
Letting the Agent Take the Wheel: Principles for
Constructive and Predictive Knowledge

by

Alexandra Kearney

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

University of Alberta

© Alexandra Kearney, 2023

Abstract

Of all the capabilities of natural intelligence, one of the most exceptional is the

ability to expand upon and refine knowledge of the world through subjective

experience. Therefore, a longstanding goal of Artificial Intelligence has been to

replicate this success: to enable artificial agents to construct knowledge of the

world through subjective experiences.

This thesis explores how an agent can come to know its world through its

experiences by making many predictions about its future sensations, referred

to as Predictive Knowledge. Specifically, I consider predictions expressed as

General Value Functions (GVFs): expected accumulations of future sensations

conditioned on a particular behaviour. While it has been suggested that

GVFs could express all of an agent’s knowledge of the world, few examples

of applications of GVFs exist. Many present examples of GVF applications

require hand-coded relationships between the predictive inputs and an agent’s

decision-making. I argue that two key challenges must be addressed in order

for Predictive Knowledge agents to achieve their potential: enabling agents

to determine both what their predictions are about and how predictions are

learned.

ii

In this thesis, I provide one particular solution to both challenges. First,

I generalize Incremental Delta-Bar-Delta to be used with temporal difference

learning, which I name TIDBD. TIDBD allows Predictive Knowledge agents

to modify both the rate at which they learn and the weighting of their features

independent of designer intervention during learning. I empirically evaluate the

performance of TIDBD in synthetic and real-world robotics prediction tasks.

Having provided agents with a means of modifying how they learn a

prediction, I then explore how an agent might choose what prediction questions

to ask. I argue that predictions should be chosen not based solely on their

accuracy with respect to some true value but rather with respect to their

usefulness in decision-making. Through a series of examples, I demonstrate

that selecting predictions based solely on strict measures of accuracy can lead

to poor model construction. I show with a worked example how poor model

choices can lead to catastrophic performance when model estimates are used

in further decision-making. I propose a heuristic for assessing GVF estimates

that combines both the accuracy of the prediction and the usefulness of the

input features.

Further exploring usefulness in the construction of knowledge, I provide a

meta-gradient method that adapts what predictions an agent learns based on

feedback from the control learner. I demonstrate that by using meta-gradient

descent, an agent can find predictions that resolve partial observability when

the control learner uses prediction estimates as additional inputs.

In total, this thesis provides a new perspective on the importance of pre-

dictions: prioritizing an artificial agent’s use of predictions over a prediction’s

representational accuracy. In the process of developing this perspective, I in-

troduce new algorithms that enable Predictive Knowledge agents to be applied

more broadly with less designer intervention.

iii

Preface

The contents of this thesis are drawn from a number of peer-reviewed publica-

tions that were submitted during the course of my studies.

Chapter 3 draws from the following works:

1. A. Kearney, V. Veeriah, J. Travnik, R. Sutton, P. M. Pilarski, “Every

step you take: Vectorized Adaptive Step-sizes for Temporal-Difference

Learning,” 3rd Multidisciplinary Conference on Reinforcement Learning

and Decision Making, 2017. (Poster and abstract.)

2. A. Kearney, V. Veeriah, J. B. Travnik, P. M. Pilarski, R. S. Sutton,

“Learning Feature Relevance Through Step Size Adaptation in Temporal-

Difference Learning,” arXiv:1903.03252, 38 pages, 2019.

3. J. Günther, A. Kearney, N. M. Ady, M. R. Dawson, P. M. Pilarski,

“Meta-learning for Predictive Knowledge Architectures: A Case Study

Using TIDBD on a Sensor-rich Robotic Arm,” Proc. of the 18th Interna-

tional Conference on Autonomous Agents and Multiagent Systems), 2019,

pp. 1967–1969. (Extended abstract and poster.)

4. J. Günther, N. M. Ady, A. Kearney, M. R. Dawson, P. M. Pilarski,

“Examining the Use of Temporal-Difference Incremental Delta-Bar-Delta

for Real-World Predictive Knowledge Architectures,” Frontiers in Robotics

and AI, vol. 7, no. 34, 2020, DOI: 10.3389/frobt.2020.00034.

iv

For papers 1 and 2, I developed the experimental design in consultation with

Patrick Pilarski. I generalised IDBD and AutoStep to the policy evaluation

case independently. Jaden Travnik and Vivek Veeriah provided feedback on

experimental design. Jaden Travnik co-wrote the grid-world experiments, Vivek

Veeriah wrote the original feature relevance experiments presented in the first

manuscript. All prediction experiments involving prosthetic data were solely

developed by me. Patrick, Jaden, and Vivek were consulted during the analysis

of experimental results. I contributed the majority of the writing for both

manuscripts. Editing suggestions were provided by Rich Sutton and Patrick

Pilarski.

For manuscripts 2, and 3, I contributed code and I contributed to the

experimental design and analysis of both papers. I contributed substantially

to the writing of manuscript 2; this manuscript was further expanded on for

manuscript 3—a journal paper.

Chapter 4 draws from a series of publications:

1. A. Kearney, A. Koop, C. Sherstan, Günther, R. S. Sutton, P. M.

Pilarski, M. E. Taylor, “Evaluating Predictive Knowledge,” AAAI 2018

Fall Symposium on Reasoning and Learning in Real-World Systems for

Long-Term Autonomy, 2018, pp. 43–46.

2. A. Kearney, P. M. Pilarski, “When is a prediction knowledge?,” 4th

Multidisciplinary Conference on Reinforcement Learning and Decision

Making, 2019, pp. 231-235.

3. A. Kearney, A. Koop, P. M. Pilarski, “What’s a Good Prediction?

Challenges in evaluating an agent’s knowledge,” invited paper to the

ICLR NERL21 workshop: A Roadmap to Never-ending Reinforcement

Learning, 2021, arXiv:2001.08823

4. A. Kearney, A. J. Koop, P. M. Pilarski, “What’s a good prediction?

Challenges in evaluating an agent’s knowledge,”Adaptive Behavior, 14

pages, 2022.

v

The central idea of these papers was developed with Anna Koop. I was the

sole designer of the code and primary designer of the experiments presented.

In the first iteration of the paper, Johannes Günther and Matt Taylor provided

supervision throughout the project. The line of argumentation was developed

with both Anna Koop and Patrick Pilarski. I was the primary writer of all

manuscripts. Patrick and Anna both provided editorial feedback on various

versions of the paper.

Chapter 5 draws from:

1. A. Kearney, A. Koop, J. Günther, P. M. Pilarski, “Finding Useful Pre-

dictions by Meta-gradient Descent to Improve Decision-making,”NeurIPS

2021 Workshop: Self-Supervised Learning - Theory and Practice, Dec. 14,

2021.

2. A. Kearney, A. Koop, J Günther, P. M. Pilarski, “ What Should I

Know? Using Meta-Gradient Descent for Predictive Feature Discovery

in a Single Stream of Experience,” Proc. of the 1st Conference on Life

Long Learning Agents, 2022.

I developed the meta-descent method which is evaluated in the preceding

manuscripts. Experimental design was developed in consultation with Anna

Koop, Johannes Günther, and Patrick Pilarski. All code for this project was

written by me. Writing of these papers was joint effort between myself and Anna

Koop, with editorial feedback from Patrick Pilarski and Johannes Günther.

Ethics approval was not needed for this thesis.

vi

For Oliver Oxton & Anna Koop

vii

Nihil est in intellectu quod non prius fuerit in sensu.

viii

Acknowledgements

It takes a village to raise a researcher. I am profoundly grateful for the research

community and the individuals who supported me in my studies.

• Anna Koop, thank you for your unwavering support throughout my

studies. Your mentorship and nurturing made all the difference. I owe a

debt of gratitude to you.

• Johannes Günther, thank you for standing by me throughout my studies.

During difficult times, your guidance and perspective brought me to

creative solutions.

• Matthew Schlegel, thank you for your friendship. You were an invaluable

source of discussion, and an anchor I could rely on.

• Brian Tanner, thank you for being a sounding board. Your openness to

exploring new ideas with me was a source of energy and motivation.

• Thank you to Jaden Travnik, Dylan Brenneis, and Vivek Veeriah for

being exceptional lab-mates. The hours spent at the whiteboard exploring

new ideas with you all were everything that I hoped graduate studies

would be.

Finally, I would like to thank my supervisory committee. Thank you,

Joseph, for your careful feedback and patience. Rich, thank you for giving me

licence to explore big ideas. Patrick, thank you for your enthusiasm, positivity,

and creativity. Your encouragement throughout the long years helped me

become the researcher I am today.

ix

Contents

1 Introduction 1
1.1 Statement of Purpose . 2

1.1.1 The what . 3
1.1.2 The how . 4

1.2 Contribution 1: How Should an Agent Learn? Adapting Step
Sizes by Meta-gradient Descent 6

1.3 Contribution 2: What’s a good prediction? New Directions for
Evaluating an Agent’s Knowledge 6

1.4 Contribution 3: What Should an Agent Know? Online Discovery
of Useful Predictions . 8

1.5 Thesis Adjacent Contributions: 8
1.6 Structure of the Thesis . 9

2 Background 10
2.1 A Brief History of Predictive Knowledge 10
2.2 Reinforcement Learning & Predictive Knowledge 13

2.2.1 Conceptual progress in developing
Predictive Knowledge 16

2.2.2 Architectural developments in defining the structure of
Predictive Knowledge agents 18

2.2.3 Algorithmic developments for Predictive Knowledge agents 19
2.2.4 Applications of Predictive Knowledge 19

2.3 Modifying Learning by Adapting Step Sizes 20
2.4 Stochastic Gradient Descent Optimisers 22
2.5 Step-size Adaptation for Reinforcement Learning 23

