion extremes then retract and the prediction, shown on the bottom

part of each plot spikes. This spike is also visible when the position extremes

expand, and is likely the result of visiting a new bin that has already learned

about contact and not been visited in recent motions. This is more shown in

more detail the supplementary material Fig. 5.6, where the prediction can be

seen diminishing over repeated motions until it drops below the threshold and

contact occurs.

TD(0.9) compared with look-ahead TD is shown in Fig. 5.4. Figure 5.4a

specifically compares contacts over the duration of trials between TD(0.9)

alone and TD(0.9) with a look-ahead TD of one and two bins. The one bin

look-ahead TD did occasionally make contact, which should not be possible

since the predictions on the timesteps being used to signal are not being up-

dated on the same timestep they are used. It can be seen in Fig. 5.4b that the

one bin look-ahead TD prediction does not diminish, but a contact happens

anyway. This causes the prediction to increase and motion to restrict fur-

ther. This happens again on the other extreme of motion. Figure 5.4c shows

the prediction and motion for two bin look-ahead TD. We can still see the
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for TD(0.9) with the look ahead increased to four bins remains high over the

course of the trial, but a single contact was still made in the 50 motions of the

trial despite this. The motion that this happened on is one straight shot; it

doesn’t have any of the pauses before the extreme that some of the motions

exhibit. The two bin look-ahead TD shown in Fig. 5.5c shows more passing

through the bin where the signal is initially triggered by the prediction and

into bins beyond—despite the prediction at the extremes of motion being high,

contacts are made.

5.4 Discussion

TD Compared to GTD: In a previous study it was found that a machine

learning agent using reinforcement learning techniques can learn something

that is of value to the more sophisticated sensorimotor decision making of a

human user (A. S. R. Parker et al., 2019a). In that study, however, one of the

primary advantages of reinforcement learning techniques was not utilized in

the trials—the system was not learning while the task was being done. This

was because there is a particular challenge involved when success on the task

involves no longer encountering the event in the signal space that is trying

to be avoided. It was proposed in A. S. R. Parker et al. (2019a) that off-

policy learning would overcome this. That proposal was the first algorithm

examined in our present study. Surprisingly, Fig. 5.2 clearly shows that the off-

policy learning algorithm, GTD in particular, did not overcome the forgetting

seen in A. S. R. Parker et al. (2019a) The closest algorithm to that of the

original study used here was TD(0), and Fig. 5.2 does show how this method

struggles. However it is also clear that GTD did worse than TD(0.9). This

was with robotic auto-motion, which is relatively consistent when compared to

a human interacting with the device. This indicates that a human user would

not find the expected success using an off-policy algorithm while the agent is

learning online in real time as is the goal.

In order to determine what is happening further exploration of the data was

required. Figure 5.3 suggests some of the challenges faced by GTD. It seems

75



that part of what was supposed to be the benefit of the off-policy algorithm

becomes a challenge; when the system motion stops or changes direction the

observations do not impact learning about motion in the direction it was pre-

viously travelling. In this case, the agent gets less experience on each motion

and learns more slowly. The pattern of diminishing predictions and increas-

ing extremes of position until contact is visible here as well but occur more

frequently. This strongly suggests that the benefit we were expecting to see

from off-policy learning, not forgetting about where contacts were made when

it no longer encountered them, is being at least in part overridden by the lower

number of samples seen by each GVF as they are learned. more detail of the

contact events can be seen in supplementary material Fig. 5.6. In particular

closer examination of the predictions shows the prediction gradually dimin-

ishing over repeated motions in both directions until it is below the threshold

and contact is made.

It is important that the machine learning agent tasked with assisting the

human does not “forget” about a feature when success involves avoiding that

feature. This places the machine agent in a position where it is at best not

providing anything useful to the human other than perhaps some initial prim-

ing of the human’s expectations of a task, after which the human must ignore

the signals from the agent. At worst the agent is damaging the interaction

between the human and the device by being unreliable and untrustworthy

(Brenneis et al., 2022; Schofield et al., 2021). At the same time, the machine

agent should be able to forget when it is appropriate to do so, or it risks be-

coming specialized to a very specific set of circumstances and is not fulfilling

a primary advantage of reinforcement learning methods in continual human-

machine interaction of real-time adaptability. If the human chooses to ignore a

signal from the machine agent, and the workspace shape had changed so that

contact was further out, the system should be able to adapt to this change in

how the human is doing the task. For these reasons it is worthwhile to pursue

reinforcement learning methods to improve human-machine interaction.

TD Compared to Look-Ahead TD: There are several challenges to this

task that necessitated the use of a simple domain to attempt to isolate the
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effects algorithmic differences on learning to avoid some part of a workspace or

task, and doing so to reliably generate predictions to aid this avoidance. The

avoidance itself poses a challenge for the TD learners. Since these algorithms

learn from experience, when they no longer experience something they not

only stop learning about it but the experience that is avoided is replaced with

more recent experiences. GTD, an off-policy algorithm, was thought to be

the solution to this problem, however it encounters challenges as well. It is

very possible that some of these challenges are based in the nature of physical

systems; the play in the servos, inertia from the motion, and time synchronicity

challenges that arise in part as a result of running each part of the system as

fast as it is able in order to not miss events of interest. It should be noted

that the servos used in the Bento Arm are durable, high precision servos, so

while there may be hardware that would assist in overcoming the physical

challenges the expense becomes significant. Therefore, instead of physical

modifications to the arm, we changed how the predictions were being accessed.

Until now, the timestep that was being learned on was also being used to

generate the prediction token to instruct the system to change directions in

order to avoid contact. This was the purpose of the look-ahead TD method;

by learning separately from acting in the state space, this method should make

it impossible for the predictions being used to signal to diminish since they

are not physically visited by the system.

TD(0.9) was used as the learning algorithm with look-ahead TD, as it

learned quickly. Of particular note in Fig. 5.4a, the two bin look-ahead made

no contacts after an initial one per side. The one bin look-ahead did, on

occasion make contact after initial contacts. It is clear in Fig. 5.4c that the

motion is stable; the extremes of position don’t change substantially for the

most part, except in a few places where motion stopped in a further bin, but

no contact was made. The predictions remain undiminished, at least in their

peaks. Interestingly, upon close inspection what happens to the predictions

is they decay in the bins being visited, but not the ones being used. This

gives them the appearance of a spike, rather than a gradual increase. The

appearance of the motion and prediction in Fig. 5.4b and Fig. 5.4c is very
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similar until the contacts, at which point Fig. 5.4b subsequent motions in that

direction stay further from the previous extreme as the prediction value of all

relevant bins, as configured in the GVFs, increases. It is interesting that look-

ahead of any number made contact at all. This strengthens the implication

that there are more issues facing the system than unlearning the events it

stops observing. It is likely the contacts made by the one bin look-ahead can

be attributed to previously mentioned physical challenges of the system. That

there seems to be no regularity to the contacts caused by this is an extra

challenge, that seems as though it can be avoided by increasing the number of

bins of look-ahead.

Human Participant Outcome: In order to begin to explore the im-

pact that these algorithmic choices have on the ability of the system to adapt

and become an individualized solution in human-machine interaction, a case

study was done with a single participant using TD(0.9) and look ahead. The

originally pursued off-policy GTD was not included in the human controlled

setting as it’s problems would only be exacerbated by human use. Figure 5.5a

shows that TD(0.9) does not fare as well at reducing the number of contacts

with the human participant as it did with automated motion. The two bin

look-ahead had fewer repeated contacts, but with the ideal goal being zero

contacts after the initial motions it is not performing adequately. Even in-

creasing the look-ahead to four bins resulted in a single contact. This contact

happened on a trial that took longer to complete than the other two, which

implies that it was covering more distance between extremes and thus was

closer to contact the entire trial. The motion of the human shown in Figs.

5.5b and 5.5c is, understandably, less regular than that of automated motion.

This, coupled with delays in reaction caused by the participants reaction time

and a software delay in the onset of the sound signalling the participant of an

event, increased the difficulty of the task for the learning agent. Even with

four bins of look-ahead there was a contact late into one of the trials. The

look-ahead technique, if nothing else, adds an extra parameter that can be ad-

justed to assist the success of the learning agent. While look-ahead TD should

completely prevent forgetting, even using on-policy algorithms such as TD(λ),

78



the physical factors of the system make it not so simple. If the number of

look-ahead bins is not correctly set, over extended periods of time the slippage

into adjacent, closer, bins would still lead to forgetting. It is possible, in fact

likely, that different representations and even reward functions could be used

to accomplish this specific task. However, the choice of representation and

cumulant here were made because of they do not use designer knowledge of

the task, but rather are grounded in the construction of the robot, specifically

the information available from the servos, and signals from the environment

alone. By grounding the representation and cumulants in the construction of

the robot in this way, the system must learn about the environment and task

by way of it’s own motions and signals. This is important because, if success-

ful, it allows the system to learn about the world in terms that will always

be available to it even with different users, tasks, and environments. The use

of a single participant for the human portion of these trials is a significant

limitation to statements about the generality of this work. However, in this

domain, the driving rational of using RL techniques is that they can adapt

to an individual user, therefore any single participant where this is found to

be not true (as in the present experiment) is worth bearing in mind for fu-

ture work. For the interested reader, a more advanced proposal for learning

predictive look-ahead can be found in the supplementary material (Fig. 5.7).

5.5 Conclusions

In this work we investigated a clear prosthetics-motivated example of one of

many settings where agents interact with other agents in uncertain via signals

that they adapt in real time and through ongoing experience. In addition to its

specific contributions to improving feedback from prosthetic limbs by demon-

strating the use of Pavlovian signalling in a human-robot arm interaction,

this paper provides concrete evidence on how algorithmic differences impact

continual temporal-difference learning of approximate general value functions

used in feedback and signalling; this work contributed new insight into the

importance of on- and off-policy learning choices, predictive representations
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of state, and function approximation, and how these factors act differently on

real-world platforms with and without a human in the loop. As this work is

intended to further methods for reinforcement learning techniques to adapt

to individual users and provide specific solutions, the findings on the inability

of the selected off-policy method to reliably provide signals the human could

use is worth keeping in mind moving forward. We therefore expect these find-

ings to support the development of next-generation neuroprostheses and other

assistive technology, and more broadly a range of diverse applications where

multiagent interaction occurs in complex domains in concert with or as me-

diated by prediction learning machines that continually learn during ongoing

human-in-the-loop interaction.

5.6 Additional Materials

5.6.1 Temporal-Difference Learning Algorithms

Algorithm 2 TD(λ) Update

set α← 0.1, γ ← 0.9, λ← 0 or 0.9
init w⃗, S, SLast, e⃗← 0
on update call

observe C, S
δ ← C + γw⃗Tx⃗(S)− w⃗Tx⃗(SLast)
e⃗← min(1, x⃗(SLast) + γλe⃗)
w⃗ ← w⃗ + αδe⃗
SLast ← S
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Chapter 6

Assessing Human Interaction in
Virtual Reality With
Continually Learning Prediction
Agents Based on Reinforcement
Learning Algorithms: A Pilot
Study

Artificial intelligence systems increasingly involve continual learning to en-

able flexibility in general situations that are not encountered during system

training. Human interaction with autonomous systems is broadly studied,

but research has hitherto under-explored interactions that occur while the

system is actively learning, and can noticeably change its behaviour in min-

utes. In this pilot study, we investigate how the interaction between a human

and a continually learning prediction agent develops as the agent develops

competency. Additionally, we compare two different agent architectures to

assess how representational choices in agent design affect the human-agent

interaction. We develop a virtual reality environment and a time-based pre-

diction task wherein learned predictions from a reinforcement learning (RL)

algorithm augment human predictions. We assess how a participant’s per-

formance and behaviour in this task differs across agent types, using both

quantitative and qualitative analyses. Our findings suggest that human trust

of the system may be influenced by early interactions with the agent, and that
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trust in turn affects strategic behaviour, but limitations of the pilot study

rule out any conclusive statement. We identify trust as a key feature of

interaction to focus on when considering RL-based technologies, and make

several recommendations for modification to this study in preparation for a

larger-scale investigation. A video summary of this paper can be found at

https://youtu.be/oVYJdnBqTwQ.

6.1 Introduction

Technology increasingly relies on learning to improve performance. Autonomous

systems that continually support human users are expected to soon need to

learn continually even during use in order to perform well in their general and

changing settings of interest (e.g., assistive technologies; (Dalrymple et al.,

2020; Edwards, Hebert, et al., 2016; Pilarski, Dawson, Degris, Carey, et al.,

2013; Sherstan, 2015)). Humans that use these systems will interact with

technology that has a constantly changing level of competency and reliability,

but the ramifications of a system’s continual learning on human behaviour

and human-machine interaction are not well understood. Here, we begin to

investigate this interaction by considering a human involved in a timekeeping

task, partnered with a machine agent that learns from a blank slate to help the

human. In general terms, an intelligent machine of this sort is able to make

predictions about the dynamics of the world that a human partner either can-

not or does not want to compute on their own (possibly due to the difficulty

or time-consuming nature of the computation, (Risko & Gilbert, 2016), or the

human’s inability to sense relevant information). In order to convey the benefit

of these predictions, it is natural that machine agents must be able to commu-

nicate information to the human (Crandall et al., 2018; Lazaridou & Baroni,

2020); learned communication is built upon relationships, and relationships

can be built up through interaction (Scott-Phillips, 2014; Scott-Phillips et al.,

2009). Take for example your interactions with a wristwatch: if up to now it

conveyed accurate time-information to you, you would have every reason to

continue trusting its information the next time you consulted it. If its degree

84



of competency degraded for some reason, and the information communicated

were incorrect, you would quickly lose trust in the device and look to other

sources for the information you need. Now suppose instead that your wrist-

watch was not designed to convey regular time intervals, but instead predict

the onset of stochastically reoccurring events. How would your interactions

with your wristwatch be affected by the fact that the device must continually

learn, update, and change its behaviour while you are using it?