2.5.1 HL(�) . 24
2.5.2 AlphaBound . 24
2.5.3 The step-size adaptation method explored in this thesis:

Incremental Delta-Bar-Delta 25
2.6 Open Questions in Predictive Knowledge 28

2.6.1 How does an agent learn to predict? 28
2.6.2 How does an agent use predictions? 28

x

2.6.3 How does an agent structure its predictions? 29
2.6.4 How does an agent determine what to learn about? . . 29

3 How should an agent learn? Adapting Step Sizes by Stochastic
Meta-descent 31
3.1 Gradient Methods for Meta-learning 32
3.2 Stochastic Meta-descent for Learning Feature Relevance 34

3.2.1 Incremental Delta-Bar-Delta 34
3.2.2 TIDBD: TD Incremental Delta-Bar-Delta 36
3.2.3 Derivation of semi-gradient method 37
3.2.4 Derivation of ordinary-gradient method 40

3.3 Does a Single, Shared Step Size by TIDBD Outperform Ordinary
TD? . 42
3.3.1 Grid world . 43

3.4 Auto TIDBD: AutoStep for TD Learning 46
3.4.1 AutoStep for TD . 48

3.5 How well Does AutoTIDBD Adapt a Single Step Size? 52
3.6 How Robust is AutoTIDBD to Selection of Meta Step Size ✓

When Adapting Many Step-sizes? 53
3.6.1 Robotic prediction task 53
3.6.2 Sensitivity to meta step size ✓ in a prosthetic prediction

problem and performance relative to existing methods . 56
3.6.3 Sensitivity to meta step size ✓ across prediction problems 59
3.6.4 Can AutoTIDBD perform representation learning? . . 60

3.7 Examining AutoTIDBD for Real-world Robotics 61
3.7.1 Experimental setup . 63
3.7.2 Experiment: comparison of fixed step size TD and OG

AutoTIDBD . 65
3.7.3 Experiment: parameter sensitivity for TD and OG Au-

toTIDBD . 70
3.7.4 Experiment: stuck sensors 70
3.7.5 Experiment: broken sensors 73
3.7.6 Discussion on real-world experiments 75

3.8 Related Literature, Limitations, and Future Work 77
3.9 Conclusion . 79

4 What’s a Good Prediction? New Directions for Evaluating
Agent Knowledge 80
4.1 Introduction . 81
4.2 Understanding the World Through General Value Functions . 85

xi

4.3 How GVFs are Specified and Learned 85
4.3.1 The Challenge of Constructing Knowledge 87

4.4 Experiment 1: How Poor Evaluation Impacts Predictive Features 87
4.4.1 Evaluation by empirical return error 87
4.4.2 A synthetic example 88
4.4.3 Experimental summary 90

4.5 Experiment 2: How Performance is Impacted by Poor Predictive
Features . 90
4.5.1 Estimating error for off-policy learning 92
4.5.2 Predictions estimated 93
4.5.3 Experimental environment 93
4.5.4 Results . 94
4.5.5 Experimental summary 98

4.6 Proposal: Evaluation of Feature relevance 99
4.6.1 Derivation of off-policy Semi-gradient AutoTIDBD . . 100

4.7 Experiment 3: Analysing Feature Relevance 106
4.7.1 Experimental setup . 106
4.7.2 Results: examining feature relevance 106
4.7.3 Conclusion . 107

4.8 Relevance & Related Work . 108
4.9 Contributions of This Chapter 108

5 What Should An Agent Know? Online Discovery of Useful
Predictions 110
5.1 Introduction . 110
5.2 Learning What to Predict by Meta-gradient descent 114
5.3 Can an Agent Learn What to Predict? 118
5.4 Learning to Specify GVFs in Monsoon World 120

5.4.1 Meta-parameter specification 123
5.4.2 What GVFs are specified by meta-gradient descent? . . 124

5.5 Learning to Specify GVFs in Frost Hollow 125
5.6 Limitations & Future Work 129
5.7 Conclusion . 130

6 Future Horizons 132
6.1 Adapting Step Sizes & Bias 133
6.2 Evaluation . 134
6.3 Meta-descent . 134
6.4 Future Directions . 135

xii

List of Tables

2.1 IDBD variants for Reinforcement Learning and their defining
features. 27

3.1 Parameter candidates tested in full factorial design. 64
3.2 Average RMSE over 30 independent runs 66

5.1 Best parameter settings for different agent configurations . . . 126

xiii

List of Figures

3.1 Gridworld Problem. 43

3.2 Parameter study of semi and ordinary-gradient TIDBD 44

3.3 Parameter study of semi and ordinary-gradient TIDBD 51

3.4 Experiment setup for the robotic prediction task. 53

3.5 Cumulative error comparison of TD and OG AutoTIDBD for
prediction of hand position. 55

3.6 Absolute cumulative return error averaged over 24 independent
trials for a variety of learning methods. 57

3.7 Cumulative error for different meta-step size values across a
variety of different prediction problems on the bionic limb. . . 58

3.8 Average magnitude of step sizes over all trials. 61

3.9 The Modular Prosthetic Limb (MPL), a robot arm with many
degrees of freedom and sensors used for the experiments in this
chapter. 62

3.10 Decoded percept data from the robot over the 30 minutes of the
experiment. 62

3.11 RMSE for Experiment 1: functioning sensors. 66

3.12 Step size development over the course of the experiment. . . . 69

3.13 Accumulated RMSE over the experiment, depending on the
initial step size. 71

3.14 Step sizes distribution for the four elbow sensors and the remain-
ing 104 sensors, when the four elbow sensors are stuck. 72

3.15 Step sizes distribution for the four elbow sensors and the remain-
ing 104 sensors. 73

4.1 Cartoon describing how knowledge could be built from an agent’s
subjective experience. 84

4.2 A synthetic example where error is misleading. 89

xiv

4.3 Cumulative RUPEE for the ‘touch-left’ and ‘touch-right’ predic-
tions averaged over 30 independent trials. 91

4.4 A visual representation of the agent’s visual input by subsam-
pling 100 random pixels. 94

4.5 Estimates produced by GVFs in a network. 96

4.6 The average active step sizes for each layer of both the prediction
and tracking networks averaged over 30 independent trials. . . 104

4.6 The average weighted feature relevance 1
↵ |w| for each layer of

both the prediction and tracking networks. 105

5.1 Depiction of meta-gradient agent structure. 113

5.2 The monsoon problem. 118

5.3 Parameter settings for different agent configurations 119
5.4 Reward during final evaluation phase. 120

5.5 Standard function approximation steps for Echo GVFs. 121

5.6 Predictions learned, and the meta-parameters specified each GVF.122
5.7 A depiction of the frost hollow problem. 125

5.8 Average cumulative reward and standard error of the mean
during final 1000 evaluation steps for best configuration of each
agent. 126

5.9 The mean cumulative reward for each agent during all of learning
in Frost Hollow. 127

5.10 A depiction of the weights of the meta-weight vector !c for
cumulants learned. 127

xv

Chapter 1

Introduction

Knowledge is a fundamental aspect of intelligence, both biological and artificial.

The ability of humans and animals to conceptualize the world around them is

integral to their success and survival. Therefore, a central theme of Artificial

Intelligence research is how agents might develop knowledge of their world

(McCarthy & Hayes, 1981).

This thesis explores knowledge within the context of Computational Rein-

forcement Learning, where a growing collection of work seeks to express all of an

agent’s knowledge of the world as a collection of predictions of future sensations

(White, 2015). This approach, referred to as Predictive Knowledge, promises

to enable agents to build knowledge of their world through interaction in a

completely subjective, autonomous way by learning to estimate many predic-

tions of future sensations (Ring, 2021; Sutton, 2009; Sutton et al., 2011; White,

2015), without human labelling of data or instruction. Predictive Knowledge

differentiates itself from prior constructivist works (Becker, 1973; Cunning-

ham, 1972; Drescher, 1991), prior continual learning efforts (Ring, 1997), and

prior work on predictive state representations (Littman et al., 2002) by taking

an epistemic stance: more than a collection of machine learning methods,

Predictive Knowledge positions itself as a theory of machine knowledge.

1

Predictions are a sensible starting point for constructing knowledge and

are of interest outside of AI research to those focused on biological intelligence.

Humans and many animals build predictive sensorimotor models of the world,

and these predictions of experience form the basis of perception (Rao & Ballard,

1999; Wolpert et al., 1995).

A principled and well-understood way of making temporally extended

predictions in computational Reinforcement Learning is by estimating value

functions (Sutton & Barto, 2018). Value functions estimate the expected

long-term accumulation of a signal available to the agent given its current

sensations. While commonly used to estimate the discounted sum of future

reward, value functions can estimate the accumulation of any stimulus available

to an agent via its senses (White, 2015).

Predictive Knowledge agents can be self-supervised (meaning that they do

not require input from human designers to learn estimates), fully incremental

(learning as data and experience become available to the agent), and compu-

tationally efficient (as the complexity of learning is independent of the time

horizon over which estimates are learned). In short, Predictive Knowledge

provides a plausible approach for artificial agents to conceptualize the world in

an ever-growing way, independent of human coaching and instruction.

However, for us to realize the full potential of Predictive Knowledge, two

key challenges must be addressed: how do agents learn their predictions, and

how do agents decide what to predict? This thesis presents an approach to

these challenges.

1.1 Statement of Purpose

Predictive Knowledge agents construct their knowledge of the world by learning

to estimate many predictions about their sensations. One challenge Predictive

Knowledge agents face is determining what to predict: of the infinitely many

predictions an agent could make, what predictions are most useful in supporting

decision-making? What predictions help an agent make better decisions? I call

the problem of determining what to learn the what problem.

2

Machine learning methods are often governed by hyperparameters that

specify how learning occurs: parameters that must be tuned for each individual

learner. Given that Predictive Knowledge agents learn to estimate many

predictions of their world, another challenge is determining how an agent

should learn by selecting its hyperparameters. I call the problem of modifying

how learning occurs as the how problem.

In this thesis, I develop learning methods that:

1. Enable a computational agent to decide what to learn about by modifying

the parameters that specify a prediction.

2. Enable a computational agent to decide how to learn a prediction by

modifying the parameters that govern learning.

In the following sections, I elaborate on the challenges of determining what

to learn and how to learn and how this thesis presents an approach to solving

these challenges.

1.1.1 The what

I focus on agents that construct knowledge of their world by learning many

predictions about the sensorimotor inputs available to them. In particular,

I consider predictions encoded as General Value Functions (GVFs) (White,

2015). General Value Functions have three components that determine what

a prediction is about: 1) the cumulant, or signal of interest being predicted;

2) the discount function that determines how far into the future the signal

of interest should be attended to; and 3) the policy that determines what

behaviour must be undertaken by the agent to realise the signal-of-interest’s

value.

An agent could make infinitely many predictions about its environment;

however, not all predictions are useful for informing decision-making. In this

thesis, I develop a method that enables an agent to specify the parameters that

determine what a prediction is about, independent of human selection based

on the agent’s subjective experience. In particular, I develop a meta-descent

3

method that adapts what a GVF is about based on its alignment with the

control task an agent is attempting to solve.

This pragmatic approach to selecting predictions contrasts with methods

that choose predictions based on assessing GVFs based on how well they

represent the environment. I argue against representation as the focus of

knowledge and expand on this in a series of worked examples. In particular,

I show that evaluating predictions in terms of their error—how well they

represent some true underlying value over a set of states—does not imply

that their learned estimates will help inform further decision-making. Having

empirically explored the limitations of representation, I discuss how an agent

can learn general value functions that are useful for decision-making. This

thesis empirically demonstrates that through meta-descent, an agent can learn

predictions that can be used as input features to improve task performance.

1.1.2 The how

Machine learning methods are often governed by parameters that modify how

learning occurs. A particular parameter that is common in many machine

learning methods is the step size, or learning rate. Learning methods can be

sensitive to the step size parameter, where the parameter is carefully tuned for

each new learning problem. For ordinary learning agents, this means that for

each individual learning task (e.g., a classic control problem vs a video game)

the step size is manually selected to ensure reasonable performance. There exist

Machine Learning methods that do not have a learning rate. The assumptions

made in these methods are not suited to the Predictive Knowledge setting. For

example, Least-squares TD learning (Boyan, 2002) is the most data efficient

form of linear TD learning, and eliminates the need for a step-size parameter;

however, to achieve this data efficiency LSTD learns offline, and has a higher

computational and memory cost: traits not suited to the Predictive Knowledge

setting where an agent incrementally and continually updates many prediction

estimates online and incrementally. Moreover, because LSTD does not use a

step-size, it never forgets past experiences. In stationary environments where

the world and the agent’s policy do not change over time, this persistence of
4

past experiences may not be a concern. However, in the Predictive Knowledge

setting, where an agent must continually learn online in a non-stationary

environment, LSTD’s elimination of the step-size is a liability, rather than an

advantage. Incremental learning methods that have a deterministic step-size

schedules that are effectively parameter-free exist, such as HL(�) (Hutter &

Legg, 2008) and AlphaBound (Dabney & Barto, 2012). In both cases, it

assumed that the environment is stationary. The Predictive Knowledge regime

considers an agent learning continually in its environment, ideally the real-world.

Much preliminary work in both designing and applying predictive knowledge

agents has been set in the real-world (Edwards, Dawson, Hebert, Sherstan,

et al., 2016; Modayil et al., 2014; Sutton et al., 2011): an inherently non-

stationary environment. For these reasons, existing parameter-free step-size

adaptation methods are not well suited for the Predictive Knowledge setting.

In this thesis, I provide a method of adapting step sizes for temporal-

difference learning, the learning method that underpins the estimation of

General Value Functions. In particular, I develop a step-size adaptation method

suited for real-world, never-ending learning contexts. Predictive Knowledge

as a branch of research aims to design learning methods that enable agents

to learn continually for the duration of their lives: constructing and refining

knowledge of the world as an ongoing practice the agent is engaged in.

Step sizes can be assigned per feature, enabling the update to a weight to be

tuned based on the corresponding input. Adapting step sizes on a per-feature

basis provides a basic representation learning method. In this thesis, I bring

Incremental Delta-Bar-Delta (Sutton, 1992) and AutoStep (Mahmood et al.,

2012) to policy evaluation. The goal of adapting these meta-learning methods

to suit General Value Functions is to provide a robust way of enabling agents in

continual learning settings to both continuously adjust the step size values that

govern temporal-difference learning and also perform simple representation

learning by weighting features independently in updates. I generalise these

methods for on-policy prediction and empirically assess their performance on

various synthetic and real-world robotics prediction tasks.

5

1.2 Contribution 1: How Should an Agent Learn?
Adapting Step Sizes by Meta-gradient De-
scent

This thesis first starts by addressing the how : this thesis contributes a new

step-size adaptation algorithm for temporal difference learning, which I call

Temporal Difference Incremental Delta-Bar-Delta (TIDBD). TIDBD extends

Incremental Delta-Bar-Delta (Sutton, 1992) from the supervised learning setting

to TD learning (Sutton, 1988). TIDBD outperforms TD on a conventional

prediction problem, achieving lower prediction error. To adapt the step sizes,

TIDBD introduces an additional meta step size parameter. TIDBD is sensitive

to its meta step size in the same way that TD is sensitive to its ordinary step

size. To ameliorate this sensitivity, I incorporate AutoStep’s (Mahmood et

al., 2012) normalisation into TIDBD. I name TIDBD with auto normalisation

AutoTIDBD. This thesis’ experiments show that on a non-stationary prediction

problem, AutoTIDBD outperforms the existing step-size adaptation methods

for policy evaluation that were compared against in this thesis. On the same

non-stationary prediction problem, TIDBD performs representation learning

by assigning small step sizes to noisy features not relevant to the prediction

task.

1.3 Contribution 2: What’s a good prediction?
New Directions for Evaluating an Agent’s
Knowledge

Having proposed a method of step-size adaptation for TD learning, this thesis

turns its attention to the problem of what to learn. To do so, we critically ex-

amine existing methods of evaluating prediction estimates suited for Predictive

Knowledge agents. A challenge for Predictive Knowledge agents is determining

whether to rely on a learned estimate for decision-making. A common practice

in the community is to evaluate a prediction based on its error. The basis of

this belief stems from Predictive Knowledge’s perspective on truth: that an

6

agent’s beliefs about the world—its predictions—are true if they can be verified

by comparing the estimated value to what is observed (Ring, 2021; Sutton

et al., 2011).

This is hardly a surprising stance—similar assumptions are made throughout

machine intelligence research. Researchers often use accuracy as a means of

determining the quality or usefulness of a learned estimate (Bengio et al.,

2017; Russell & Norvig, 2010; Sutton & Barto, 2018). Throughout AI, much

research is driven by accuracy, and by how well learned estimates beat the

state-of-the-art on benchmarks (Bellemare et al., 2013; Deng, 2012; Krizhevsky

& Hinton, 2009; Panayotov et al., 2015). Time has shown that when state-

of-the-art-systems are deployed, and are finally evaluated through their use,

unforeseen practical effects are brought to bear. Patches applied to real-world

scenes can catastrophically disrupt image classification systems (Brown et al.,

2017), imperceptible permutations to auditory inputs can cause classification

to speech recognition systems (Qin et al., 2019), and perturbations to inputs

can disrupt learned policies of goal-seeking agents (Huang et al., 2017).

Over a series of worked examples, I empirically demonstrate that relying

solely on strict measures of prediction error to build an agent’s knowledge can

be misleading. In particular, I demonstrate that when predictions are put to

use, accuracy does not always reflect utility, or usefulness in decision-making.

First, on a simple prediction task, I demonstrate how existing online evaluation

methods for GVFs do not always rank predictions effectively. A core motivation

of GVFs is their proposed use as predictive features, or as signals of interest

for more complex predictions. Using an example drawn from prior work (Ring,

2021), I demonstrate that relying on existing error metrics alone for GVF

selection can negatively impact the learning progress of agents which depend on

estimates as inputs. Having explored the pitfalls of evaluating by error alone, I

demonstrate that by analysing the relevance of input features and prediction

error, it is possible to differentiate between useful and non-useful estimates.

To facilitate this analysis, I generalise AutoTIDBD to the off-policy prediction

setting. This chapter presents an argument against verificationism (Goldman,

1976) as a basis for truth in machine knowledge.
7

1.4 Contribution 3: What Should an Agent Know?
Online Discovery of Useful Predictions

Finally, this thesis presents an approach to determining what to predict. A core

challenge for Predictive Knowledge agents is determining of all the possible

predictions that could be learned, which can support decision-making. This

thesis contributes a method to learn control learner feedback the parameters

that specify what a GVF question is about. In experiments on a small, partially

observable problem, an agent could learn to specify predictions that—when

used as input features—enabled the agent to solve the control problem. The

agent learned to predict aspects of the environment that were different from

what experts constructing GVFs for the agent selected: the agent found an

alternate solution to the problems. In a sparse reward problem, an agent

that selected its GVFs was able to outperform an agent using expert-chosen

predictions on a sparse reward task. Similar to the first domain, GVFs chosen

by the agent are different from expert-chosen GVFs in this sparse reward

setting.

1.5 Thesis Adjacent Contributions:

This thesis is about developing algorithms that further enable applications

and refinement of Predictive Knowledge agents. I build on prior work that

proposes an agent’s knowledge of the world could be well thought of as a

collection of value estimates (Koop, 2008; White, 2015). However, the notion

of Predictive Knowledge not yet fully developed. To better understand how

to develop algorithms for Predictive Knowledge, I also sought to refine the

definition, commitments, and philosophical stance of Predictive Knowledge.