In this paper we describe a pilot human-agent interaction study, investi-

gating how time-based prediction agents can augment human predictions, and

how the relationship between the human and agent develops as the agent de-

velops competency. Specifically, we describe and compare two simple agents

that learn to predict future stimuli using general value functions ((Sutton et

al., 2011); from the field of reinforcement learning), and communicate those

predictions to a human participant using Pavlovian control (which maps pre-

dictions to a small set of actions, (Modayil & Sutton, 2014)). We introduce

a virtual reality (VR) task designed to assess human-agent interaction in a

time-interval prediction task. VR is a compelling tool for human-computer in-

teraction (HCI) research because it is immersive, allows flexibility and control

for experiment parameters, and enables measurement of human movements

which provide a window into decision-making (Gallivan & Chapman, 2014).

VR also requires physical participation—due to COVID-19, we were unable

to recruit external participants. We took this as an opportunity to engage in

the present work: a thorough preliminary investigation in search of interesting

trends and themes that might deserve careful investigation with respect to

continual learning during human-machine interaction.

6.2 Background

6.2.1 Prior Work on Human Interaction with Learning
Systems

Human interaction research regarding autonomous systems spans from early

software interfaces for email and calendar applications (Maes, 1995) to more
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complex and personal domains such as the control of prosthetic limbs (Pilarski,

Dawson, Degris, Carey, et al., 2013; Schofield et al., 2021), and has included

a wide variety of automation techniques. Automation has traditionally been

hand engineered to provide reliable performance, and therefore reliable human

interaction. More recent machine learning systems are typically pre-trained

before deployment, after which their parameters remain fixed. Research specif-

ically involving interaction with continually learning algorithms has hitherto

mainly focused on investigating agent learning dynamics using human inter-

action as part of the learning signal (Li et al., 2019). Autonomous systems

that learn from human signals are important technologies, but system learning

dynamics are inherently intertwined with interaction dynamics. Amershi et

al. (2014) convincingly argue the case for separating human interaction from

agent learning in order to study “how people actually interact—and want to

interact—with learning systems”. They describe case studies involving peo-

ple interacting with machine learning systems, and by specifically focusing

on the human component of the interaction, they are able to discover novel

modes of interaction, unforeseen obstacles, and unspoken assumptions about

machine learners. A meta-review of factors that affect trust in human-robot

interaction (Hancock et al., 2011) suggests that system-specific factors such

as behaviour, predictability, and failure rates greatly affect human trust in

autonomous systems, justifying a system-specific investigation of human in-

teraction with RL-based systems as distinct from machine learning systems.

The particular feature of the RL algorithm that we study that distinguishes it

from other autonomous systems and warrants direct investigation is continual

learning during the course of a task, and the effect that will have on human

interaction.

6.2.2 General Value Functions

Reinforcement learning (Sutton & Barto, 2018) is a class of machine learning

methods wherein an agent learns to predict future values through a process of

trial-and-error. The value of a state (a prediction of how much reward can be

expected in the future from that state) is learned by incremental updates to a
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value function vγ(s) for state s. The discounting factor γ corresponds to the

horizon of the prediction, and is typically between 0 (for next-step predictions)

and 1 (for an infinite horizon). By substituting any signal of interest (called

a cumulant, C) in place of the reward, the value function becomes a general

value function (GVF) vγ,C(s) which predicts the discounted sum of the future

cumulant (Modayil et al., 2014; Sutton et al., 2011). Informally, a GVF rep-

resents a prediction question: what will be the total accumulated value of some

signal of interest over the next specified time window? Equation 6.1 gives the

formal GVF definition, for a simple fixed-γ on-policy prediction formulation.

vγ,C(s) = E

{

∞
∑

k=0

γkCt+k+1

∣

∣

∣

∣

St = s

}

(6.1)

In practice, an agent learns to approximate the above value by interacting

with a stream of states and corresponding cumulants. Let x(s) ∈ R
d be a

feature vector summarizing the state s. We approximate the value by vγ,C(s) ≈

w⊺
t x(s), where wt ∈ R

d is the weight vector at time t. We use the TD(λ)

algorithm to update wt on each time step:

et = et−1 + x(St)

δt = Ct+1 + γw⊺
t x(St+1)− w⊺

t x(St)

wt+1 = wt + αδtet

et = γλet,

where α is a scalar learning rate and e ∈ R
d is an exponentially decaying

memory of previous feature activations.

6.2.3 Pavlovian Control

Inspired by prediction learning for reflexive control in animals (Kehoe &Macrae,

2002), the term Pavlovian control as used here refers to the use of a GVF to

predict an external stimulus, coupled with a fixed reflexive control policy de-

pendent on that prediction (c.f., (Dalrymple et al., 2020; Modayil & Sutton,

2014)). A simple Pavlovian control policy emits a discrete action a1 when the

GVF prediction of the external stimulus is below a certain threshold τ , and
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emits a discrete action a2 otherwise (where, importantly, that action may be a

communication signal (A. S. R. Parker et al., 2019a; Pilarski et al., 2022)). The

precise setting of τ for a useful policy depends on the timescale and stochas-

ticity of the prediction, as well as the amount of advance notice needed before

the external stimulus in order to take action.

6.3 Experimental Methods

Our experiment situates a human participant in a virtual reality (VR) envi-

ronment we call the Frost Hollow, wherein they must keep track of an external

event that occurs on a roughly periodic schedule (c.f., Rafiee et al. (2023)).

They are paired with a machine agent that uses a GVF to predict the onset

of this event, and cues the human when its prediction exceeds a threshold.

We look at task performance, behavioural differences, and qualitative notes

to compare two agent architectures against the control condition where the

participant completes the task with no agent assistance.

6.3.1 Virtual Reality Environment

The premise of the Frost Hollow task is that the participant stands in a “warm”

center region of the environment (radius 0.165 m, participant position reported

by the headset) to slowly gain heat, and must periodically dodge out of a

hazard region (radius 1 m) when the wind blows to avoid losing heat. When

standing in the center region, a heat gauge visible to the participant fills from

0.0 to 5.0 at a rate of 0.1875 heat/second (26.67 seconds to fill the gauge);

when the gauge is full, the participant can raise one of their VR controllers

above their headset to cache the heat gained as a point (one unit of game

reward). When hit by the hazard, the participant loses 25 heat/second, so

any hit longer than 200 ms will deplete the gauge. Cached points are not

lost. Our VR environment (depicted in Figure 6.1) was implemented in Unity

2019.2.17f1 (Unity Technologies, USA) with Steam VR (Valve Corporation,

USA) and presented to the participant via a Valve Index headset and two

handheld controllers (Valve Corporation, USA; headset max render rate of
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(a) Bit Cascade Representation (b) Tile-Coded Trace Representation

Figure 6.3: Representations of time used in this experiment. Time (state) is
represented as a one-hot vector of features which activate according to a trace
function which resets at the falling edge of each stimulus pulse.

6.3.2 Agent Architectures

Two agent architectures are compared which differ only in the way that they

represent the passage of time between stimuli: a bit cascade (BC) representa-

tion, and a tile-coded trace (TCT) representation (depicted visually in Figure

6.3). The decision to vary agent representations of time rather than other

agent parameters is motivated by a larger study of Pavlovian signalling (Pi-

larski et al., 2022) for which this work plays a supporting role. These repre-

sentations of time were motivated by and modeled after biological models of

time-keeping in animal brains (Paton & Buonomano, 2018). The BC represen-

tation is modelled after population clocks (sequentially firing chains of cells),

while the TCT representation is informed by ramping models (changes in the

tonic firing rate of cells or cell populations). The bit cascade representation

involves a one-hot vector of 40 features which activate sequentially, with each

feature being active for 0.5s. The tile-coded trace representation also involves

a one-hot vector of 40 features which activate sequentially, but the activation

timing for each feature is prescribed by an exponential decay trace with a per-

step decay rate of 0.998. Both the BC and TCT representations restart their

sequence (i.e. the first feature is active) immediately after the hazard pulse

deactivates. The timing parameters for both representations were set so that

both used roughly the same number of feature bins when presented with an

ISI of 20s. Learning parameters were empirically determined for an acceptable

learning speed over a 5 minute trial time, resulting in α = 0.1, λ = 0.99, and

γ = 0.99. The Pavlovian control threshold τ was also empirically determined
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to give adequate lead-time for a human participant in advance of a pulse after

learning had converged, resulting in τ = 10 for both agents. The fixed control

policy was set such that the agent vibrated the participant’s handheld con-

troller when its prediction rose above τ , and did not vibrate when below τ .

Agent-learned weights were discarded and re-initialized to zero between trials

so the agent learned from a blank slate for each trial.

6.3.3 Experiment and Analysis Protocol

We engaged a single participant (male, age 40, no history of sensorimotor im-

pairments) who was also a member of the study team due to COVID-19 con-

straints (see Section 6.8), and followed our approved human research ethics

protocol. This participant had a deep understanding of the task and dynam-

ics, but was not practiced with the particular conditions. The study followed

a within-participant 3 (ISI type) x 3 (agent type) design; experimentation

took place over the course of ten sessions, each consisting of nine trials that

were five minutes long (one for each pairwise combination of [fixed ISI, drift-

ing ISI, random ISI] and [no agent, TCT agent, BC agent]). Trial order was

randomized and blinded to the participant, and the initial ISI duration for the

fixed and drifting conditions was randomized to further obfuscate the condi-

tions. Each individual session was conducted in roughly one hour, with small

breaks between each of the trials for the participant to remove the headset

and drink water or write qualitative notes. Sessions were spread over a one

month collection period, with one or two sessions per day on data collection

days. This protocol was found to be slightly physically fatiguing and moder-

ately cognitively fatiguing, depending on the trial. To avoid injecting biases

into the analysis, the team member who acted as participant for the study did

not re-engage with the study until both qualitative and quantitative analyses

were completed by other team members. Statistical analyses were conducted

to determine whether for this participant there were any differences in perfor-

mance across agent types. Data violated assumptions of normality in nearly

every comparison, so non-parametric methods were used. Data were grouped

pair-wise by session, so Friedman’s tests were conducted followed by Wilcoxon
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Table 6.1: Statistical analysis results. Comparisons are made across assistant
pairings (N = no agent; BC = bit-cascade agent; TCT = tile-coded trace
agent) for each ISI condition. Significance (α = 0.05) is indicated in bold text.
For Friedman’s tests, χ2

critical(2) = 6.20.

Points Cached Steps Hit by Hazard Heat Gain

A Priori Tests (Friedman’s Chi-Square)
Fixed χ2(2) 5.2 14.0 1.4

p 0.0755 0.0009 0.4966
Drifting χ2(2) 1.4 1.4 7.2

p 0.4895 0.4966 0.0273
Random χ2(2) 0.7 11.4 13.4

p 0.7165 0.0033 0.0012

Post Hoc Tests (p-values from Wilcoxon Signed-Rank)
Fixed N vs BC 0.1415 0.0432 0.9594

N vs TCT 0.1724 0.0151 0.5550
BC vs TCT 0.7344 0.1763 0.4930

Drifting N vs BC 0.6831 0.4257 0.3642
N vs TCT 0.6831 0.4881 0.3642

BC vs TCT 0.5507 0.6465 0.0206
Random N vs BC 0.7990 0.2026 0.0593

N vs TCT 0.7990 0.0278 0.0151
BC vs TCT 0.7990 0.0278 0.0329

shows differences in the proportion of time-steps where the participant was

hit by the hazard. In the fixed ISI condition, the participant spends less time

being hit by the pulse when paired with either agent as compared to none. In

the random ISI condition, the participant is hit by the pulse less when paired

with the TCT agent than when paired with the BC agent, or no agent. Figure

6.4c displays the participant’s heat gain in each condition, which corresponds

to the proportion of time spent in the goal region. Differences here appear

in the more challenging conditions, where the participant spends less time in

the goal region when paired with the TCT agent than when paired with the

BC agent. Considering the charts of Figure 6.4 together, it appears that the

participant engages in more cautious behaviour when paired with the TCT

agent as compared to the BC agent (they gain less heat, and are hit by the

hazard less often), while attaining comparable task performance. This result
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useful signal after only the second pulse. More challenging conditions introduce

more variance in these intervals, but the trend remains that the TCT agent

provides useful signals earlier, and more reliably. This is because the BC

representation has finer feature bins in the region near the pulse compared to

the TCT representation, leading to more accurate but slower learning.

The length of time between the agent’s signal and the participant’s exit

from the goal region is plotted in Figure 6.5b. A negative value on this chart

indicates that the participant left the goal region before being cued by the

agent. Here, we see that the participant exhibits clear behavioural differences

when interacting with each agent. When paired with an agent with a TCT

representation, the participant nearly always waits for the agent signal before

leaving the goal region (data above the dotted line). When paired with an

agent with a BC representation, the participant is much more likely to exit

the goal region before the agent gives a signal. In the fixed ISI condition,

when paired with the TCT agent, the participant seems to move after the

agent’s cue as early as the second or third pulse of a trial. Under the same

conditions, when paired with a BC agent, the participant relies entirely on

their own internal timing. For the more difficult conditions, the participant

eventually moves after the cue of either agent, but aligns their movements with

the TCT agent’s cue more readily than with the BC agent’s cue. While it is

tempting to interpret this feature of the data as the participant relying on the

TCT agent’s cue more than the BC agent’s cue, there is insufficient evidence

from these charts alone to conclude how the participant is using either signal,

as we will see in Section 6.5.

6.5 Qualitative Analysis

Qualitative data was gathered by the participant after each session in free-form

text, prompted but not restricted by the following questions. Experimenter-

developed questions were posed by the member of the study team conducting

the qualitative analysis at the outset of the trials. Participant-developed ques-

tions were generated independently by the member of the study team acting
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as the participant, and evolved as the study progressed.

Experimenter-developed questions:

• Are you trying to figure out how the agent (and environment) work?

• For the whole trial?

• If not, did you figure it out or just start to trust it?

• After time, or successes?

• How much do you notice or think about the other agent at the beginning?

The middle? The end?

Participant-developed questions:

• Changes in when and how I counted: did I count from the start of the

trial? Did I shift to just counting from the agent cue and not counting

from the beginning? When did I shift between these and under what

conditions or observations on timing?