While important to the project of Predictive Knowledge, these works were

omitted to keep the thesis concise and the narrative focused. While the following

papers have been omitted, they may be of interest to the reader:

8

A. Kearney, P. M. Pilarski, “When is a Prediction Knowledge?”, 4th

Multidisciplinary Conference On Reinforcement Learning and Decision Making

(RLDM), July 7-10th, Montreal, Quebec, Canada, 2019.

A. Kearney, O. Oxton, “Making Meaning: Semiotics Within Predic-

tive Knowledge Architectures” 4th Multidisciplinary Conference On Reinforce-

ment Learning and Decision Making (RLDM), July 7-10th, Montreal, Quebec,

Canada, 2019.

A. Kearney, J. Gunther, P. M. Pilarski, “Prediction, Knowledge, And

Explainability: Examining The Use of General Value Functions in Machine

Knowledge”, Frontiers in Artificial Intelligence 2022

J. Gunther, A. Kearney, M. R. Dawson, C. Sherstan, P. M.Pilarski,

“Predictions, Surprise, and Predictions of Surprise in General Value Function

Architectures,” Proceedings of the AAAI 2018 Fall Symposium on Reasoning

and Learning in Real-World Systems for Long-Term Autonomy, Arlington,

Virginia, October 18-20, 2018, pp. 22–29.

1.6 Structure of the Thesis

This thesis is six chapters long. The second chapter outlines a history of

Predictive Knowledge and related work. The third chapter presents a method

of automatically adapting a learner’s step sizes on a per-feature basis: enabling

agents to modify how a prediction is learned by modifying their learning param-

eters. The fourth chapter challenges commonly held beliefs about evaluation

of Predictive Knowledge—I demonstrate that existing only evaluation methods

do not reliably differentiate between useful and useless predictions. The fifth

chapter presents a method enabling Predictive Knowledge agents to specify

what to predict by stochastic meta-descent. The sixth chapter concludes the

thesis by summarising the contributions of this work and discussing how future

work might further develop Predictive Knowledge agents following in the steps

of this thesis.

9

Chapter 2

Background

In this chapter, I present the general context of this thesis. I survey the ideas

and literature which this thesis builds upon. Details about each contribution

will be discussed in their respective chapter.

2.1 A Brief History of Predictive Knowledge

This thesis is concerned with Predictive Knowledge (Koop, 2008; Rafiee, 2018;

Ring, 2021; Sutton, 2009; White, 2015): an approach to machine knowledge

that is influenced by constructivism (Piaget, 1954; Piaget & Duckworth, 1970).

Constructivism argues that knowledge is continuously expanded upon and

refined through an individual’s experimentation with the world (Piaget &

Cook, 1952). Importantly, knowledge is not external to the individual (as

an empiricist might claim), or that a child innately understands the world

from birth (as a Nativist might claim). Rather, intelligent agents continuously

integrate their subjective experiences to conceptualise the world around them

from(Piaget & Cook, 1952).

Predictive Knowledge is strongly influenced by constructivist theories of

learning: specifically, that knowledge of the world should be grounded in

subjective experience. However, Predictive Knowledge agents do not seek to

explicitly replicate the physical and biological learning systems from which

they draw inspiration. For instance, Predictive Knowledge agents do not

enforce strict adherence to Piaget’s proposed stages of development (c.f. Piaget

and Cook, 1952). Outside Predictive Knowledge, there exists constructivist

10

approaches to machine knowledge that more closely approximate Piaget’s

theories by learning schemas (Chaput et al., 2003; Drescher, 1991; Guerin &

Starckey, 2009; Kansky et al., 2017). Moreover, there are works that take a

developmental approach to guide how agents incrementally construct knowledge

of their world through interactive learning: methods that enable agents to

learn hierarchical spatial representations of the environment (Pierce & Kuipers,

1997), build representations of objects from an agent’s experience (Modayil

& Kuipers, 2008), and enable agents to postulate of sub-tasks to learn skills

(Mugan & Kuipers, 2008). From the perspective of knowledge acquisition, prior

work has explored how to drive an agent’s behaviour to construct knowledge

based on principles from developmental learning (Oudeyer et al., 2005). Such

works have shown that developmental approaches to exploration can enable

agents to learn more efficiently than simply exploring the sensor-space (Baranes

& Oudeyer, 2013), and that by taking an intrinsically motivated approach to

exploration an agent can learn complex behaviours (Forestier et al., 2022).

Following in the footsteps of these prior lines of work: instead of directly

replicating biological learning, Predictive Knowledge agents learn to estimate

predictions about future subjective sensations conditioned on the agent’s be-

haviour. These predictions may be interrelated hierarchically (Ring, 2021;

Schlegel et al., 2021) to express abstractions about the agent’s world using

only the agent’s subjective experiences. In this sense, Predictive Knowledge is

another branch in the tradition of building agents that learn to build their con-

ceptualizations of the world in a way that is grounded in subjective experience.

Constructivism’s influence on Predictive Knowledge is best seen through a

series of perspectives that guide the development of learning methods:

Learning is subjective: Predictive Knowledge research asserts that an

agent cannot rely on labelled examples, as is the case in supervised learning

(Russell & Norvig, 2010); and that an agent cannot rely on hand-coded pred-

icates and inferential relationships, as is the case in expert systems (Russell

& Norvig, 2010). For instance, to conceptualise a cat, an agent may not

receive labelled data that indicates whether a cat is present in an image; such

information comes from human annotation and not the agent’s senses. Once
11

all labelled data has been exhausted, there is no possible way for an agent to

continue to learn about the concept cat without further annotated examples.

There is no way for an agent to expand its categorisation beyond what has

been given via supervision, and there is no way for an agent to expand its

understanding of the world by forming new categories (Sellars, 1956). An

agent’s self-supervision based on its experiences is often referred to in the

Predictive Knowledge literature as grounding : all of an agent’s beliefs are

grounded exclusively in terms of their sensations (Sutton, 2009; Sutton et al.,

2011; White, 2015).

Learning is interactive and action conditional: Drawing from insights

gained through the study of biological intelligence, it is evident that an agent’s

perception of the world does not arise solely from the sensations it receives but

also from how those sensations change as a result of its actions (Nöe, 2004).

In much the same way, Predictive Knowledge agents must acquire knowledge

through their interactions with the world (Sutton, 2009), and this knowledge

must be contingent upon the agent’s behaviour (Ring, 2021).

Learner capacity should increase: Constructive accounts of knowledge

are predicated on the ability of an individual to expand what they know about

the world over time (Piaget & Duckworth, 1970). An infant starts with a

limited understanding of its world. Through the stages of development, a

child gradually refines and expands their understanding of the world (Piaget,

1954). Similarly, a Predictive Knowledge agent should be able to expand its

understanding of the world over time: a Predictive Knowledge agent should

be able to add and learn new predictions of the world over time to expand

its understanding of the world. This requirement is not yet met by the field.

Recent work has explored how an agent may allocate fixed capacity (Schlegel

et al., 2018; Veeriah et al., 2019), but there are few examples exploring how

capacity might expand over time (e.g., Makino and Takagi, 2008).

Learning is continual: In order for an individual to progress through the

stages of development, they must be continually integrating new experiences and

learning from that experience (Piaget, 1954). Drawing from continual learning

(Ring, 1997), a Predictive Knowledge agent must be able to refine their beliefs
12

about the world for the duration of their lives: there is no distinct training,

testing, and deployment phase for Predictive Knowledge agents (White, 2015).

Rather, a prediction is learned, evaluated, and used simultaneously.

2.2 Reinforcement Learning &
Predictive Knowledge

Just as constructive accounts of knowledge begin with a child exploring their

environment, this thesis’ account of machine knowledge starts with an artificial

agent interacting with its environment. I specifically consider Reinforcement

Learning agents that interact with their environment through trial-and-error

to maximise the discounted sum of future signals from the environment: the

reward signal (Sutton & Barto, 2018). The relationship between an agent and

its environment is often phrased as a loop, where an agent takes an action,

which may influence its environment, and then observes the environment.

An agent’s sequential interaction with the world is described as discrete

time-steps. At each new time-step t, the agent observes the environment—

encoded as an observation vector ot—and takes an action at+1, which describes

how it uses its effectors. The agent then observes how the environment changed

ot+1 and receives a reward signal rt+1. The policy an agent is following is a

mapping of observations to actions, where ⇡(at|ot) is the probability of taking

action at given the agent’s observations ot. After taking an action, the time-step

increments, and the agent observes the environment on this new time-step ot+1.

The endless continuing loop of observations and actions over time is the agent’s

subjective stream of experience. The primary focus of this thesis is on how an

agent develops relationships between its observations and actions—from its

experience—to understand the world". In particular, I consider how an agent

might conceptualise its environment by estimating many value functions.

In computational Reinforcement Learning (Sutton & Barto, 2018), value

functions describe the expected discounted sum of a reward signal received by

the artificial agent. By estimating the expected sum of future reward, or return,

an agent can learn which action at is expected to yield the greatest return

13

given what it presently senses from its observations. Value functions can be

generalised to General Value Functions (GVFs) that can express not only the

accumulation of reward but the sum of any future signal available to the agent

via its sensors (White, 2015). Three parameters define the discounted return a

GVF estimates: 1) the policy the prediction is conditioned on ⇡; 2) the signal

of interest being predicted, called the cumulant c; 3) and the amount by which

the return is discounted, called the discount �. Having defined these three

parameters, the expected return is E⇡[Gt] = E⇡[
P

b

k=0(
Qk

j=1(�t+j))ct+k+1)].

Learning General Value Functions can provide important insights into the

environment: learned estimates can be useful predictive features that the agent

can leverage for decision-making (Jaderberg et al., 2017; Pilarski, Dawson,

Degris, Carey, Chan, et al., 2013). For example, by learning to estimate the

future value of the quality of a weld, an intelligent laser welding system could

adapt its controls in anticipation of quality changes (Günther et al., 2016),

enabling the control agent to achieve its goals.

Algorithm 1 TD for learning the accumulation of a cumulant c with linear
function approximation.
1: initialise:
2: Initialise vectors w 2 Rn. Choose a function approximator � that trans-

forms the observations into a feature vector of size n. Choose a step size
↵ > 0. Choose a discount � > 0.

3: begin:
4: Observe initial stimulus from the environment o.
5: repeat interaction with environment:
6: Take action a, observe next stimulus o0 and cumulant c.
7: � c+ �w>

�(o0)�w>
�(o)

8: w w +↵��(o)
9: o o0

10: until termination

Value functions can be estimated online and learned incrementally using

temporal difference learning (Sutton, 1988). Temporal difference learning is

a method of iteratively updating the value estimate by taking the difference

between the observed value and the previous estimate. In Algorithm 1, I

describe TD learning of General Value Functions. The value is estimated by

14

updating a set of weights w incrementally (line 9), which, when combined

with a transformation of the observations �(o), produces the estimated value

v(o) = w>
�(o). The weights are updated according to a temporal difference

error � (line 8). The TD error is a bootstrapped error: the difference between

the estimated value v(ot) and the observed value c+ �v(ot+1) depends on the

estimate itself. The target value that the error � is taken with respect to, in

part, is determined by the estimate on the following step: v(o0) = w>
�(o0).

The weight updates on each learning step are moderated by a step size ↵, or

a learning-rate: a small value that determines the magnitude of the weight

update at each time step to reduce the observed error.

TD methods are often online learning methods where the agent can learn

while interacting with its environment (Degris & Modayil, 2012; Sutton, 1988;

White, 2015). Applications of GVFs have been successful in real-time learning

problems, where the agent receives observations at a high frequency (Edwards,

Dawson, Hebert, Sherstan, et al., 2016; Modayil & Sutton, 2014; Modayil et al.,

2014). Moreover, TD methods are often incremental: when the agent observes

the environment ot, it performs a learning update, and then the observation is

discarded. Observations need not be stored in a buffer for extended periods, as

with replay buffers (Lin, 1993; Schaul et al., 2016). Finally, one of the most

compelling features is that learning is entirely self-supervised1 (White, 2015):

while a designer may choose the parameters that govern learning, the agent

does not rely on information provided by an expert for learning. It does not

require a training set to learn a model— the agent’s own experience stream

provides all the data needed for learning. Such desirable traits have made

GVFs a compelling foundation for developing machine knowledge.

Predictive Knowledge describes a sub-field of research in Reinforcement

Learning which seeks to build constructive intelligence through general value

functions (White, 2015). An agent learns a collection of value functions that

estimate the future value of many aspects of the environment simultaneously
1Self-supervised learning can refer to multiple sub-fields of Machine Learning. In this

thesis, I use self-supervised learning to mean learning where no human-annotated labels are
provided.

15

(Modayil et al., 2014). Predictions need not only be about the immediate

sensations available to an agent; GVFs can also estimate the future return of

other estimates (Schlegel et al., 2021) or internal values generated by learning

itself (Günther et al., 2020; Günther et al., 2018; Sherstan et al., 2016). By

layering predictions, an agent can learn ever-more complex predictions of their

sensations (Ring, 2021; Schlegel & White, 2022). The basis of Predictive

Knowledge research is the claim that such interrelated forecasts could form the

basis for an agent’s knowledge of the world (Ring, 2021; Sutton, 2009; White,

2015).

I divide progress in Predictive Knowledge research into four categories: 1)

conceptual progress that further expands understanding of the expressivity of

predictions, 2) architectural progress that proposes new ways of structuring

Predictive Knowledge agents, 3) algorithmic progress that furthers the stability

of learning methods used by Predictive Knowledge agents, and 4) applications

of Predictive Knowledge agents in real-world settings.

2.2.1 Conceptual progress in developing
Predictive Knowledge

The idea that an agent could build a model of its world grounded only in the

agent’s own experience through TD learning is as old as TD itself (Sutton, 1988).

The idea was later refined with the introduction of General Value Functions

(Sutton et al., 2011; White, 2015) as a generalisation from the prediction of

reward to predictions of an agent’s stimuli.

Since the introduction of TD learning, there has been a progression of work

seeking to expand and explore what predictive estimates can express. An

example of such lines of work is introspective agents. Sherstan et al. examines

how an agent might predict signals generated by its own learning processes—

how an agent might introspect by making predictions about its own learning

(Sherstan et al., 2016). One such internal signal generated during learning

is the prediction error. Günther et al. suggests that the unexplained error

an agent experiences is a signal useful to predict (Günther et al., 2018). By

making predictions of error, an agent could anticipate regular unexplained

16

disturbances in its environment (Günther et al., 2018).

Other work explores how different ways of learning TD estimates can increase

the expressivity of predictions. Drawing from the successor features framework

(Dayan, 1993), recent work has explored how decoupling the environment

dynamics from the reward function enables an agent to learn more quickly

when the reward changes (Barreto et al., 2017). Because an agent learns the

structure of the environment independently, using successor features, agents

can learn new predictions about diverse aspects of the environment more

quickly (Sherstan et al., 2018). Similarly, Universal Function Approximators

parameterise value functions over not just states but also goals (Schaul et al.,

2015). This additional input parameter enables value estimates to generalise

to new and unseen goals. Universal Successor Feature Approximators (USFAs)

(Borsa et al., 2019; Ma et al., 2018) combine UVFAs and SFs to further improve

inference to new tasks.

Further work on expanding expressiveness examines how value estimates

can generalise over time scales. It is not always possible to know which time

scales are useful for agents to learn about. One can imagine that it might

be advantageous to reason over multiple time scales —as biological agents

do (Tanaka et al., 2016). �-nets describe a method that enables agents to

generalise learned predictions over arbitrary discount values � (Sherstan et al.,

2020). Extending prior works that use learned embeddings to generalise over

goals (Schaul et al., 2015), and works that use � as an input parameter (Xu

et al., 2018) to a control learner, �-nets train over many possible discount

values �. By enabling predictions to generalise from fixed temporal horizons to

multiple time-scales, �-nets improve the expressivity of learned predictions.

The aforementioned works add to the literature by proposing new predictions

or new learning methods; another line of work seeks to unify many existing

lines of work in computational Reinforcement Learning under the framework of

General Value Functions and Predictive Knowledge, including policy gradient

methods, successor features (Dayan, 1993), and option models (Precup, 2000)

with GVFs (Comanici et al., 2018).

Not all the works described explicitly mention Predictive Knowledge as
17

their motivation. However, each of these works further expands what can

be expressed using predictions and can be understood through the lens of

predictive knowledge.

2.2.2 Architectural developments in defining the
structure of Predictive Knowledge agents

Another category of research explores how Predictive Knowledge agents might

be structured. If an agent is learning many predictions in parallel, how are they

organised? Are they arranged as one flat structure, or are there layers of many

predictions? How does a control agent use the predictions in decision-making?

TD networks describe how collections of predictions can be hierarchically

structured and learned using temporal difference methods (Silver, 2013; Sutton

& Tanner, 2004). A natural question is how one might expand the predictions

learned by an agent: how additional predictions learners might be added to

the network so that an agent could know more about its surroundings over

time. One proposal was to incrementally add nodes to a TD network based

on residual prediction error (Makino & Takagi, 2008). If a prediction in the

TD network has unexplained residual error, a node is added to the network.

General Value Function Networks (GVFNs) (Schlegel et al., 2021) generalises

the idea of learning networks of predictions to General Value Functions.

Another important decision in the structuring of agents is how learned

predictions are used in decision-making. One option is to use the predictions to

drive fixed responses in anticipation of some stimuli: to give the agent reflexes

(Modayil & Sutton, 2014). A straightforward yet relatively unexplored choice is

to use the predictions as additional input features to a control agent. Another

option is to use the predictions as an auxiliary task (Jaderberg et al., 2017).

An auxiliary task is an additional learning constraint placed on an agent in

addition to learning the value of a given state (e.g., predictions of pixel values

in a video game environment). While the agent does not use the forecasts

themselves, the predictions act as a regulariser by contributing to the loss

function. By learning to estimate predictions, the agent learns features useful

not only for the control task at hand but also in the modelling of different

18

aspects of the environment (Jaderberg et al., 2017).

2.2.3 Algorithmic developments for Predictive Knowledge
agents

A foundational component of Predictive Knowledge agents is the mechanism

by which they learn their predictions. Recent years have seen the develop-

ment of numerous off-policy TD learning methods (Ghiassian et al., 2018;

Hackman, 2012; Hallak et al., 2016; Liu et al., 2016; Maei, 2011; Mahmood,

2017), each with their strengths and weaknesses. New work has empirically

assessed off-policy learning algorithms to better understand their performance

characteristics in synthetic (Ghiassian & Sutton, 2021) and real-world robotics

domains (Rafiee, 2018) with a focus on their usefulness as a learning mechanism

for Predictive Knowledge agents.

When an agent learns about many aspects of the environment, how does

the agent behave? How does an agent balance the needs of many independent

learning processes? By taking into account the learning progress of several sub-

learners, an agent can better explore the environment, generating interesting

behaviour (Linke et al., 2020).

2.2.4 Applications of Predictive Knowledge

Finally, I discuss how predictions have been used to inform decision-making in

real-world agents. A mature line of work applying Predictive Knowledge to

control and decision-making has explored the use of predictions in adapting the

control interfaces of myoelectrically controlled bionic limbs.(Pilarski et al., 2011).