• What agent behaviours did I like and not like?

• Adaptation rates: what were my expectations on response or learning

times for agents?

• Thinking of agents as adaptive systems / predictors or not?

• What conditions did I lose confidence in the machine; when did I gain

confidence?

• When did trust in the agent occur quickly?

Discourse analysis seeking recurring sentiment and themes indicated that trust

was a major component of the participant’s interaction with the system, which

affected other factors including cognitive load and use of the agent’s cue in un-

expected ways. The participant noted that they trusted the agent more when

it was demonstrably correct earlier in the trial. Once trust was built, they no-

ticed a decrease in cognitive load: “With trust in my agent, I can let [my] mind
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wander”. Notes such as “[The] agent helps me feel like I have a lower bound

of safety once it is trained, and then can choose my risk based on its feedback”

suggest that the participant engaged with the task actively and strategically,

and used the agent’s cues as part of that strategy in more complex ways than

rote cue-to-movement. In fact, with sufficient experience with the agent, the

participant would sometimes engage in risky behaviour: “I was at times racing

the pulse; the agent would cue me but I would see the heat bar almost full and

then gamble that it would fill fast enough before [the hazard] came, given what

I knew about the relationship between cue and future pulse.” Even in cases

where the agent inadequately predicted the hazard, the participant still used

the agent signal as information to inform their strategy, but relied on their

mental timekeeping to inform their movements. Regarding these situations

the participant notes: “it was not fast enough to be useful in advance of [the

hazard], so I mainly used it as a checksum”, indicating that they verified their

mental timekeeping by comparing it against their acquired knowledge of how

the agent keeps time. While this particular behaviour is likely unique to partic-

ipants familiar with GVF agents of this nature, the anecdote provides a clear

example of how a user’s mental model of an agent will affect their interactions

with it. It also indicates that evaluating future participants’ understanding of

how the agent learns will be key to understanding their interactions.

6.6 Comparing Quantitative and

Qualitative Results

In both the quantitative and qualitative analyses we see human trust of the

agent emerging as an important theme. The participant’s notes suggest that

using the sign of the signal-to-exit interval (Figure 6.5b) as an indicator of

human trust might miss parts of the picture, since the participant makes use of

the agent signal in other ways than as simply a cue to move. Other quantitative

measures of trust should be sought, to corroborate this interpretation. One

particular notion of intense trust called out in the participant notes (when

the participant is “racing” the pulse, caching points after the agent signal but
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before the hazard) is also visible in the quantitative data. Of the 14 instances

where a point caching event is recorded after an agent signal and before a

hazard, 13 of these instances occurred when the participant was paired with

the TCT agent. This risky behaviour with the TCT agent contrasts with

the indications from Figure 6.4 that the participant behaved more cautiously

with the TCT agent. Pairing this contrast with the qualitative discussion,

we see that with high levels of trust in the agent, the participant is able to

more flexibly choose a strategy, behaving boldly or cautiously as the situation

warrants. It should however be noted that (as shown in Figure 6.5a) the TCT

agent reliably gives more lead-time than necessary before the pulse, leaving

time for pulse racing that the BC agent does not, meaning that pulse racing

may not be a fair indicator of trust.

6.7 Discussion

Specific quantitative and qualitative measures to assess human trust in the

agent would be particularly informative for future studies, especially if such

measures could assess changes in levels of trust over the course of a trial or

across sessions. One such task modification might involve the introduction of a

secondary, voluntary and cognitively demanding task that could be performed

simultaneously while gathering heat. While engaged with the secondary task,

the participant would need to place trust in the agent to keep track of the

timing in the primary task (i.e., effect a form of cognitive offloading (Risko &

Gilbert, 2016)), making engagement in the secondary task a good measure of

trust.

Supposing that future studies with a direct measure of trust confirm that

participants trust the TCT agent more than the BC agent, two points of discus-

sion emerge. First, the apparent differences in levels of trust between the types

of agent can only be attributed to the different representations of the agents,

as all else is equal. While the BC agent is able to achieve greater prediction

accuracy than the TCT agent (because of the BC agent’s finer feature bins in

the region of the hazard), fast learning appears to be more important than ac-
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curacy for the development of human trust. The threshold and representation

bin-widths in this experiment were chosen considering late-trial performance,

so that once the predictions stabilized both representations would give roughly

equal notice before a pulse. A lower threshold or wider feature bins would

likely have allowed the BC agent to provide reliably useful signals earlier in

the trials. Understanding the relationship between feature representation and

threshold levels in both early and late-learning contexts will be important for

any future studies or applications making use of Pavlovian signalling for com-

munication. Second, the participant in this experiment displayed more richly

varied strategies with the TCT agent than the BC agent, presumably because

of a greater degree of trust. Specific assessments regarding how participant

strategies are affected by trust in the agent may be illuminating, and should

involve specific metrics to assess changing strategies over time. Finally, using

a pre-trained agent as a baseline comparison will be necessary to assess the

effect of active learning on these measurements.

6.8 Limitations

The generality of this pilot study is limited by our use of a single participant

who was also a member of our study team. While blinded from the particular

conditions they were interacting with, they were deeply familiar with the agent

architectures, task dynamics, and learning machines in general. We expect

that the introduction of näıve participants will also involve a co-learning phase

at the beginning of sessions where the participant and agent are both learning

the task simultaneously. Since we found early interactions to be of great

influence in trust-building with our expert participant, we expect that a co-

learning phase will affect trust, but make no hypothesis about what that effect

might be.

6.9 Conclusions and Future Work

This pilot study examined an approach to agent-human support characterized

by real-time machine learning and straightforward ongoing interactions; our

99



results suggest that trust in the system’s capabilities is a major component of

a human’s interaction with a continually learning system. There are also indi-

cations that this trust may be dependent mainly on early interactions with the

system, while the agent is still developing competency. Future studies should

include metrics that specifically measure trust, and should include analyses to

determine possible correlations between levels of trust and agent competence.

There may also be correlations between levels of trust and strategic behaviour.

Finally, a future study should include a greater number of participants, with

a diversity of experience in interacting with learning machines. For other fu-

ture time-based prediction experiments or applications involving human actors

with machine agents, we make no particular recommendations about represen-

tation or threshold choices, as we understand these to be task-specific. We do

however stress the importance of these choices, and recommend that they be

made with both early and late learning stages in mind, and considering the

interaction between the human and machine’s actions.
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Chapter 7

Understanding Human
Interaction with Real-Time
Adaptive Feedback During
Simulated Prosthesis Use

Modern myoelectric prostheses have immense potential to provide increased

function for people with limb difference. Machine learning is a widely re-

searched approach to improving how people send signals to these devices but is

not yet widely studied in providing signals from the device to the user. There

is a lack of understanding about the impact of real-time adaptive feedback

signals on users. Using a convergent-core mixed methods design, our present

work contributes a quantitative analysis of performance metrics alongside as-

sessment of movement and gaze behaviours of participants performing a task

with a wearable robot hand controlled by electromyography while feedback

about a task is being provided by their prosthesis. In addition, semi-structured

interviews were also conducted and were analyzed using descriptive thematic

analysis. The combination of these methods provided a more thorough un-

derstanding of the impact of real-time adaptive feedback signals on users than

would be available from questionnaires and quantitative data alone. Our study

found that despite the learned signals not providing warnings in the early in-

teraction, and being less useful to the user, they were not disregarded or cause

the user to shun the device. It also served to highlight a disconnect that ex-

ists between the experience of users and the measurable performance of their
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interactions with devices. This demonstrates the potential of mixed-methods

approach’s to contribute nuanced understandings of human machine interac-

tions and accelerate advances in the field, especially in the domain or upper

limb prostheses.

7.1 Introduction

Prosthetic limbs have the potential to play a vital role in improving function,

independence, and quality of life in general for individuals experiencing limb

loss. However, significant challenges remain in achieving the full potential

of the current state-of-the-art devices. Users have difficulty accessing all the

features of modern myoelectric prostheses with the control options available,

and feedback is not yet widely commercially provided (Biddiss & Chau, 2007b;

Cordella et al., 2016; Yamamoto et al., 2019). A principal reason for users’

struggles to access the full capacity of modern devices stems from the high

degree of anatomical functionality available in devices, contrasted with the

limited ability of users to interact with them. As a result, significant research

efforts are required to successfully harness the full capacity of these modern

prostheses, instead of relying on fixed, anatomically appropriate gestures that

function similarly to traditional cable and pulley systems. Researchers are

actively exploring advancements in both control and feedback to bridge the

gap between the capabilities of these devices and their successful application

for the users who stand to benefit the most.

Studies into the control of myoelectic prostheses date back as far back as

the 1940s (Childress, 1985). In the 1970’s, published development of machine

learning for multi-joint control began to appear (Childress, 1985; Herberts

et al., 1973). Around the same, research into providing feedback to users of

myoelectric prostheses also began (Mann & Reimers, 1970). While research

into control progressed quickly to include machine learning, the research inter-

est in machine learning applications to upper limb prostheses has not turned

to feedback. It is especially under-explored with regard to real-time machine

learning and feedback. Our present work seeks to add knowledge to the ex-
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isting gap in our understanding of humans interacting with a device that uses

machine learning to adapt, in real-time, feedback signals for the human user.

7.1.1 Machine Learning in Control

There are several promising avenues of research relating to acquiring and uti-

lizing signals from a prosthesis user to operate their device as seamlessly and

naturally as possible (Castellini et al., 2014). The goal of prosthesis con-

trol is to allow skillful operation of several of the degrees of freedom of the

limb in as natural and effortless a manner as possible (P. A. Parker et al.,

2006). Many studies have examined what sensors to use when reading signals

from the user, such as force myography, sonomyography, and the widely used

electromyography (EMG), as well as techniques to process those signals to ul-

timately achieve control (Castellini et al., 2014; Fougner et al., 2012; González

& Castellini, 2013; P. A. Parker et al., 2006; Radmand et al., 2016; Sartori

et al., 2018). All of these attempt to connect the desires of the user to device

actuation by reading physiological signals.

A commonly explored technique in research is the application of machine

learning to improve control of robotic prostheses. Machine learning is applied

to help interpret and use the signals being read from the user in more nu-

anced ways. This most commonly takes the form of what is termed “pattern

recognition” to get more out of EMG signals by learning associations between

EMG signals in combination with each other and a desired actuation (Scheme

& Englehart, 2011). A weakness in pattern recognition is that varied limb po-

sitions can change the way EMG signals are read and therefore render pattern

recognition systems unreliable (Scheme et al., 2010). Recent work has seen

recurrent convolutional neural networks with regression applied to restore re-

liability, as well as allow simultaneous use of multiple joints (Williams et al.,

2022; Williams, Shehata, Cheng, hebert, et al., 2024). Another technique that

has been explored is temporal-difference (TD) learning techniques from the

field of reinforcement learning (RL) (Pilarski, Dawson, Degris, Carey, et al.,

2013). As with pattern recognition, RL has been demonstrated to be able to

allow multiple joints to move simultaneously (Sherstan et al., 2015). Tech-
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niques from the field of RL have also been used to allow a fixed switching

order of functions to, over time and through use, anticipate the function the

user will use next and move it to the top of the list. This method is called

“adaptive switching” as introduced by Edwards, Dawson, et al. (2016) and

used both in prosthesis and exoskeleton research (Edwards, Dawson, et al.,

2016; Faridi et al., 2022).

The machine learning methods used for adaptive switching, techniques

from the field of reinforcement learning, are of particular interest. This is be-

cause these methods are capable of learning in real-time as a device is used,

from the sensory-motor data the robot experiences of the interaction that is

actively happening (Sutton, 1988; Sutton & Barto, 2018). Temporal-difference

(TD) learning methods can utilize a variety of signals being read from the envi-

ronment and learn to make predictions about them (Sutton et al., 2011; White,

2015). The capacity for TD methods to learn in real-time from observations

being made about a task as a user is doing it adds the potential for assistive

robotics to adapt to patient-specific uses and needs, which is of great interest

in meeting the injury and life specific needs of patients in rehabilitation science

(World Health Organization, 2007).

7.1.2 Machine Learning in Feedback and Coordination

Along with control, there have been other advances, and increasing interest in

recent years, in providing signals from the device to users (Schofield et al., 2014;

Svensson et al., 2017). This body of work examines both the kinds of feedback

to use, such as vibrotactile, mechanotacile, and audible, as well as how to

provide it (Clemente et al., 2015; Shehata et al., 2020; Shehata et al., 2018a;

Wells et al., 2022). We note that while in this work we focus on non-invasive

means of feedback, there are also promising results utilizing advanced surgical

procedures or implants to provide sensation to users (Hebert et al., 2013).

Invasive feedback methods have even been able to allow the perception of

different textures (Svensson et al., 2017). Interestingly, results on the benefits

of non-invasive feedback in the control of artificial limbs are mixed (Saunders &

Vijayakumar, 2011; Sensinger & Dosen, 2020; Shehata et al., 2018a). This has
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an explicit channel was not specified (Jaques et al., 2019). With regard to

machine learning and humans, the current state-of-the-art research is primar-

ily focused on how humans can effectively teach or otherwise assist machine

learning agents in learning (Retzlaff et al., 2024; Taylor et al., 2023). This is

akin to control in the prosthesis setting, as the focus is on attaining signals

from the user in order to have the device interact with the world in some way.

When research involves signals going from the machine agent to the human,

more aligned with feedback in the prosthesis setting, the focus is on humans

understanding what the machine agent has learned, and why it has learned

those outcomes (Holzinger, 2018; Longo et al., 2024).

Prosthesis use has an important feature compared to many human-machine

interactions. Not only is the user interacting with a device, but a device that

is a robot that shares intimate space with the user. As machine learning is

added to devices in this setting, the complexity of the interaction beween the

user and the device becomes more complicated an nuanced. It therefore be-

comes increasingly important to understand the interaction between the user

and the device. It has been postulated that enabling bi-directional communi-

cation between the user and the machine-learning-enabled prosthesis is of vital

importance (Kalinowska et al., 2023; A. S. R. Parker & Pilarski, 2021). The

ability of the machine agent to signal the human could be the key to promoting

effective interaction between humans and devices (Jackson, 2002; Schofield et

al., 2021). Although there are concerns around two intelligent agents attempt-

ing to co-adapt in real-time, there has been previous work demonstrating that

a human and computational agent can co-adapt in real-time and achieve pos-

itive outcomes (Couraud et al., 2018; Müller et al., 2017). This has also been

demonstrated in recent work that utilized a human participant and a reinforce-

ment learning agent that worked together to avoid a negative environmental

interaction (Brenneis et al., 2022; Pilarski et al., 2022). Motivating the work

that follows in this manuscript: to use machine learning to adjust the feedback

a user receives from a device in real-time, it is important that we understand

how users process these interactions. To examine this, sixteen participants

were broken into two groups of eight that would use different warning condi-
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tions. They wore a simulated prosthesis (Fig. 7.1) that they used to move

deform-able cups on a table using either direct or predictive feedback.

7.1.3 Methodological Overview

To explore this question we designed a mixed-methods study to investigate the

effects of real-time machine-learned signals on human interaction with wear-

able robotic devices. The study utilized a convergent-core mixed-methods de-

sign (Creswell, 2021). This design seeks to collect quantitative and qualitative

data together in an attempt to learn more from the combined data sets than

could be learned from either individually. Since the ultimate goal is to explore

how real-time machine-learning can be applied to interventions intended for

use with people, it is crucial to this study to examine rich qualitative data

on the user’s experiences and their interpretations of device use alongside the

measurable outcomes.

The philosophical paradigm used in the interpretation of this data was

pragmatism. It focuses on the idea that actions we take change the world

around us, that there is a connection between action and thought, and ac-

knowledges that experience shapes thought (Dewey, 1908; Goldkuhl, 2012;

Kaushik & Walsh, 2019). This allows for there to be an objective reality,

which can be externally measured, and an internal reality that is interpreted

by the individual but is impacted by the shared external reality (Dewey, 1908;

Kaushik & Walsh, 2019). This appeared in the examination of the measurable

external actions participants took alongside the internal beliefs participants

had developed, and how those internal beliefs and consequent actions taken

may have been different when interacting with a learning agent. This made

pragmatism well suited to a mixed-methods study design as well, as it does

not seek to make claims about the nature of truth and reality but allows there

to be multiple truths open to scientific enquiry (Kaushik & Walsh, 2019).

Quantitative data collection used an integration of motion capture and gaze

vector data called Gaze and Movement Assessment (GaMA). GaMA provided

detailed metrics related to how participants were moving and what they were

looking at as they did the task (Boser, 2019; Williams et al., 2019; Williams,
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Shehata, Cheng, Hebert, et al., 2024). Through these metrics, we sought to

gain insight into the participant’s internalization of the interaction, such as

the participant leading the motion of their hand with their eyes as can be seen

in biological limb use (Cheng et al., 2022; Lavoie et al., 2018; Williams et al.,

2021).

Analysis of the interviews was done using descriptive thematic analysis,

based on methods of reflective thematic analysis outlined by Braun and Clarke

(Braun & Clarke, 2021a, 2021b). This was adapted for the mixed-methods,

pragmatic, approach of this study. Qualitative coding was done inductively,

by a single coder, and codes remained close to the data. The coder was

mindful of their belief that feedback will help the participant by assisting in

the participant’s construction of a model of the interaction, and that trust

between the human and device is fragile and important.

In keeping with journal formatting requirements, detailed experimental

methods and materials information are provided at the end of this dissertation,

where it would be in the Appendix of this chapter for submission.

7.2 Experiment and Results

Sixteen (16) participants were asked to move a cup from one side of a table

to the other side without crushing it, and then with the next motion move

the cup back. The cup was 3D printed in NinjaFlex (NinjaTek, Lititz, USA)

to allow it to be distorted, or crushed, without actually breaking. There were

three different stiffnesses of cup: heavy, medium and light. The heavy cup

visually distorted the least of the three stiffnesses, and the light cup visually

distorted the most for the same load reading from the servo in the hand. When

the cup was crushed, the load signal from the servo in the hand would pass

a threshold, the same threshold for every cup and an audible signal played

over PC speakers connected to a laptop to inform the participant. Similarly,

when the participant was doing their warning trial (outlined below), a warn-

ing would play at an earlier threshold and if the cup was squeezed further the

break sound would play. Participants moved the cup using a physical sim-
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Table 7.1: Eye-hand arrival latency (EHAL) and eye-hand leaving latency
(EHLL) statistical results. EHAL is the time, in seconds, that the eyes arrive at
a target relative to the transport phase, and EHLL is the eyes leaving a target
relative to the transport phase. This table shows comparisons between groups,
direct vs predictive feedback participants, and within groups, comparing the
no-warning vs warning conditions. Results are further broken down by cup
stiffness: heavy (H, which visually distorted the least), medium (M), and light
(L, which visually distorted the most), as well as all stiffnesses together. Post-
hoc significant differences between compared values (p < 0.05) are denoted in
bold with an asterisk, and underlines mark the improved values. The table
shows minor differences that suggest some increased user confidence when they
use predictive feedback.

either when the load reading of the servo of the hand went above a threshold

(for direct feedback participants) or when a machine-learned prediction of

that same load signal went above the same threshold instead (for predictive

feedback participants). Randomly for one motion in five, so six times per

trial, the participant was asked to crush the cup purposefully. The sixteen

participants were split randomly into two groups of eight, half of them had

the direct feedback for their second trial, and half had the predictive feedback.

Interviews were conducted with each participant after each trial condition,

thirty motions with three cups, but not after training. Each participant, then,

was interviewed two times for approximately ten minutes each.
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Table 7.2: Results comparing the total time in seconds for each phase of a
motion between groups, direct vs predictive feedback participants, and within
groups, the no-warning vs warning conditions. Results are further broken
down by cup stiffness: heavy (H, which visually distorted the least), medium
(M), and light (L, which visually distorted the most), as well as all stiffnesses
together. Post-hoc significant differences between compared values (p < 0.05)
are denoted in bold with an asterisk, and underlines mark the improved values.
This table shows that participants using direct feedback performed the task
faster.

7.2.1 Quantitative Findings

Participants using predictive feedback were found to have less time spent in

the critical phases, grasp and release, despite direct feedback having overall

shorter duration’s. Combined with the findings in the gaze data, it seems

as though participants had somewhat greater confidence when using the pre-

dictions. This confidence is enough to appear in their behaviour during less

crucial sections of the interaction, but is not enough to impact the more critical

segments, reach and grasp.

Statistical analyses were performed to compare eye-hand arrival latency,

eye-hand leaving latency, task times, relative task times, and percent fixa-

tion results for different feedback types for each cup stiffness. For com-

parisons of no feedback to direct or prediction feedback (that is,
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Table 7.3: Results showing the percent of the total time of a motion spent
was spent in each phase of a motion, comparing between groups, direct vs
predictive feedback participants, and within groups, the no-warning vs warn-
ing conditions. Results are further broken down by cup stiffness: heavy (H,
which visually distorted the least), medium (M), and light (L, which visually
distorted the most), as well as all stiffnesses together. Post-hoc significant
differences between compared values (p < 0.05) are denoted in bold with an
asterisk, and underlines mark the improved values. These results show that for
the critical phases, grasp and release, participants using predictive feedback
had lower relative durations.

with paired samples): Participants’ results were first averaged across cup

movements across the table. If results were normally-distributed, a repeated

measures analysis of variance (ANOVA) was conducted. If results were not

normally-distributed, the Friedman test was conducted. When the result-

ing p value was less than 0.05, post-hoc comparisons between feedback types

(paired-sample t-test/Wilcoxon sign rank test) were conducted and deemed

significant if the p value was less than 0.05. For comparisons of direct

to prediction feedback (that is, with independent samples): Participants’

results were first averaged between subjects across cup movements. If results

were normally-distributed and population variances were equal, a one-way

ANOVA was conducted. If results were normally-distributed and population

variances were not equal, Welch’s ANOVA was conducted. If results were
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Table 7.4: Percent gaze fixation is the amount of time spend looking at the
dropoff or pickup location. This table shows comparisons between groups,
direct vs predictive feedback participants, and within groups, comparing the
no-warning vs warning conditions. Results are further broken down by cup
stiffness: heavy (H, which visually distorted the least), medium (M), and light
(L, which visually distorted the most), as well as all stiffnesses together. Post-
hoc significant differences between compared values (p < 0.05) are denoted in
bold with an asterisk, and underlines mark the improved values. This table
shows provides little insight directly, but is used to help interpret the other
GaMA results.

not normally-distributed, the Kruskal-Wallist test was conducted. When the

resulting p value was less than 0.05, post-hoc comparisons between feedback

types (two-sample t-test/Wilcoxon rank sum test) were conducted and deemed

significant if the p value was less than 0.05.

Eye-hand arrival latency is the time, relative to the start of moving the cup

for pick-up or the time of placing the cup for drop-off, that they eyes fixated on

the target location relative to the hand reaching it. Eye-hand leaving latency

is the time of the eyes leaving, or no longer fixating on, either the start or end

location of the cup relative to hand motion. These metrics were selected as it

would be expected a user showing more assurance in their motion, which is to

say moving more like they would with a biological limb, would show difference

in these metrics. Specifically we would expect to see the eyes lead the motion
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of the object to the target (Parr et al., 2018).

All four comparisons of eye-hand arrival latency at pickup showed signifi-

cant differences between direct and predictive feedback as can be seen in Table

7.1. The predictive feedback resulted in earlier arrivals of the gaze to the cup

and its pick-up location. However, with the heavy cup (which was easiest to

crush), the prediction feedback resulted in later eye arrivals to the pick-up

location. There were four significant differences found between direct and pre-

dictive feedback in eye-hand arrival latency at drop-off, shown in Table 7.1.

With the heavy, medium, and all cups, the predictive feedback resulted in

earlier arrivals of the gaze to the cup’s drop-off location compared to direct

feedback. However, with the light cup, the prediction feedback resulted in

later arrivals. There were two significant differences found between no feed-

back and predictive feedback in eye-hand leaving latency at drop-off, which

can be seen in Table 7.1. The values under the predictive feedback condition

were less negative, greater, than those under no feedback. This indicates that

while participants were releasing the cup they looked away from the drop-off

location earlier with prediction feedback compared to no feedback but not with

direct feedback compared to no feedback.

All direct vs predictive feedback comparison of phase duration show sta-

tistically significant difference in favour of direct feedback. These results can

be seen in Table 7.2 This finding provides support for the case of the eye-hand

arrival latency at dropoff not being functionally interesting. The comparison

between direct and predictive feedback in relative phase durations show that

predictive feedback has shorter grasp and release phase durations relative to

the total task time as shown in Table 7.3. The statistical differences shown in

Table 7.4 are very small, and hard to justfy as interesting in this study.

The servo position, load, and velocity from the robot hand were recorded

along with the value of the current prediction. The overall results of this can

be seen in Figs. 7.4 and 7.5.

The learning algorithm used was simple TD(0) with a selective Kanen-

erva coded state space, as outlined in Travink et al. 2017, composed of the

normalized servo position, velocity, and load (Sutton et al., 2011; Travnik &
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and then adjusted to better represent the sentiments expressed in the relevant

quotes. Following this, a side-by-side and overlap analysis of the codes was

done by member of the research team. This was done using qualitative analysis

software to assist with the organization and visualization of the codes and

quotes. During this process, the themes were generated and checked to be

consistent with the original transcripts. From this, three (3) themes were

generated. These are “the difference between being informed (feedback) and

being in charge (control)”, “constructing the interaction with feedback”, and

“user understanding and engagement with predictive feedback”.

The Difference Between Being Informed (Feedback) and Being in Charge (Con-

trol). Participants brought up control when asked to openly discuss their ex-

perience, despite it being told to them at several points the study is about the

interaction, and the variable being manipulated is the feedback they receive

from the device about the task. Errors resulting from the typical difficulties

with EMG, or participant inexperience using EMG, were commonly noticed

and readily discussed. Expressions of blame towards the device were connected

to these control struggles, not feedback signals. This was even true in the pre-

dictive feedback case where, as will be mentioned later, participants noticed

the signals failed to occur initially. This is suggested in the overlap view shown

in Fig. 7.6. Participants’ experience of the device occasionally soured during

the second trial, and here too it seems to be connected to perceived struggles

with control, is seen in the participant referring to the device as an external

entity taking actions in Fig. 7.7. These control struggles lead to more state-

ments which distanced, separated, blamed, or otherwise “othered” the hand

(Jackson, 2002).

Constructing the Interaction with Feedback. Both direct and predictive feed-

back was often discussed in the context of participants learning about the task

and robot hand as demonstrated in Fig. 7.8. Different people used differ-

ent sources of feedback signals, seemingly for their own internal predictions

of whether the cup was going to be crushed, and usually several signals in

combination as can be seen in Fig. 7.9. The feedback signals were discussed

as separate from the hand; feedback was discussed as part of the environment
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“Very annoyed. <laugh>, especially at the end when I like
set the cup down, I’m trying to get to let go and it just
crushed the cup. I’m like, <laugh>, let go, let go the cup.”

Figure 7.7: Participant 124, who would go on to use predictive feedback,
explaining their frustration with the hand, expressed here as an entity taking
it’s own actions, when the participant struggled to release the cup.

“I don’t think the sound had played yet when I picked it up.
And so I think as I was going, I sort of put more force, um,
un, unintentionally at that point. And then when I heard
the sound play I was like, oh, I’m putting in too much force
then...”

Figure 7.8: Participant 118, who used direct feedback, talking about “the
sound” as separate, but related, to the crushing of the cup.

not in association with the device. Feedback was reported to cause mental

changes in perception such as shown in Fig. 7.14. Understanding of the device

was, occasionally, hampered by the inconsistency in feedback created by the

learning agent.