By learning value estimates, an agent can anticipate many signals produced in

the operation of a bionic limb, including the control commands of a subject

who uses a bionic limb to complete a task (Pilarski et al., 2012; Pilarski, Dick,

et al., 2013). Using these estimates, the control interface can be modified so

that a user can complete tasks more quickly (Edwards et al., 2014). In addition

to modifying the control interface, agents can also cooperatively take actions

using the limb to reduce the burden of control on a user (Edwards, Dawson,

Hebert, Sherstan, et al., 2016; Sherstan et al., 2015). Such work can be viewed
19

as an introduction of Predictive Knowledge agents as intelligent assistants

that support human users in their decision-making—collaborative agents that

support human decision-makers. Further work has explored how assistive agents

can track important events in a temporally complex environment and provide

signals to a user to alert them about approaching events (Brenneis et al., 2021;

Butcher et al., 2022; Pilarski et al., 2022). In total, Predictive Knowledge

agents are effective in learning about the world and providing information to

human collaborators about oncoming events.

Each of the aforementioned applications are in settings where an agent is

assisting or collaborating with a human. Other works have explored how an

agent might be able to use predictions to better inform their own decisions.

In industrial laser welding, maintaining a high-quality weld is integral to the

strength of the manufactured component (Günther et al., 2016). Pavlovian

control has been used to produce over-ground walking in animal models of

hemisectional spinal cord injuries (Dalrymple et al., 2020). The learned reflexes

of the pavlovian controller demonstrated the ability to learn quickly, personalise

and adapt to new users, and recover from induced mistakes during walking

(Dalrymple et al., 2020).

2.3 Modifying Learning by Adapting Step Sizes

The foundation of Predictive Knowledge agents are their predictions: the

value functions an agent estimates to make sense of its world. How an agent

learns each of these predictions is an important choice. The choice of learning

parameters—values that govern learning–has an important role in determining

how an agent learns to estimate its value functions. How well an agent

can estimate a specific value function is in part determined by the learning

parameters chosen. Of particular interest to this thesis is the step size parameter:

a small constant that determines how much a value estimated is updated on

each time-step.

Given the impact of the step size chosen on the performance of a learner, it

is common for experiment designers to sweep over many parameter settings

20

to find a value for the step size ↵ that results in adequate performance in

offline machine learning(Bergstra et al., 2011; Bergstra & Bengio, 2012). To

sweep over parameter settings, multiple instantiations of an agent are run on

a target task—or set of tasks—for a period of time. After each experiment

terminates, the performance of an agent is analysed—e.g, a ranking based on

value error—so that the best combination of parameters can be identified.

Finding step size values via parameter sweeps is not often suited for Predic-

tive Knowledge agents. In simulated environments, it may be possible to run

many agents in parallel to find appropriate learning parameters; however, it is

impractical to perform parameter sweeps in the long-lived continual learning

settings that Predictive Knowledge focuses on: e.g., real-world robotics set-

tings where there may only be access to a single physical robot. Moreover, a

goal of predictive and constructive approaches to machine knowledge is the

construction of knowledge over time: an agent’s structure may not be fixed

over time. For instance, a network of predictions might be modified over time

as an agent learns more about its environment: predictions might be added

over time to increase the agent’s capacity to learn about its world (Makino &

Takagi, 2008). In such cases, halting an agent’s learning to test a variety of

parameter settings is impractical at best.

If it is impractical to test a broad sampling of step sizes ahead of time, an

alternative approach is for an agent to modify its step size over time. It is

important for Predictive Knowledge agents that a step-size adaptation method

can adapt to changes in the environment. Online continual learning in the

real-world—a setting Predictive Knowledge research prioritises—is often a non-

stationary learning setting. What determines optimal behaviour may change

based on environmental changes (Milan et al., 2016), changes in the behaviour

of other agents (Bowling & Veloso, 2002), or changes in the task an agent is

tackling (Finn et al., 2017). In non-stationary learning problems, the agent

may need to adjust its estimates over time as the environment changes.

In the following sections, I discuss different ways that step-sizes are chosen.

First, I discuss Stochastic Gradient Descent optimisers originally proposed

for scaling the gradients when training large Artificial Neural Nets in the
21

Supervised Learning setting. Following this, I turn my attention to the step-

size adaptation methods that have been proposed in Reinforcement Learning.

I will then discuss one focus of this thesis, a step-size adaptation method which

I will generalise from supervised learning to policy evaluation.

2.4 Stochastic Gradient Descent Optimisers

Adaptive step size methods that update based on learning progress are ubiq-

uitous in applications of Artificial Neural Nets. Optimisers describe a set of

approaches designed to scale the gradients in Stochastic Gradient Descent

(SGD). Optimisers such as Adagrad (Lydia & Francis, 2019), Adadelta (Zeiler,

2012), RMSPROP (Tieleman & Hinton, 2012), and Adam (Kingma & Ba,

2015) are designed for applications of SGD. These optimisers counteract some

challenges of training deep neural nets: for instance, vanishing and exploding

gradients. The principles underlying many optimisers are similar. For brevity,

I explain one of the most common optimisers currently deployed: Adam.

Adam scales a gradient via two moving averages: an average of the gradient

and another of the squared gradient. Each exponential moving average is

governed by a weighting, �1 and �2 that determines how much to weight recent

gradients gt for an estimate.

mt �1mt�1 + (1� �1)gt (2.1)

nt �2nt�1 + (1� �2)g
2
t (2.2)

The first and second moment estimates correspond to the mean and variance

of the gradient. The update to the weights is then the mean divided by the

standard deviation of the gradients.

w w + ↵
m

1� �1
/(

r
n

1� �2
+ ✏) (2.3)

While Adam provides a robust way of scaling the gradients for SGD, it

is not parameter-free. Adam introduces three additional parameters that are

22

tuned: two step sizes, �1 and �2; and a small constant ✏ that ensures the

denominator is always non-zero. While ↵, �1, �2, and ✏ can all be tuned, it

has been argued that for the default parameters Adam performs well across a

variety of different network structures and learning problems (Kingma & Ba,

2015). Adam is computationally efficient, requiring O(n) memory, where n

is the size of the gradient g, and has linear computational complexity O(n).

Adam’s estimates of the first and second moments can be learned online and

incrementally.

The lesson from optimisers is that by scaling updates based on learning

progress, the underlying learning (in this case SGD) method can benefit and

performance can be improved. This improvement is drawn from two sources:

first, the difficulty of choosing a learning rate is reduced; second, weight updates

are scaled on a per-feature basis, acting as a form of representation learning.

In this thesis, I focus on Predictive Knowledge agents that learn many

GVFs. While optimisers have had great success in deep learning, whether

they are suited to applications of Reinforcement Learning without artificial

neural nets is not as clear: a topic broached in Chapter 3 through empirical

comparisons.

2.5 Step-size Adaptation
for Reinforcement Learning

In the following sections, I discuss a variety of step-size adaptation methods

that have been developed for the Reinforcement Learning setting. There are

approaches to step-size adaptation that are independent of the batch machine

learning literature, and designed specifically with RL in mind. Such methods

include HL(�) (Hutter & Legg, 2008), AlphaBound (Dabney & Barto, 2012),

and the many examples explored by Dabney (Dabney, 2014). A common

hindrance of most of these adaptive learning methods is that they introduce

additional meta learning parameters: parameters that govern the process by

which the step size is adapted. In this way, adaptive step sizes do not eliminate

the influence of learning parameters on performance, but attempt to reduce

23

sensitivity to these parameters.

2.5.1 HL(�)

HL is an approach to setting step sizes where the step size is determined by

the eligibility traces, and a visitation count of the present state transition. For

a state visitation-count c, eligibility traces e, and a discount �, HL(�) defines

a scalar step size value ↵(st, st+1) = 1
c(st+1)��e(st+1)

c(st+1)
c(st)

. Intuitively, HL(�)

scales the step size based on the visitation count between two states. The

second term c(st+1)
c(st)

could be interpreted as increasing the step size when st+1

has been visited more frequently than the present state st. In such cases, it

might be expected that v(st+1) is better estimated than v(st) meaning that

the TD error should be weighted more, as the bootstrapped error might be

more accurate to the true underlying value. The first term 1
c(st+1)��e(st+1)

is an

ever-decreasing fraction: as the state visitation increases, the step size decreases.

While HL(�) removes the step size parameter, it requires a state-visitation

count c, incurring O(n) memory cost, where n is the number of states. Because

of this state visitation count, HL is not well suited for real-world applications

where the agent observes stimuli from the environment, rather than states.

2.5.2 AlphaBound

AlphaBound is a step-size adaptation method designed for online learning with

function approximation. AlphaBound calculates an upper bound for the step

size value to guarantee that divergence does not occur. Using this upper bound

as a heuristic, the step size is adapted over time. Given eligibility trace e,

discount �, a function approximator �, and observations o the step sizes are

adapted as follows: the initial step size is ↵0 = 1.0, and subsequent step sizes

are ↵t = min(↵t�1, |e>t (��(ot+1) � �(ot))|). Alpha bound has a linear O(n)

computational complexity per step, where n is the number of features in �(o),

and does not require additional memory.

24

2.5.3 The step-size adaptation method explored in this
thesis: Incremental Delta-Bar-Delta

Having discussed some of the numerous step-size adaptation methods in su-

pervised learning and Reinforcement Learning, let us turn our attention back

to the supervised learning setting. In particular, I discuss the adaptation

method that I generalise to the TD learning setting: Incremental Delta-bar

Delta (IDBD) (Sutton, 1992). IDBD is a step-size adaptation for supervised

learning that adapts step sizes on a per-feature basis by performing stochastic

meta-descent. Through meta-gradient descent, IDBD minimises the squared

error �
2 with respect to the meta-weights �, @�2

@� ; � is the difference between

the target value and the estimated value, and � are meta weights that specify

the step sizes ↵ = exp(�). As IDBD is at its heart stochastic gradient descent,

it requires an additional meta step-size parameter ✓ to govern its own meta

gradient descent process that adapts the underlying supervised learning process’

step sizes. For n features, the inputs are x 2 Rn, the meta-weights are given

by � 2 Rn and an additional memory vector h 2 Rn. IDBD’s gradient steps

are scaled by a meta step size ✓ > 0. The updates for IDBD are as follows:

� � + ✓�xh (2.4)

↵ exp(�) (2.5)

h h relu(1�↵x2) +↵�x (2.6)

An intuition of IDBD is that features which are correlated with the error

should be weighted more, and features that are not correlated with the error,

should contribute less to the learned estimate. In this regard, IDBD is solving

two problems at once: 1) how to choose step size parameters, and 2) how to

weight input features. IDBD is relevant to this thesis for three properties:

25

1. IDBD is an efficient algorithm that is linear in terms of memory and

computation in the number of features.