User understanding and engagement with predictive feedback. Participants

who had direct feedback tended to express that they had predictive feedback

when asked because it felt inconsistent. They were not very confident in this

assumption, and tended to mention it was almost entirely a guess. The remarks

made by participant 114 in Fig. 7.11 suggest this. The participants who had

predictive feedback, on the other hand, tended to more confidently state they

had the predictions. There was, however, still some lack of confidence in their

assumption. Early failures of the predictive feedback to send a warning signal

when a cup was crushed were noticed, but participants typically moved past

this error. Later successes were then noticed and discussed as improvements

in consistency as Fig. 7.10 suggests, whereas direct tended to continue to

be discussed as inconsistent. A few people were confused about or disliked

the predictive feedback but expressed “warming up” to their experience in

118



“Probably focused on the amount of deformation that caused
the sound and then trying to uh, change it for next time. See
how much force I put in and you know, why.”

Figure 7.9: Participant 129 describing what they focused on when they acci-
denatlly crushed the cup during their first, no warnings trial. They mention
several signals from the environment that they used together, as well as sug-
gesting they used the signals to update their own internal model.

“The first trial, it, it seemed like it took a bit to get dialled in.
The second one seemed pretty consistent based on force...”

Figure 7.10: participant 128 when talking about thoughts or feelings from the
second trial which used predictive feedback warnings. Notably they mention
the signals struggling initially, but becoming consistant.

hindsight when they were told at the end of the second interview that the

machine learning agent was generating the warnings. Figure 7.12, is a prime

example of this. Learning about the device/interaction happened even when

participants expressed a mentality of being a mechanism following instructions.

One participant in particular expressed dislike of their prediction feedback trial

but they expressed agreement that they appreciated the adaptation once they

were told for sure that was what the system was doing.

7.2.3 Data Synthesis

Combining the qualitative and quantitative data provides different, more ac-

curate, insight into the interaction. The converged data indicates a discon-

nect between the quantitative and qualitative data, as well as reinforcing the

light improvement in confidence users had with the predictive feedback. The

combined data also indicates this confidence occurs despite the predictions

performing worse at preventing crushes.

A single person analyzed both the quantitative and qualitative data sets.

This researcher thoroughly familiarized themselves with the quantitative data

across the participant groupings first. Familiarization with the qualitative
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“I think it would’ve been machine learning just cuz I didn’t
always know like if there was like a hard baseline like some
it felt like it fluctuated a little bit...”

Figure 7.11: participant 114 discussing whether they thought they had pre-
dictive or direct feedback after their second trial which used direct feedback
warnings. Most participants, even those using direct feedback, thought they
were using predictive feedback.

“Interviewer: I really don’t wanna put words in your mouth.
129: Sure.
Interviewer: Would it be fair to say you perhaps appreciated
that it was adapting?
129: Yes.
Interviewer: Because you did express that in the first trials
you were confused in the second trials it felt overbearing and
by the third one...
129: Yeah, no, I think that’s exactly it.”

Figure 7.12: Participant 129 discussing their experience and switching their
opinion of the predictive feedback from negative to positive after being told
they did in fact have feedback that was adapting in real time. While there is
some leading, the participants enthusiastic agreement suggests strong align-
ment of the sentiment with the participants experience.

data was achieved by correcting the autonomously transcribed transcripts,

and the first qualitative coding pass. While the qualitative data was being

analyzed, various questions came up that were then compared or confronted

with the quantitative data. From that analysis, combinations of the data,

such as those seen in Figs. 7.13 and 7.14 where the participant discussed the

velocity seeming to change, were found. Ultimately, the Qualitative data was

consistently “thought about” with the quantitative findings in mind, and a

second look at the quantitative data occurred with the qualitative findings in

mind.
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Total Warnings Total Breaks Difference

Triggers 13 6 7

“I don’t think that there was a, you can correct me, I
don’t think there was an instance where I got a warning
without getting a break.”

Figure 7.13: Contradiction between the recorded warnings and crushes for the
second trial, the warning trial, done by Participant 111 alongside a statement
they made about the efficacy of the warnings. The participant things the
warnings never occured without a crush, despite this being recorded happening
7 times. This participant was displeased with their interaction as a result
of control struggles and it seems to have coloured their perception of the
interaction to contradict the measurements made.

7.3 Discussion

The integration of the qualitative and quantitative data provides several key

insights that would not have been otherwise discovered. It is important to

highlight throughout this discussion that, contrary to participant experiences

such as shown in Fig. 7.14 there were few differences of import found across

the GaMA latency metrics. The statistically significant differences found in

the eye-hand arrival latency at pickup, indicating participants using predictive

feedback moving theirs eyes to the cup earlier in the reach phase, while curious,

are difficult to consider as the action we are modifying does not have impact

until the cup is grasped. Therefore, the confident gaze behaviour prior to any

intervention on the part of the device should not have been a result of the

changes made to the warning sounds. This perhaps indicates some confidence

on the part of the participants, but not enough to impact the crucial areas

of the interaction, grasp and release. The findings relating to the eye-hand

leaving latency at drop-off, indicating participants using predictive feedback

looked away from releasing the cup sooner, occurred between the no feedback

and predictive feedback case only, and only on all cups and the heavy cup.

While other cup stiffnesses did not show significant differences, they did favour

prediction. Seeing a benefit on the heavy cup, especially one potentially strong
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There were large differences in the number of crushes, however. It was ex-

pected that the predictive feedback would be nearly as effective as the direct

feedback, with the early-learning misses at providing warnings being balanced

by the predictions providing signals about the impending crush more in ad-

vance for the same threshold setting. However, direct feedback shows a much

larger decrease than predictive feedback in the number of times participants

crushed the cups (Fig. 7.4) between the feedback and no-feedback cases. This

is despite, in most cases, the predictions learning to provide the warnings very

quickly and one participant with direct feedback showing significantly more

crushes on their second (with warnings) trial. This can be seen in Fig. 7.4

when looking at participants 118’s warnings and crushes. They have notice-

ably more crushes and warnings than other participants in their group, and

more than any other participant expressed that they were trying to figure out if

they had predictive or direct feedback. This lead to them intentionally crush-

ing the cup on several occasions to study for themselves when the warning was

occurring, and if it was changing.

The qualitative data taken in the context of the above quantitative findings

provides several interesting insights that would not be available by examina-

tion of either data set independently. First, it is worth highlighting that the

discussion around the predictive feedback commonly involved the improvement

of the signals over time. This was despite participants having noticed the fail-

ure of the system to provide the warning they were told it would before they

started the warning condition trials. The expectation of the researcher at the

outset of this study was that when the device failed to provide the promised

warning it would have broken the expectation of the user and at best been

regarded with suspicion, but this is not what seems to have happened. The

findings do not have a lot to suggest that participants had more positive feel-

ings towards the device in the predictive feedback case, but there is a sense

of positivity in the conversation as the signals are discussed as improving and

becoming more consistent. This is supported in part by the statistical favour-

ing of the predictions over direct feedback in the eye-hand leaving latency at

drop-off for the heavy cup in particular. This cup would have most strongly
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demonstrated the adapting of the warnings, as the first few crush events would

have had no warnings at all, and the benefit to eye-hand leaving latency could

indicate increased comfort with the interaction on the part of the user. The

statistical findings of the benefit of the predictions in eye-hand arrival latency

at pick are also an indication of the increased comfort the user has with the

interaction, especially taken along side the relative phase duration’s and the

manner in which the predictive feedback was discussed. Participants did not

seem to notice the failure of predictive feedback to improve the participant’s

ability to prevent crushes over not having a warning at all. It seems, then,

that the failure of a system to act as expected does not irrevocably damage

the user’s experience of the interaction. The user’s engagement with the adap-

tation of the system could mean that rather than co-adaptation strictly being

a hindrance, it could be of benefit to the user’s experience.

A valuable takeaway from this study is the disconnect between the external

measurements, few appreciable differences in gaze behaviour alongside direct

feedback being more successful at preventing participants from crushing the

cup, and the internalization of the interactions held by the participants. This

is lightly supported in studies such as Williams et al. where a measurable

improvement in control from their intervention was not reflected in the partic-

ipant questionnaires (Hebert & Shehata, 2022; Marasco et al., 2021; Williams,

Shehata, Cheng, hebert, et al., 2024). Figures 7.13 and 7.14 are both strong

examples of this. Participant 111 (Fig. 7.13), who used direct feedback, was

found to have had some difficulties with the hand closing when they wished to

open it. This impacted their perception of the entire interaction. The feedback

signals, the warnings in particular, had nothing to do with the control of the

device. Despite this, they stated that they never received a warning without

also hearing the crush sound, but that occurred seven (7) times in thirteen

(13) warnings. If the control difficulties were making it harder for the user

to stop, or the warnings and crushes resulted from the hand closing when an

open was desired, we would expect to hear the participant mention struggling

to stop the hand when they heard a warning, not that they never heard a

warning without a crush when it was recorded to be incorrect. The case of
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Participant 117 (Fig. 7.14), who also had direct feedback, is more suggestive

of the addition of the warning sound drawing the user’s focus and thus altering

their perception of time. This is interesting in light of known results on how

attention, cues, and salience modifies the subjective perception of the duration

of events and related decision making activities; for the interested reader, a

detailed overview of related phenomena is provided by Buonomano (Buono-

mano, 2017). The velocity settings were not changed, and there’s no evidence

that the participant was commanding slower motion through the proportional

velocity control they were using.

In trials both with and without warnings the participants made comments

about feedback signals, both the audible signals provided and other signals

inherent to the task, how they used them to learn about and adapt to the task,

and their expectations of what would happen. When there was no warning

participants discussed the shape of the cup, the visible grip aperture of the

hand, and feeling the flexion of their muscles. Often these were related in

combination to the break sound in the trials without warnings, and the warning

sound in the trials with warnings. When the warning sound was added, it was

something participants used in the same way as the break sound; rather than

closing the hand until they heard a warning, they would attempt to stop the

hand before the warning sound would play. This is perhaps contrary to the

expectation of how feedback would be designed to be used, but could be seen

as support for the idea that the feedback signals are being used by participants

to develop and adapt their own internal models of the interaction. Although

feedback is traditionally implemented to allow users to adapt their actions

in real-time even in the absence of vision, it may allow users to develop a

strong understanding of the dynamics of the device being used, the task being

performed, and predict future interactions with the device and objects in the

environment (Clemente et al., 2015; Marasco et al., 2021; Shehata et al.,

2018b; Thomas et al., 2021). Predictive feedback, such as that provided in

this study, may not only allow for the development of strong internal models,

but also may allow for the adaptation of this model; hence improving the

overall human-machine interaction and device integration. From this, it is
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possible to conclude that future applications of real-time machine learning to

provide feedback to device users should consider methods of providing signals

that can learn to adjust what they are signalling about in order to assist in

user model development. For many users in this study, for example, feedback

about the EMG signals they are sending to the hand may have been more

valuable than a signal about the distortion of the cup. Over time, however, a

user would likely gain a thorough understanding of the relationship between

their muscle feeling and the hand motion, in which case the feedback about

the EMG signals would be less helpful, even possibly annoying, than signals

about the pressure being applied to an object.

7.3.1 Limitations and Future Directions

One important direction of future studies is to explore the combination of

the above phenomenon, the draw to adaptation and the disconnect between

the user’s experience and externally measurable outcomes. It is possible, for

example, that the short-term novelty of experiencing a device adapting and

improving in the user’s mind could help bridge the gap between what a user is

familiar and practiced with and quantitatively determined improvements they

might not register in their experience. Such studies would need to continue

using mixed methods such as those used here. The use of mixed methods such

as this, combining data captured from device use and participant experience

is crucial to furthering our understanding of human and machine-learning-

enabled robotic interaction. Such studies would also allow researchers to find

ways to modify their interventions so the benefits are more strongly experi-

enced by the people they are intended to help.

While participants had a short time to learn to use the devices, the task

was fairly simple and example progressions of total task time, shown in Figs.

A.1 and A.2 of the Appendix, suggest that user task learning had stabilized

somewhat. While this did not prevent complaints and difficulties around con-

trol and participants would undoubtedly benefit from more practice, these

comments emerging as top-of-mind for participants could still occur in discus-

sions after more practice given the leveled task times. Further studies would
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benefit from longer term trials to verify this.

This study provides an interesting start to the examination of the interac-

tion between a human and a device that is adapting the signals it is sending

the human in real-time. While there are promising indications of many inter-

esting findings, deeper more focused studies to explore each of them would be

of great benefit.

This study also faces some limitations concerning the participant group.

While the participants were an interesting mix of backgrounds and ages, they

can all be characterized as not having limb difference, all having positive views

of technology, all being new to EMG, and the interaction between the partic-

ipant and device being short-term. If the study were to be conducted over a

longer term, we expect the novelty of the adaptation of the predictive feedback

would have to lead to at least the same level of preventing crushes as the di-

rect feedback; it would not be able to sustain a users interest in a device that

is not performing adequately in the long-term. In the case of a participant

with limb difference, they may begin the interaction thinking about using the

device in the long term, have a frame of reference for that thinking, and find

the adaptation of the feedback less novel. With that said, it is still worth

noting how for new users, who could also be thought of as users without prior

models of the interaction, a system that can be observed as improving over

time adds positivity to the frame of reference even if it does not work perfectly

initially. It would also be interesting to explore if the positivity of the observ-

able improvement of the device occurs in cases where the device is working

within expectation, then works poorly on a related but different task, and then

improves on that task.

7.4 Conclusions

This study presents a unique, mixed methods exploration of human prosthesis

interaction where the prosthesis is learning to provide signals about a task in

real time. Interestingly, the real-time changes to the signals did not impact

the interaction negatively. On the contrary, despite not being as successful at
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preventing users from crushing the cup as they moved it, the real-time learned

signals seemed to provide participants some assurance in their actions. This

was despite the machine-learned warnings not being as measureably functional

in accomplishing the task of signaling the user to prevent crushes. This diss-

connect between the user’s excperience of the interaction, and the measureable

outcomes of the interaction, is something that has been hinted at in ohter stud-

ies, and should be explored further. It is possible that great benefit in using a

mixed-methods approach such as this study to further explore the separation

between performance metrics and user experience in order to find ways to have

users feel the positive impacts of research in assistive technologies. The assur-

ance participants seemed to have in the adapting feedback may be the bridge

between user perception and externally measurably outcomes. These findings,

as well as the mixed methods approach used in this study, are a promising di-

rection in facilitating modern advanced prosthetic devices to more effectively

work with their users, and reach further towards their full potential.

7.5 Methods

7.5.1 Participants and Recruitment

All experimental protocols were approved by the Research Ethics Board 2

at the University of Alberta, Pro00123026. The study was carried out in

accordance with the approved experimental protocols. Informed consent was

attained from all participants using a signed letter of consent approved under

the experimental protocols.

There were sixteen (16) participants in the study. They were recruited by

posters distributed via email. For increased privacy of the participants, very

little personally identifying information was collected. From conversations

with the participants, we can state that they represented ages from 18 to post-

retirement and a wide range of backgrounds. These backgrounds included,

but were not limited to, student, researcher, baker, forklift operator, electrical

engineer, librarian, physical therapist, and professor.
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7.5.2 Experimental Setup

The robot hand used by participants was a single degree of freedom device de-

signed and 3D printed in the lab on MakerBot (New York City, USA) Replica-

tor 2 printers using polylactic acid (PLA), and actuated by a single MX-64AT

servo from Dynamixel (Seoul, South Korea) (Wells et al., 2020). The hand

could open and close, and the thumb and all four fingers moved together when

they actuated. The hand was attached to a brace that was designed and 3D

printed in the lab to position the robot hand in line with and medially to

the participant’s biological hand, and restrict the participant’s wrist motion

(Hallworth et al., 2022). Control of the hand was achieved using a Myo arm-

band from Thalmic Labs (Kitchener, Canada), which contains eight (8) EMG

sensors and broadcasted via Bluetooth to the associated USB dongle. The

hand and Myo armband were both operated through BrachI/Oplexus soft-

ware, which was developed in the lab to operate a different 3D printed robot

arm, the Bento arm, that utilizes the same servos (Dawson et al., 2014; Dawson

et al., 2020). This software allowed researchers to configure various settings of

the power hand and the Myo armband and facilitated various means of con-

trolling the power hand, Which included the Myo armband. BrachI/Oplexus

also had connections to the Python code used to run the temporal-difference

learning agent in Edwards et al. 2016 (Edwards, Dawson, et al., 2016).

The objects the participants moved were 3D-printed cups. These cups

were printed in NinjaFlex (NinjaTek, Lititz, USA) material to allow them to

be distorted without breaking. The cups measure 72mm tall, with a 45mm

lower outer diameter, a 61mm upper outer diameter, and a 4mm thick wall.

Three (3) different stiffnesses of cups were used. This was achieved by varying

the amount of infill used when printing each up. The stiffest cup used a 25%

infill, the middle cup was a 10% infill, and the light cup was a 5% infill. Four

(4) motion capture markers were placed around the rim of the cups. One

of these markers was raised. If the raised marker is taken to be the origin,

and placed at the top of the upper ring looking down, the remaining markers

were placed at 60° counter-clockwise, 65° clockwise, and 160° clockwise from
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the master. The cups were tested for how they retained their stiffness over

repeated use. Each cup was crushed 200 times to a specified hand-closed

position read from the position of the servo. A trend line across the load of

the 200 crushes showed little to no degradation.

To determine the threshold settings to use for each of the stiffnesses of cup,

first, the normalized load reading of the hand is recorded for five (5) minutes

while the hand is open. The most extreme load value in the correct direction

recorded over that time is taken to be the noiseLevel. It is important to note

that the normalized neutral load is around 0.5 since the load signal is direc-

tional. In this case, the thresholds for the crushes and warnings are below 0.5

as a result of the orientation of the servo. Each of the three (3) stiffnesses of cup

is then recorded being crushed autonomously as far as the torque limits of the

hand will allow thirty (30) times. The most extreme normalized load recorded

of the thirty (30) crushes is taken to be the cupMax for that cup. The crush

threshold is set to crushThreshold = noiseMax+3/4(cupMax−noiseLevel)

for each of the three cup stiffnesses. Here we subtract the noiseLevel from

the cupMax since fully closed pressure is read from the servo as less than 0.5,

so a smaller number represents greater force. The warning threshold was set

to warningthreshold = noiseMax + 2/3(crushThreshold − noiseLevel) for

each of the three cup stiffnesses. Again, the subtraction is a result of the load

reading being directional and the physical orientation of the servo in the hand.

So the crush threshold for each cup is set to 75% of the maximum range of

the normalized load signal, and the warning is set to 66% of the crush thresh-

old, which is equivalent to 50% of the maximum range of the normalized load

signal. Here, this means a break threshold of 0.13 and a warning threshold of

0.25. These values were found to be visually to be functionally appropriate to

allow each cup to visibly distort differently from each other, and provide an

achievable stop at the warning.

7.5.3 Gaze and Movement Analysis

The Gaze and Movement Assessment (GaMA) protocol uses motion capture

and eye tracking to quantify the movement quality and visual attention ex-
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hibited by participants as they interact with objects. A 10-camera OptiTrack

Flex 13 motion capture system (Natural Point, Corvallis, USA) was used to

capture participant movements and task objects at a sampling rate of 120 Hz.

Four motion capture markers were placed on the simulated prosthesis hand via

a rigid plate (shown in Fig. 7.1), four markers were placed on the cups (also

shown in Fig. 7.1), and 6 markers were placed on the table. A Pupil Core

head-mounted binocular eye tracker (Pupil Labs GmbH, Berlin, Germany)

captured participants’ pupil positions at 120 Hz. Participants each performed

two gaze calibrations (outlined by Lavoie et al.) to facilitate the generation of

gaze vectors. These calibrations were carried out at the beginning and end of

each trial (Lavoie et al., 2018).

After motion capture and eye tracking data were collected, gaps in the mo-

tion capture data were filled and the data was then filtered. The pupil position

data were similarly corrected and filtered. The motion capture and pupil data

were then synchronized, and gaze vectors were generated. As per Valevicius

et al., 3D objects were created to represent the simulated prosthesis hand,

cup, and cart using the motion capture markers placed on each (Valevicius

et al., 2018). Then, cup movements were segmented into five phases of reach,

grasp, transport, release, and a home phase (which is not relevant to the data)

using movements of the hand and cup objects. These phases were used in the

calculation of metrics.

A total of 62 metrics were calculated as per previous works (Lavoie et al.,

2018; Valevicius et al., 2018). Of note were eye-hand latency measures, which

were calculated at instances of phase transitions—at the start of transport

(referred to as “pick-up” by Lavoie et al.) and at the end of transport (referred

to as “drop-off”). Eye-hand arrival latency and eye-hand leaving latency were

calculated as follows:

• Eye-hand arrival latency at pick-up is defined as the start of the

last continuous look to the cup or its pick-up location. If there are no

looks to either the cup or its location during reach or grasp, then this

metric is defined as the first look to the hand or cup being moved during
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transport. The value was positive if the participant looked to the cup or

location before pick-up, and negative if they looked at the cup or hand

after pick-up.

• Eye-hand arrival latency at drop-off is defined as the start of the

last continuous look to the cup or its drop-off location before transport

end (positive value) or after transport end (negative value).

• Eye-hand leaving latency at pick-up is defined as the end of the

last continuous look to the cup or its pick-up location. The value was

positive if the gaze left the cup or pick-up location after the start of

transport, and positive if the gaze left before the start of transport.

• Eye-hand leaving latency at drop-off is defined as the end of the

last continuous look to the cup or its drop-off location before transport

end (positive value) or after transport end (negative value).

These metrics require the phase duration metrics in order to properly assess

their meaning. The latency metrics along side the phase duration and fixation

metrics were selected from the 62 metrics available as they were considered

to be the most suitable to show changes in user behaviour resulting from the

different feedback types (Williams, Shehata, Cheng, hebert, et al., 2024).

7.5.4 Machine Learning Methods

All robot signals: load, position, and velocity, were normalized before use with

the learning code. Temporal-difference (TD) learning was selected as the ma-

chine learning technique to adapt the warning signal in real time. Specifically,

TD(0) was selected for its previously demonstrated ability to learn quickly

from sensor data in real time in similar domains (Edwards, Dawson, et al.,

2016; A. S. R. Parker et al., 2022; A. S. R. Parker et al., 2019a; Pilarski et al.,

2022; Pilarski, Dawson, Degris, Carey, et al., 2013). TD(0) is a method from

the field of reinforcement learning. It learns a temporally extended expecta-

tion, a prediction, of a signal from the real-time information it is provided.

Often this signal is a reward, but it does not have to be. In those cases, any
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signal in the environment can be the target, called the return or cumulant, and

the machine learning agent is learning a general value function (GVF) (Sutton

et al., 2011). A GVF encapsulates the expectation the agent has of the future

cumulant for the state it is in based on its previous experience. The state, St,

is a crucial piece of the agent; it is how the agent associates the predictions it

is making with what is happening in the world as it experiences it. The learn-

ing agent here uses a Selective Kanerva Coded state identified by Travnik and

Pilarski (2017) as being suitable to settings such as this (Travnik & Pilarski,

2017). The total usable ranges of the position, velocity, and load of the servo

are normalized and become the axis of the state space. Within those axes,

1000 points, called prototypes, are randomly placed. Signals relating to the

axis, the position, velocity, and load of the servo, are read and normalized in

real-time, and from a point within the axis. The 50 closest prototypes to the

current normalized sensor readings are the active features of the state space

and will be used for the current time step’s predictions, and learning.

δt = rt+1 + γwT
t x(St+1)−wT

t x(St) (7.1)

wt+1 = wt + αδtx(St) (7.2)

The learning is executed using Eqs. 7.1 and 7.2. The first equation, Eq. 7.1,

produces the temporal difference error δ, and Eq. 7.2 is the learning update.

In the equations, X(S) is the active features of the state representation at time

tt+1 and t respectively. The values learned are stored in the weight vector, w.

Together, wT
t x(St) is the value learned prediction for the current time step, t.

The learning rate, α, was set to 0.01/number of active features. As there

are 50 active features, the final value of α is α = 0.0002. The discount factor,

γ, was set to γ = 0.95

As executed here, the predictions do not add increased temporal infor-

mation to the signals the participant is receiving. The core concern here

was that the machine learning could learn to quickly provide stable signals

from real-time observations in the short term. The results of this can be

seen in Figs. 7.15 and 7.16. In Fig. 7.15, the green line demonstrates
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the prediction being learned from its initialized value. The weight vector

was initialized to start at approximately the 0 point of the normalized load,

noiseMin/(1 − γ)/number of active features Specifically, the general pro-

gression of the prediction in green can be seen to reach lower over repeated

interactions. A more detailed view of this can be seen in Fig. 7.16. Here the

normalized prediction, again in green, normalized load, in orange. In Fig. 7.16

the participant can be seen to close the hand and receive a warning, and they

respond by opening the hand and closing it again. Despite this behaviour, the

prediction still predicts the load effectively.

7.5.5 Qualitative Recording

Two (2) semi-structured interviews of approximately ten (10) minutes each

were conducted. One after each trial condition. The questions, included in

Appendix A.1.1, were designed with a mind to focus the participant on the

area of interest of the study without priming them. They start very broad and

over the course of the interview the focus on the elements of the study related

to the research question increased. These questions are meant as guideliness

to conducting a conversation with the participant about the interaction they

just completed. Each primary question had several probing questions meant

to elicit further information from the participants if they were giving short

answers. These questions were not followed precisely in every case; when

a participant mentioned something of interest to the study the interviewer

attempted to pursue it. The interviews were recorded on a Sony ICD-PX470

stereo digital voice recorder. The audio files were autonomously transcribed

using Rev.com. The automated transcripts were then checked and corrected

by hand by the research team member who would go on to conduct the coding

for analysis.

7.5.6 Experimental Design and Flow

The full checklist followed by the study team can be found in Appendix A.1.2.

After the participants arrived, were greeted, and informed consent was ac-

quired, they were helped into the simulated prosthesis brace. Following this,
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the EMG read from the Myo armband was configured in BrachI/Oplexus

for the participant to operate the device with proportional velocity control.

First, the participant flexed and extended their wrist several times and the

two strongest signals were selected and the thresholds set. The participant

then demonstrated opening and closing the hand with those settings. If the

participant reported struggling, the thresholds were adjusted. Following this,

the participant was asked to open and close the hand several times of the left

cup target, then the right cup target, and then over the home position. The

EMG thresholds were again adjusted according to observations of use and the

participant’s reports of operation. Once the EMG was configured appropri-

ately, the eye tracking was configured.

Next, the participant began their first training session. This had the par-

ticipant use the robot hand, controlled by proportional EMG, move a stiff cup

from the left target to the right target after hearing the queue from GaMA,

assume the home position, and move the cup back again upon hearing the

GaMA queue, with no audible feedback about the pressure they are applying

to the cup. The participant was not only practicing the use of the robot hand

but also the motion to be used in the trial and the queues being sent to them

to move. This stiff cup could not be appreciably distorted by the torque limits

placed on the robot hand. After approximately two minutes of training, a gaze

calibration was conducted for GaMA.

At this point, the trial for the first condition began where the cups are

now able to be deformed by the robot hand, and a crush noise will play if

the normalized load reading from the servo surpasses the thresholds outlined

above. The stiffest cup was placed on the left marker, and the participant was

asked to move it thirty (30) times. The participant was not told this was the

stiffest cup, nor were they permitted to interact with it with their biological

hand. For one motion in five (1 in 5), the participant was asked to squeeze

the cup as hard as the hand would allow. This was done for the learning

experience of both the participant and when applicable the learning agent. A

motion in the trial was one-directional, so the first motion was moving the

cup from left to right. At the end of the motion, the participant assumed
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the home position, waiting for the queue from GaMA, and moved the cup

back for the second motion. At the end of thirty (30) motions the participant

was asked to rest for three (3) minutes. After the rest, the above procedure

was done with the medium stiffness cup, and then the light stiffness cup. In

all cases, the participant was given no prior knowledge about the stiffness of

the cup. Following the completion of all three (3) stiffnesses of cup, a gaze

calibration was performed for GaMA. The participant was then asked if they

wanted water, and seated while the interview was conducted.