2. IDBD is an online, incremental algorithm.

3. IDBD adapts step sizes on a per-feature basis.

Because of these properties, IDBD is a suitable candidate for generalisation

to TD learning for use in Predictive Knowledge agents where many predictions

are learned, and ideally designers are not tasked with extensive parameter

tuning and feature selection prior to learning and deployment.

There exist two other works that generalise IDBD to step-size adaptation

to value-based RL methods. First, a generalization of nl-IDBD (Koop, 2008)

for self play in episodic games, also called nl-IDBD (Bagheri et al., 2016; Thill,

2015). Second, an examination of online step-size adaptation methods for

episodic control tasks: SID, NOSID, and AutoSID (Dabney, 2014). The variety

of existing approaches reflects the differing motivations and use-cases of the

original works. Both bodies of work make different choices when bringing

IDBD from supervised learning to bootstrapped RL methods.

One choice is how the gradient of TD error is taken with respect to the

learned weights rw�. The TD error � = c+ �v(�(o0))� v(�(o)) can be broken

into two components:

Target: c+ �v(�(o0)) what error is calculated with respect to.

Estimate: v(�(o)) the value estimate that error is calculated for.

Because the target depends on the value estimate at the following time-

step v(�(o0)), there is a question of whether the estimate at o0 should be

included in the gradient calculation. If included, the gradient is a residual

gradient (Baird, 1995), or ordinary-gradient. If excluded, then the gradient

is a semi-gradient (Sutton & Barto, 2018). Both existing generalisations to

RL take differing approaches: nl-IDBD examines a semi-gradient approach,

and Dabney’s methods all use an ordinary-gradient. In this thesis, we derive

26

algorithms for both, and compare their properties to better understand the

consequences of each choice.

Another choice is how to construct the objective function: with respect to

what value should the step-sizes be modified? One option is to use the one-step

TD error, another is to use the �-return. Multi-step learning methods that use

the �-return enable a more general approach and offer more efficient learning

(Bhandari et al., 2018). In some cases, methods that use eligibility traces are

susceptible to divergence, particularly in the non-linear function approximation

case (Seijen, 2016); however, this is not a general rule. Multi-step methods

that utilise eligibility traces can yield improvements over one-step methods in

the non-linear function approximation setting (Harb & Precup, 2017). In this

thesis, I consider the one-step setting when generalising IDBD to TD learning.

While each existing generalisation of IDBD to RL is distinct, there are some

commonalities: all existing generalisations are tested on problems that are

episodic, stationary, and fully observable. In contrast, this thesis is concerned

with continual learning problems that exhibit both non-stationarity and par-

tially observability. How well existing generalisations of IDBD perform in these

conditions remains to be seen. This discussion and comparison is elaborated

on in Chapters 3 and 4, where I introduce a new generalisation: TIDBD.

Algorithm Gradient Objective # of Step sizes
SID, NoSID, AutoSID Ordinary Gradient �-return Scalar

nl-IDBD (TD) Semi-gradient �-return Vector
TIDBD, AutoTIDBD Both �-error Both

Table 2.1: IDBD variants for Reinforcement Learning and their defining fea-
tures.

27

2.6 Open Questions in Predictive Knowledge

Predictive Knowledge is an open area of study, with a broad frontier of research.

In this section, I highlight a few of these open areas of study.

2.6.1 How does an agent learn to predict?

Predictions are at the core of a Predictive Knowledge system. Naturally, an

important decision in the design of Predictive Knowledge agents is how an

agent learns to make a prediction. In this thesis, I consider predictions phrased

as General Value Functions: predictions of the accumulation of a stimulus.

Choosing how to learn a prediction in this case is choosing 1) the learning

method (e.g., gradient TD vs. TDRC) and 2) the hyperparameters used in

learning (e.g., should the step size be smaller).

There is no total ordering of learning methods. Different TD learning

methods will perform better than others or worse depending on many factors,

including the choice of environment; there is no best TD learning method

(Ghiassian & Sutton, 2021)—there is a trade-off between different algorithms.

Common amongst online TD learning methods are their hyperparameters.

TD learning methods are sensitive to the selection of learning parameters: given

the same underlying conditions, two instantiations of the same learning method

may perform differently given the selection of their learning parameters. In

the Predictive Knowledge setting where an agent may pose and modify its

own predictive questions without designer input, it is impractical to carefully

perform a parameter study for each of the many thousands of predictions

an agent might make. For this reason, developing algorithms that are well

suited to a broad variety of learning problems, and are relatively insensitive to

hyperparameters is critical for Predictive Knowledge agents.

2.6.2 How does an agent use predictions?

Having learned to predict aspects of their environment, how does an agent

use these predictions to improve decision-making? One way an agent can use

their estimates is as predictive input features. In addition to observations, an

28

agent uses its learned estimates to choose which action to take. In this way,

the agent-state—the state of the world from the agent’s perspective—or the

agent’s perception—how an agent processes inputs into features—is hopefully

better than operating using the environmental inputs alone.

The most common use of GVFs is not as input features, but as auxiliary

tasks (Jaderberg et al., 2017). An auxiliary task is a learning objective that

an agent must solve in addition to its main task. For example, in addition

to learning to solve a particular control problem, an agent must also learn to

solve a prediction task. The central motivation of auxiliary tasks is that when

learning to solve sparse reward problems with a Deep Neural Net, it might be

beneficial to find features that enable the prediction task to be solved as an

intermediary sub-task that helps the agent learn in the absence of reward.

2.6.3 How does an agent structure its predictions?

How does an agent effectively organise its predictions? In the most simple

setting, predictions can be simply about the observations available to an agent

(Edwards, Dawson, Hebert, Sherstan, et al., 2016). Or, predictions can be

hierarchically organised, so that the signal of interest of a prediction is from

another estimate (Ring, 2021; Schlegel et al., 2021). Many existing applications

of Predictive Knowledge use a fixed set of predictions that are organised as

a single layer (Edwards, Dawson, Hebert, Sherstan, et al., 2016; Günther

et al., 2020). Hierarchical collections of predictions have been suggested to

enable agents to learn more abstract aspects of their environment (Ring, 2021).

How an agent might structure large collections of predictions, including how

predictions might be hierarchically related, is an open area of research in

Predictive Knowledge agents.

2.6.4 How does an agent determine what to learn about?

Given an agent’s inputs, possible behaviours, and temporal horizons, there

are infinitely many possible predictions that an agent might choose to make

about the world. A core challenge is then determining of all the possible

predictions an agent might make, which will best inform decision-making. In
29

most applications, what a GVF is about is determined by a human designer

(Dalrymple et al., 2020; Edwards, Dawson, Hebert, Sherstan, et al., 2016;

Kearney et al., 2018; Modayil & Sutton, 2014; Sutton et al., 2011).

If an agent is to use predictions to form the basis of their conceptualisation

of the world, requiring a human designer to choose what to predict is a serious

limitation. If an agent makes many thousands of estimates, having a human

designer select each is impractical: it is a constraint that limits the development

of Predictive Knowledge.

An alternative is for agents to autonomously specify what to learn. What a

General Value Function is about is determined by meta-parameters that specify

the signal of interest being predicted, the horizon over which the prediction

is being made, and the behaviour that the agent undertakes to realise the

prediction. By enabling an agent to select or modify these meta-parameters,

an agent can choose which aspects of the environment to model.

One way to enable an agent to select their parameters is via generate

and test (Schlegel et al., 2018). Recently, work has explored how through

meta-descent an agent might choose to modify the parameters that specify

auxiliary tasks (Veeriah et al., 2019). These are both relatively new lines of

research; how an agent selects what to learn remains a largely open problem.

30

Chapter 3

How should an agent learn?
Adapting Step Sizes by Stochastic
Meta-descent

Contributions of this chapter.

1. A generalisation of Incremental Delta-Bar-Delta and AutoStep to
on-policy TD learning.

2. An empirical comparison of AutoTIDBD with existing step-size
adaptation methods in both a synthetic stationary problem and
multiple real-world non-stationary problems.

3. A comparison of prediction error and initialisation sensitivity across
different step-size adaptation strategies.

I begin by examining how an agent chooses to learn by adapting the

parameters that govern learning through experience. Central to many machine

learning methods are their learning parameters or hyperparameters: values that

modify the underlying learning process an agent uses. How an agent learns an

estimate–and the agent’s performance on a given task–is in part determined by

the selection of learning parameter values. To achieve acceptable performance

on a given task, designers may systematically search through the space of

possible values and examine performance over multiple independent trials

(Bergstra et al., 2011; Bergstra & Bengio, 2012).

31

For long-lived agents learning many independent predictions, such parameter

searches are infeasible. How might an agent determine how to learn through

experience?

In this chapter, I will consider how an agent might adapt a particular kind

of learning parameter, its step-size, during the course of learning. In particular,

I generalize the Incremental Delta-Bar-Delta (IDBD) (Sutton, 1992) method

of learning step sizes to Temporal-difference (TD) learning, that I call TIDBD.

TIDBD is an algorithm for learning the relevance of features of a linear

function approximator by adapting the individual step sizes for each feature.

Using TIDBD, a feature that is relevant to the task will be assigned a large

step-size, and an irrelevant feature will be assigned a correspondingly small

step size. By modifying step sizes for each feature independently, TIDBD can

be seen as a rudimentary form of representation learning. How much an update

influences each weight depends on the relevance of its corresponding feature.