The above block was then repeated for the second trial condition. This

condition introduced a warning noise, based on the thresholds outlined above,

in addition to the crush noise. Half of the participants had a warning based

on the normalized load signal reported by the servo, and half had a machine-

learned prediction where the cumulant was the normalized load signal reported

by the servo. After the second interview, the participant was helped out of

the simulated prosthesis brace and thanked.

7.5.7 Data Analysis

Plots of the GaMA metrics were generated and studied in various groupings

of participants and cups in order for the researcher doing the analysis to fa-

miliarize themselves with the quantitative data. Automated transcripts were

generated from the voice recordings using Rev.com. These transcripts were

then corrected by hand, in part as a means of familiarization with the qual-

itative data. The resulting verbatim transcripts were the qualitatively coded

using Quirkos qualitative analysis software. After an initial coding pass from

the transcripts, the codes were checked for consistent application and thor-

oughly examined in separation from the transcripts.

The resultant qualitative codes were studied using the side-by side and

overlap views available in Quirkos. Findings from these analyses were noted,

and expressed as questions to ask of the full quantitative and qualitative data

set. Matches and differences between the qualitative and quantitative data

were explored in both data sets and findings were generated that fit the narra-

tive of both data sets. These became the theme elements, which were organized
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into overarching themes and then compared again to both quantitative and

qualitative data to ensure they resonated appropriately.
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Chapter 8

Conclusion

Assistive technologies strategies meant to assist users by providing functions

such as those that allow them to participate in tasks of daily living. Some

assistive technologies are independent agents that are trained to provide as-

sistance, such as seeing-eye dogs, and others are tools that users wield such as

wheelchairs and, typically, upper limb prostheses. It is important that assis-

tive technology is developed and applied with a focus on patient-centered care

and outcomes in order to best meet that patients specific needs.

Prosthetic limbs are used to provide increased function to people with limb

differences. Modern prostheses, particularly for the arm and hand, have many

points of articulation that can mimic the motions of a biological limb. Most

of this function, however, cannot be accessed by users when the prosthesis is

deployed because of challenges mapping the motion available in the device to

the control signals available from the user. Adding agency to prosthetic limbs

through the application of machine learning gives us a pathway of research

to improve users’ ability to achieve the full potential of these devices. A

prosthetic upper limb with agency can be viewed as the human’s collaborative

partner, which allows research into ways of improving their collaborative, or

joint, action.

8.1 Summary of Contributions

There are several promising steps toward improving assistive technologies that

were spearheaded by the work in this dissertation. The first major contribu-
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tion is championing the reasons and benefits of viewing upper-limb prostheses,

and indeed many other assistive technologies, as partners to users rather than

resigning them to simply being tools. The capacity of a tool to provide in-

creased function for a user will always be limited by the inability of the tool

to adapt to the user, new knowledge, or changes in the task. In this work, we

started by outlining why it makes sense to view human-prosthesis interaction

as two agents collaborating to achieve an outcome, which was done in Chap-

ter 2. We then went on to discuss the framework of communicative capital,

outlined in Chapter 3, which provides the tools to think about how to add

collaborative potential and suggests ways to unlock it.

The second major contribution of this work is the demonstration of temporal-

difference methods learning and adapting feedback about a task. To our knowl-

edge, this is the first time such feedback has been used to signal a human

controlling a robot in the real world. Not only can simple methods learn

something that is of value to a user with vastly superior intellect, but they

can be learned in real-time, and that learning does not negatively impact the

user’s experience. Chapter 4 begins these contributions by demonstrating that

temporal-difference learning methods can learn something about a task that

assists a human that is making decisions about the system. Following this,

Chapter 5 provides evidence that such learning can be done in real time. This

finding opens the door to research a myriad of ways to use real-time machine

learning to signal human users and improve their function and capacity to

accomplish tasks. The primary method outlined in this dissertation we called

Pavlovian signalling, which was applied in Chapter 6 and outlined and formal-

ized in Chapter 5.

As a final major contribution, this dissertation includes the first mixed-

methods study to leverage rich data from both humans and machines to study

continual learning on the part of both. It would have been reasonable to think

that if a signal coming from a machine was changing over time it would cause

a user to become disenfranchised with the device; they would lose trust in

the device’s usefulness and ultimately blame it for difficulties and discard it.

In the short term, however, it appears that positive changes to the signals
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users receive as feedback are given strong weight as improvement to overall

function. Chapter 6 begins the this exploration with the addition of qualitative

methods to the analysis of human interaction with real-time learning agents.

It suggests that the user does not give up on the agent as a result of early

failures or learning, and that the signals provided by the agent are used in

ways the designer did not expect. Following this, Chapter 7 conducts a first-

of-its-kind mixed methods study examining the interaction using rich human

and machine data from human use of a simulated prosthesis with real-time

adapting signals about the task. This chapter highlights the existence of a

disconnect between user experience and performance metrics. Coupled with

the finding that participants are drawn to addaptation, this suggests that

real-time adaptation may be a path to connecting the actual performance of a

system with the users interpretation. The approach used in Chapter 7 provides

valuable insights into the interaction between a human using a wearable robot

and a machine-learning agent that learns and adapts feedback signals in real

time. Such methods gave us far greater insight into the interaction than could

have been gained by either method alone, or via the use of less rich data from

either part. There were also insights in both mixed-method studies that were

surprising to experts in multiple fields, which further highlights the importance

of more research in human-machine interaction that utilizes such methods.

There is tremendous potential to improve the functionality available to

users of prosthetic limbs through the applications of real-time machine learn-

ing such as TD methods from the field of RL. Since these methods can adapt

from experience in real-time, they are well aligned with the goal of achieving

patient-focused care. The findings of this dissertation, along with the demon-

stration of the value of mixed-methods studies, chart a path toward fostering

strong human-machine collaborations. These collaborations are expected to

assist users in utilizing more of the potential function available in modern

robotic prostheses. As future prostheses add functions, techniques that facili-

tate collaboration may scale better than other currently researched approaches.

If the device and user collaborate seamlessly, then added functions should not

pose a challenge to the pair. This approach has the potential to revolutionize
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not just prosthetic limbs, but other assistive robotics in rehabilitation, and

human-machine interaction in society in general.

8.2 Future Directions

There are three core directions that are natural continuations of this work.

First, it is interesting to find that changing the signals that a user receives

while they are doing a task in real time does not cause them confusion or lead

them to outright ignore the feedback they are receiving as unreliable. The

opposite may be what is happening; the adaptation users notice offers benefits

to the interaction as it is interpreted by users. This finding should be further

explored using studies to find the limits of this both in terms of the length of

the benefit and the strength of it. Finding how long this effect can improve

user experience of the interactions would give designers a strong sense of how

long learning on the part of the system can take before it becomes a burden.

It will also be interesting to explore how much “failure” the adaptation can

draw focus away from, and in what conditions. It may be that the machine

learning agent has to adapt in a way that is beneficial from the perspective of

the participant, or it may be that simply changing over time will give users

the impression of improvement. These are important to research in people

with limb differences, in the case of prosthesis partners, as their views on

having to live with the device will differ vastly from participants without limb

difference. It will also be interesting to see what other interactions benefit

from adapting the feedback in real-time, and how this can be tuned to improve

human function and ability in a multitude of areas.

Perhaps the greatest impact would result from the continuation and re-

finement of studies and methods that mix rich quantitative and qualitative

data to explore and develop human-machine interactions. The most interest-

ing findings of this work would not have been possible without rich qualitative

data in conjunction with rich quantitative data. Chapter 7 highlights how user

experience does not necessarily sync with measurable metrics, and that is a

prime example of of the insights that would be unavailable without rich data
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from both user and device. This disconnect is something that has been anecdo-

tally noticed in other studies such as Williams, Shehata, Cheng, hebert, et al.

(2024) where the results of their survey did not favour the measurably better

intervention, but has not been expressly addressed. Understanding this the

difference between external measures and user experience directly and how

to work with it, for example, could be vital to getting users on board with

new interventions that can measurably improve their ability to function with

their assistive technologies. More studies into this phenomenon, studies which

would be far less informative if they were not done with such a rich mixing of

data, could yield the keys to achieving strong human-machine collaborations

in rehabilitation and beyond.

Interdisciplinary research will be key to advancing these methods in the

future. Algorithmic advances in machine learning will need to be tested on

robots and with intended users in order to determine the effects that different

methods of machine learning have on the perceptions of users and in real world

applications. It could be important to know how users notice and internalize

changes to the machine agent, such as the way it steps through the state space,

the speed at which it learns, or perhaps the model the agent builds. The com-

bination of the expertise of clinicians, engineers, users, and researchers across

fields is crucial for developing even greater interventions for patients requiring

assistive technologies to ensure the needs of all of the involved agents are met.

This collaborative approach, encompassing mixed-methods studies containing

rich data from both physical systems and human users, holds great potential

for progress. Further, there is the potential for research in one area to assist re-

search in another. As research is pushed further into framing human-machine

interaction as joint action, methods will develop that will assist human-human

joint action research. In this way joint agency, be it between a human and

a human or a human and a machine, will advance and continue to generate

knowledge and user-centric solutions that add function and value to humanity.
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Appendix A

Background Material

A.1 Additional Material for Chapter 7

A.1.1 Interview Questions and Script

Participant Data

Handedness

Vision

corrected

uncorrected

normally corrected

EMG experience

Rapport Builders

What made you interested in participating?

What’s your favourite robot?

What’s your favourite (media)?

What tasks energize you?

What tasks drain you?

(Share about self based on participant responses)
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Training Script

So, first is "hand on home, eyes on neutral". From here, you’ll hear

a sound from Heather at the console. That is your queue to reach for

the cup, and move it from one side to the other, then go back to

home and neutral, and wait for the next beep.

There are 2 other sounds. They won’t occur here, but this is the

easiest point to demonstrate them. They are the break sound, and the

warning sound. While your goal is to try not to hear the break

sound, there are no failure conditions. If you hear a break sound,

just continue the trial. If you drop the cup, I will place it on the

side you were moving to and then you go back to home/neutral as if

you completed the motion, okay?

Trial 1 Script

In this first trial you’ll be doing the same thing you just did in

training, except with this cup with the motion capture markers.

Also, that break sound I mentioned earlier will play if you squeeze

the cup too hard. Only the break sound, no warnings in this trial.

Also, every now and then Heather will call out to "Crush the Cup".

When this happens, do just that; crush it.

Part 1

Intro: Thank you for agreeing to chat with me today: it is nice to

meet you. We are here to talk to you about the trial you just did,

with a focus on your interaction with the robot while trying to

complete the task rather than on the task completion itself. This

information you share with me today will help with a research

project relating to human-AI interactions. Your individual

perspective is invaluable to the goal of improving interactions

between humans and devices. You can take a break whenever you want.
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If you want to stop the interview at any point, you can tell me

you’d like to stop. If you want to skip a question, you can.

Do you have any questions for me before we get started?

What was it like to participate in this research today?

- What were you thinking about?

- What were you excited about?

- What were you nervous about?

What did you think about your interaction with the power hand?

- Why do you think you noticed <participant named theme>?

- Why was <participant named theme> good/bad/noteworthy/matter?

- Tell me more about...

Did anything else stand out to you about your experience; what did

you notice about the trial, sounds, or power hand?

- Why do you think you noticed that?

- How much did you notice it?

- How did it interfere?

- How was there something different at the beginning/end?

What were you thinking about or focused on as you grabbed the cup?

- Why do you think you noticed <participant named theme>?

- What else did you notice?

What were you thinking about or focused on when you were asked to

crush

the cup?

- How come?

What about when you accidentally crushed the cup?
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- Why do you think you noticed <participant named theme>?

How did your experience of the interaction change after you crushed

the cup?

- How did that change over time?

- Why do you think you noticed <participant named theme>?

How did you respond to the crush sound?

- What did you do?

What was your goal or objective, in your own words?

What was your strategy for grabbing the cup?

- How did you arrive at that strategy?

Trial 2 Script

Alright. This time there will be a warning sound as well as the

break sound. Do you remember what the warning sound is?

That sound doesn’t mean a break has happened, but it does mean that

a break sound is impending. This warning sound could be triggered

directly by the sensor reading, or it could be a machine-learned

prediction of the sensor reading. I’ll tell you which one after, not

right now. Does that all make sense?

Part 2

Do you have any questions for me before we get started?

What thoughts or feelings do you have about this trial vs the last

one, or the last one vs this one?

- How did they compare?

What did you think about your interaction with the power hand?
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- Why do you think you noticed <participant named theme>?

- Why was <participant named theme> good/bad/noteworthy/matter?

- Tell me more about...

Did anything else stand out to you about your experience; what did

you notice about the trial, sounds, or power hand?

- Why do you think you noticed that?

- How much did you notice it?

- How did it interfere?

- Was there something different at the beginning/end?

What were you thinking about or focused on as you grabbed the cup?

- Why do you think you noticed <participant named theme>?

- What else did you notice?

What were you thinking about or focused on when you were asked to

crush the cup?

- How come?

- What were you observing?

What about when you accidentally crushed the cup?

- Why do you think you noticed <participant named theme>?

How did your experience of the interaction change after you crushed

the cup?

- How did that change over time?

- Why do you think you noticed <participant named theme>?

What was your goal or objective, in your own words?

What was your strategy for grabbing the cup?

- How did you arrive at that strategy?
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How did you respond to the warning sound?

- What about the crush beep?

- How did the warning sound change your strategy?

Did the sounds make sense to you? How/How not? Over time?

- Was one more consistent than the other?

What did the warning mean to you?

What type of feedback do you think you just used [outline]?

- Why do you think that?

Does that change anything we’ve just talked about?

If you had to use a device like this regularly, what would you want

it to do?

Is there anything else you would like to talk about that we didn’t

get a chance to discuss?

After Final Interview

Thank you so much for your time, we really appreciate your

participation in this study.

A.1.2 Study Checklist

Upon Receiving Participant Interest

□ Reply to the participant to schedule their timeslot

□ Ask that if the participant could wear contacts if they
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typically wear glasses

□ If participant can’t wear contacts, ask if they can see 1 m in

front of them w/o glasses

□ Ask that the participant wear a short-sleeved shirt

□ Ask participant about metal allergies or other skin sensitivities

□ Inform the participant the the lab requests the use of masks

while in the lab

Pre-Participant-Arrival

□ Prepare consent form and pen

□ Designate participant code and trial type

□ Prepare error tracking sheets: fill info at top of the page and

the trigger trials

□ Set up computers

□ Turn on motion capture computer

□ Launch Lab Remote

□ Connect blue ethernet cable to 1st port on the router and connect

white ethernet cable to motion capture computer

□ Connect blue ethernet cable to robot laptop

□ Launch BrachIOplexus on robot computer

□ Run Adam’s Modified Adaptive Switching

□ Refresh streams on Lab Remote to see if PowerHand shows up

□ Pre-adjust belt

□ Set up Lab Remote:

□ Set file path

□ Set first gaze cal file name and ensure that the trail number is

set to 1: IDA_GazeCal_Stat (see Participant Code section at the

end of the document)

□ Motive Setup

□ Launch Motive
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□ Enable NatNet in the Streaming Settings

□ Set the file path in the Capture layout

□ Remove everything from the motion capture space and close the

curtain

□ Calibrate the motion capture system in the Calibration layout

□ Move cart and chair back into the motion capture space

□ Remove marker 2 (affixed with velcro) from cart and set it aside

□ Delete all rigid bodies in the Capture layout

□ Load in rigid bodies from desktop (RHND, Cart, Cup, and Wand)

□ Unselect the Cup rigid body

□ Pupil Labs Setup

□ Launch Pupil Labs

□ Restart with default settings in the General Settings

□ Detect eye 0 and eye 1 in the General Settings

□ Turn on Pupil LSL Relay in the Plugin Manager

□ Set the Calibration Mode to Single Marker Calibration

□ In the eye 0 window, click Flip image display in General

Settings

□ Synchronization Setup on Motion Capture Computer

□ Launch OptiTrack Steamer

□ Refresh streams in Lab Remote

□ Check that the Pupil Primitive Data and OptiTrackFrameID streams

are selected to record

□ Select OptiTrackFrameID to control

□ Turn on Auto Play Beep, with a delay of 0

□ Mute computer speaker

□ Myo Armband Setup

□ Briefly plug in the Myo armband to turn it on

□ Launch Myo Connect on the laptop
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□ Connect Myo armband

□ Turn on "Show Myo Gestures"

□ Marker and Task Setup

□ Ensure that all motion capture markers are placed on the eye

tracker and the RHND rigid marker plate is placed on the power hand

□ Ensure that task cups are prepared and accessible

□ Put up the quiet sign on lab door

□ Clean the eye tracker, Myo armband, measuring tape, and simulated

prosthesis hand brace with an alcohol swab

□ Ensure that the button on the simulated prosthesis belt is off

□ Put out the the simulated prosthesis for the participant don and

place a piece of alpha liner in the connecting ring

□ Ensure that the following are available:

□ Connecting ring bolts

□ Hex key

□ Socket cushions

□ Velcro strap

□ Sleeve material

□ Scissors

□ Transpore tape|3 pieces

□ Alcohol swabs

□ Recorder for interviews

□ Water, juice, and snacks

Participant Arrival

□ Welcome participant

□ Ask participant if they’d like to use the washroom first

□ Ask participant about metal allergies or other skin

sensitivities

□ Do letter of consent

□ Collect participant data (EMG experience, Vision, Handedness)
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□ Explain EMG and muscle contractions

□ Donning

□ Measure forearm length - medial epicondyle to ulnar styloid

process

□ Clean the participant’s arm with an alcohol swab

□ Place the Myo armband on the participant

□ Sync the Myo armband

□ Turn off Show Myo Gestures

□ Measure placement of Myo armband - medial epicondyle to top of

armband

□ Have the participant don the belt

□ Prepare a fabric sleeve and have the participant don it

□ Have the participant place their hand in the simulated prosthesis

brace

□ Tape the alphaliner

□ Close the connecting ring with bolts, and tape the heads of the

bolts

□ Place cushions throughout the simulated prosthesis and tighten the

straps

□ Connect the simulated prosthesis to the belt via a cable

□ Use one small piece velcro to secure the cable

□ Secure velcro strap over fingers

□ Confirm that the simulated prosthesis is secure by having the

participant hold their arm at their side and shake their arm.

□ Explain the button to the participant

□ Turn on the simulated prosthesis via the button.

□ Connect to the Bento Arm in brachI/Oplexus

□ Connect to the Myo armband in brachI/Oplexus
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□ Configure EMG control for participant in brachI/Oplexus

□ Adjust cart height

□ Check/calibrate EMG signals in the 3 major task positions

□ Eye Tracking Setup

□ Affix marker 2 to the cart

□ Have the participant stand at the task cart

□ Place the eye tracker on the participant and plug the eye tracker

in to the computer

□ Adjust each eye camera (check pupil visibility in the 4 task areas

of interest)

□ Adjust the world view camera so the entire cart can be seen

□ Tell the participant not to touch the eye tracker or their face

□ Set world camera settings to (640,480) and 120 Hz

□ Set eye camera settings to (192,192) and 120 Hz

□ Adjust pupil min, max, and intensity range for each eye camera

(check pupil detection in the 4 task areas of interest)

□ Set the eye camera mode to Camera Image

□ Close curtain

□ Collect the Pupil Labs calibration|press c on the keyboard to

start and end recording in Pupil Labs

□ Create the HD rigid body|1: front, 2: participant’s left, 3:

participant’s right, 4: lower marker

□ Training

□ Adjust computer speaker volume

□ Demonstrate Lab Remote Sound

□ Set feedback to direct heavy

□ Demonstrate break sound

□ Demonstrate warning sound

□ Enable powerhand in brachI/Oplexus
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□ Set feedback to none

(Training procedure)

□ Gaze Calibrations

□ Suspend powerhand in brachI/Oplexus

□ Refresh streams in Lab Remote

□ Ensure PowerHand is NOT in LSL

□ Close curtain

□ Record stationary gaze calibration

□ Record paint gaze calibration

□ Record check gaze validation

□ Block 1

□ In Motive, ensure that 4 rigid bodies are selected (HD, Cart, Cup,

and RHND)

□ Set the Lab Remote file name to IDCF_Crush (where ID is the

participant ID as xxx-y; C denotes the cup stiffness of L-light,

M-medium, or S-strong;

F denotes the feedback type of N-none, D-direct, or P-prediction)

□ Enable powerhand in brachI/Oplexus

□ Launch Adam’s modified adaptive switching code

□ Refresh streams in Lab Remote

□ Confirm PowerHand is in LSL

□ Place first cup

□ Ensure that participant understands the following:

□ How to place simulated prosthesis hand at home

□ Stay looking at neutral in between trials

□ They can ask for breaks at any point

□ Don’t push the cup into the target - just place it and do your

best to get it in the target

□ To continue trials if they crush the cup (regardless of if

they’re told to crush it)
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□ Close the curtain

□ Set correct threshold (BrachIO ‘Motion Sequencer’ tab)

(Trial procedure)

□ 3 minute break

□ Place medium cup

□ Set correct threshold (BrachIO ‘Motion Sequencer’ tab)

(Trial procedure)

□ 3 minute break

□ Place final cup

(Trial procedure)

□ Gaze Calibrations

□ Suspend powerhand in brachI/Oplexus

□ Turn off Adam’s modified adaptive switching code

□ In Motive, ensure that 3 rigid bodies are selected (HD, Cart, and

Wand)

□ Set the Lab Remote file name to IDA_GazeCal_Stat or _Paint and set

trial number

□ Refresh streams in Lab Remote

□ Ensure PowerHand is NOT in LSL

□ Close curtain

□ Record stationary gaze calibration or paint gaze calibration

□ Record check gaze validation

□ Interview

□ Offer water/juice/snack

□ Label any error/trigger trials from Block 1

□ Training

□ Demonstrate Lab Remote sound

□ Demonstrate break sound

□ Demonstrate warning sound
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□ Enable powerhand in brachI/Oplexus

(Training procedure)

□ Gaze Calibrations

□ Suspend powerhand in brachI/Oplexus

□ In Motive, ensure that 3 rigid bodies are selected (HD, Cart, and

Wand)

□ Set the Lab Remote file name to IDA_GazeCal_Stat and set trial

number

□ Refresh streams in Lab Remote

□ Ensure PowerHand is NOT in LSL

□ Close curtain

□ Record stationary gaze calibration

□ Record paint gaze calibration

□ Record check gaze validation

□ Block 2 | With direct or prediction feedback

□ In Motive, ensure that 4 rigid bodies are selected (HD, Cart, Cup,

and RHND)

□ Set the Lab Remote file name to IDCF_Crush

□ Enable powerhand in brachI/Oplexus

□ Launch Adam’s modified adaptive switching code

□ Select appropriate feedback type

□ Pause learning if learning trial

□ Refresh streams in Lab Remote

□ Ensure PowerHand is in LSL

□ Place first cup

□ Ensure that participant understands the following:

□ How to place simulated prosthesis hand at home

□ Stay looking at neutral in between trials

□ They can ask for breaks at any point

□ Close the curtain
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□ Set correct threshold (BrachIO ‘Motion Sequencer’ tab)

□ Unpause learning if learning trial

(Trial procedure)

□ Pause learning if learning trial

□ 3 minute break (pause learning in ‘Motion Sequencer’ tab of

BrachIO)

□ Place medium cup

□ Set correct threshold (BrachIO ‘Motion Sequencer’ tab)

□ Unpause learning if learning trial

(Trial procedure)

□ Pause learning if learning trial

□ 3 minute break (pause learning in ‘Motion Sequencer’ tab of

BrachIO)

□ Place final cup

□ Unpause learning if learning trial

(Trial procedure)

□ Gaze Calibrations

□ Suspend powerhand in brachI/Oplexus

□ Turn off Adam’s modified adaptive switching code

□ In Motive, ensure that 3 rigid bodies are selected (HD, Cart, and

Wand)

□ Set the Lab Remote file name to IDA_GazeCal_Stat or _Paint and set

trial number

□ Refresh streams in Lab Remote

□ Ensure PowerHand is NOT in LSL

□ Close curtain

□ Record stationary gaze calibration or paint gaze calibration

□ Record check gaze validation

□ Interview

□ Offer water
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□ Doffing:

□ Unplug eye tracker, ensuring that you ground yourself first

□ Turn off the button

□ Unplug all cables

□ Remove the bolts from the connecting ring

□ Undo all velcro straps

□ Open the simulated prosthesis and have the participant remove

their arm

□ Remove the sleeve and the Myo armband

□ Have the participant remove the belt

□ Have the participant remove the eye tracker

□ Thank participant

Cleanup

□ Clean eye tracker, myo armband, and simulated prosthesis brace

with an alcohol swab

□ Using the Bulk Rename Utility, label erroneous trials (excluding

crushing the cup errors) with the suffix _error

□ Using the Bulk Rename Utility, label trials trials where the

participants were triggered to crush the cup with the suffix _trigger

□ Save motion capture trials to a new folder called Raw

□ Duplicate motion capture trials to a new folder called Cleaning

□ Remove the motion capture system calibration files and the _error

trials from the Cleaning folder

□ Save xdf trials to a new folder called Exported

□ Clean and export motion capture trials to the Exported folder,

following these general steps:

□ Open the files in the Cleaning folder in the Motive Edit view

□ Check each trial to ensure that there are not large gaps in any

labelled markers (quickly visible via the Tracks view)
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□ Correct any mislabelling and fill large gaps in any necessary

trials

□ If any trial has large gaps with all markers missing, try

right

clicking on the trial and selecting \Reconstruct and Auto-

Label".

But ensure that the auto-labelling is correct.

□ Select all trials, right click, and click Solve All Assets

□ Select all trials, right click, and click Export Tracking Data.

Ensure that units are set millimeters, and save to the Exported

folder.

This may take around 5 minutes, with the GazeCal files taking

longer to

export.

□ Select all trials, right click, and click Save. This may take

around

7 minutes, and Motive may stop responding as this continues.

Monitor the Cleaning folder to check that the files are being

saved recently, and you may need to close Motive if it freezes on

any trial.

□ Create two folders in the Exported folder - L2R and R2L. Move the

odd Crush trials to L2R and move the even Crush trials to R2L

□ Using the Bulk Raname Utility, label Crush trials with the suffix

_L2R or _R2L

□ Organize files in the Exported folder and subfolders into GaMA

Project Creation folders: Gaze Calibration, Gaze Validation, Joint

Calibration Landmarks, Joint Calibration Pose, Trials

□ Launch GaMA, and create a New Project for L2R then R2L. This may

take around 8 minutes for each project.

□ Set task to Custom

□ Set PavSig_PowerHand channels 8-10 interpolation to Previous

□ Set output directory to the Projects folder
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□ Move the participant’s folders from Project Creation to the

respective project folders in ALL Project Creation

□ Copy each folder in Projects and pasta in the Combined folder

□ Shut down the mocap computer

□ Fill Participant Metrics spreadsheet (handedness, vision, EMG

experience, forearm length, and Myo armband location)

Procedures

Training

Feedback setting: none

Participants will move an object from left to right, then place the

robot hand on home

After Lab Remote beep, participants will move the object from right

to left and place the robot hand on home

Repeat for approx. 2 minutes

Trial

With correct feedback setting

1-3 for break-only feedback

4-6 for direct feedback

7-9 for predictive feedback

Participants will move an object from left to right, then place the

robot hand on home

After Lab Remote beep, participants will move the object from right

to left and place the robot hand on home
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Repeat for 30 motions

For 1 motion in every 5 participant will be verbally asked to

squeeze the cup harder

3 minute break for participant

Change Durometer

Participant Code

x1x - Direct feedback

heavy > medium > light

x2x - Prediction feedback

heavy > medium > light
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