3.1 Gradient Methods for Meta-learning

The performance of Machine Learning (ML) methods depends greatly on the

inputs they use, and how those inputs are transformed into a feature vector.

Moreover, the choice of input features can be the difference between a successful

application and one which is unable to learn. One way to find useful features

is to hand-select them using an expert’s knowledge of the problem (Shapiro

& Stockman, 2001). The effectiveness of hand-constructed features is limited,

as their design requires substantial knowledge of both the environment and

the problem being solved: knowledge a designer may not have prior to the

deployment of an agent in a real-world setting in which the agent is expected

to learn continually. Moreover, features that are appropriate for a given task

are not necessarily transferable to different environments and problems. For

each new problem and environment, the engineer must assess and possibly

re-design the representation used. Deciding how to process signals from the

32

environment can itself be learned through a second-order learning process—

sometimes described as representation learning, or more broadly as learning to

learn (Andrychowicz et al., 2016) or meta-learning (Finn et al., 2017). Meta-

learning methods learn to modify the inputs or the parameters of the underlying

machine learning method by a higher-order learning process. Meta-learning

can be used to perform representation learning by constructing new features,

or learning to shape an existing representation by weighting given features

(Sutton, 1992; Veeriah et al., 2017). In this chapter, I focus on systems which

perform meta-learning to weight a given set of inputs by identifying relevant

features.

The simplest method of representation learning is to learn the relevance of

given features. Whether constructed by hand or learned, the features available

to an agent will not be equally relevant to the task at hand. Some features

will be more relevant, and it is desirable for an agent to generalize over these

relevant features more than others. By learning feature relevance, a system

can weight the influence of input features on the model being learnt.

The problem of identifying relevant features through meta-learning has

roots in both animal and human learning. Humans and animals learn to

discern which aspects of the environment are relevant to the task at hand.

Work in neuroscience has assessed how humans perform representation learning

by identifying relevant stimuli (Wilson & Niv, 2012); in cognitive science,

research has examined how children can generalize from just a few examples by

forming appropriate inductive biases (Colunga & Smith, 2005). Animals learn

over which features to generalize their learning to new examples–they learn

the salience of the signals. In doing so, humans and animals are performing

representation learning by identifying the relevance of stimuli.

One method of assigning feature relevance in Machine Learning is through

adapting many step sizes: the hyper parameters that scale updates made to a

learned model. By assigning step sizes on a per-feature basis, weight updates

can be scaled based on the relevance of input features large step sizes may

be assigned to relevant features and small step sizes to irrelevant features

(Sutton, 1992). In this chapter, I focus on methods which use linear function-
33

approximation. In the linear setting, there is a single step size per feature and

feature-relevance directly corresponds with step sizes. In particular, I explore

learning feature relevance through Stochastic Meta-descent (SMD): a form of

gradient descent which takes the gradient of the error on the main-task with

respect to specific hyper-parameters that govern learning.

3.2 Stochastic Meta-descent for
Learning Feature Relevance

SMD was first introduced for online learning in the linear case as Incremental

Delta-Bar-Delta (IDBD) (Sutton, 1992) which was later extended to non-linear

mappings (Schraudolph, 1999). Most recently, SMD has been used for temporal

predictions and sequential problems, such as MAML (Finn et al., 2017): a

method for finding initial weight settings to enable better generalisation in

settings with multiple tasks. Xu et al. use SMD to adapt the return of a

reinforcement learning problem (Xu et al., 2018), and Crossprop uses SMD

to learn weightings of inputs to learn representations which generalize across

tasks (Veeriah et al., 2017). Outside of machine learning, IDBD has been

extended to a biologically plausible version for modelling neural metaplasticity

(Schweighofer & Arbib, 1998).

3.2.1 Incremental Delta-Bar-Delta

As introduced in section 2.5.3 IDBD (Sutton, 1992) is a meta-learning algorithm

which learns a bias through experience by maintaining a vector of learned step

sizes. An intuition behind IDBD is that features which are correlated with the

prediction task (and error) should have larger step sizes, while features which

are irrelevant to the prediction task should have smaller step sizes.

IDBD is a meta-learning method for supervised learning, where weights

w 2 Rn are adapted by stochastic gradient descent to estimate ŷ 2 R, such that

the dot-product of the observations and the weight vector produce an estimate

y = w>o. IDBD amends traditional supervised learning by learning to weight

features by adapting a vector of step sizes ↵, such that each weight wi has

34

its own step size ↵i. IDBD learns many step sizes online and incrementally

by performing stochastic meta-descent over a vector of meta-weights � that

specify the step sizes ↵. On each time-step t the vector of step-sizes is given by

↵ = exp(�). By exponentiating the meta-weight vector � to produce a step

size ↵, a linear step in the meta-weight vector � produces a geometric step in

↵ and ensures all step sizes ↵ are positive.

Algorithm 2 Incremental Delta-Bar-Delta.
initialise:

Initialise vectors h, �, and w of size n number of features. Choose a meta
step size 0 < ✓.
repeat For each observation o and target ŷ

y w>o
� ŷ � y

repeat For i = 1, 2, · · · , n
�i �i + ✓�oihi

↵i e
�i

wi wi +↵i�oi

hi hi relu(1�↵io2
i) +↵i�oi

until termination

While IDBD is presented alongside the underlying gradient descent learning

mechanism in Algorithm 2, IDBD is truly the update and maintenance of

�, ↵, and h. In this sense, IDBD is a meta-learning method that is distinct

and separate from the underlying learning method that learns the resulting

model to estimate ŷ; however, the order of IDBD’s updates in relation to the

underlying learning updates is important.

A possible criticism of IDBD is that it is only abstracting the problem of

setting step size values to a higher level. Although IDBD learns the step size

parameter, it also introduces the meta step size ✓ that governs the learning of

the step sizes. IDBD is still an improvement over ordinary supervised learning:

tuned IDBD outperforms methods which do not adapt their bias (Sutton, 1992).

In addition, extensions of IDBD, including AutoStep (Mahmood et al., 2012),

NOSID, and AUTOSID (Dabney, 2014) have had success in translating IDBD

to methods that are relatively invariant to the setting of the meta step size ✓.

35

Another possible criticism of IDBD is that of stability. One might hypothe-

sise that several consecutive weight updates to wi are in the same direction,

then hi will grow correspondingly large. As hi grows, �i grows, and ↵i in-

creases geometrically in size. This could lead to instability, as a single large

update could produce a large step-size ↵i and lead to divergence. To prevent

this, Sutton suggests that updates to the meta-weight vector � are limited ±2

and that each step size ↵i is limited to some maximum value (Sutton, 1992);

however, it is also noted that clipping was not necessary to achieve empirical

results as originally introduced. Moreover, subsequent work has demonstrated

that IDBD-based methods can be stable across prediction and control problems

(Dabney, 2014; Mahmood et al., 2012).

IDBD holds substantial promise as a step-size adaptation method for applica-

tions of Predictive Knowledge. IDBD’s memory complexity and computational

complexity are both linear in the number of features, making it ideal for sce-

narios where multiple independent learners are operating in parallel. For each

additional prediction an agent makes, the computational cost of using IDBD

scales linearly with the number of features. Moreover, IDBD is an incremental

learning method, making it amenable to online continual learning. For these

reasons, IDBD is an algorithm of interest for this thesis, and I seek to generalise

IDBD to TD learning.

3.2.2 TIDBD: TD Incremental Delta-Bar-Delta

In this section, I generalise IDBD to TD learning, which I call TIDBD. TIDBD

updates the meta-weights � that define the step-size ↵ = exp(�) by minimizing

the gradient of the squared one-step TD error @�2t
@�i,t

. The meta-weights are

updated by taking a gradient step with a step-size of ✓ to minimise the squared

error on a particular example at time-step t for each individual meta weight

indexed with i and j:

36

�i,t+1 = �i,t �
1

2
✓
@�

2
t

@�i

= �i,t �
1

2
✓

X

j

@�
2
t

@wj,t

@wj,t

@�i

(3.1)

The small scalar value ✓ is an additional step size value that determines the rate

at which the meta-weights are updated by gradient descent. To approximate
P

j
@�2t
@wj,t

�wj,t

��i
, assume that @wj,t

@�i
⇡ 0 where i 6= j. This assumes the effect of

changing the step size for a particular weight will predominantly be on the

weight itself; effects on other weights will be small. With this assumption, the

updates to the meta-weights may be simplified as follows:

�i,t+1 ⇡ �i,t �
1

2
✓
@�

2
t

@wi,t

@wi,t

@�i

(3.2)

To further simplify Equation 3.2, one must decide how to take the gradient

with respect to the TD error �. Recall, that the TD error � = ct+�v(�(ot+1))�
v(�(ot)) depends on the signal of interest being predicted c, and the discounted

predicted value of the future state �v(�(ot+1)), resulting in a biased gradient.

Bias is introduced by the dependence on the learned weights wt in the calcu-

lation of v(�(ot+1)). For this reason, taking the gradient of a bootstrapped

estimate is not true gradient descent (Barnard, 1993).

There are two choices: performing gradient descent using the full, biased

gradient, or using a semi-gradient method. Semi-gradient methods do not use

the estimate of the return at state �(ot+1) in the gradient calculation. In this

chapter, I show the derivation for both choices. In the following section, the

performance of each method is compared on a series of synthetic and robotic

prediction tasks.

3.2.3 Derivation of semi-gradient method

In this section, I derive IDBD for TD(�) using a semi-gradient, which I

call semi-gradient TIDBD. In the linear case, the semi-gradient for �rw is

[ct+1 + �v(�(ot+1))� v(�(ot))]rw = ��(ot), as the influence of v(�(ot+1)) is

not included in the gradient calculation. For the following generalization, we
37

use two subscripts: i, which describes the index in a vector; and t, which

describes the time-step being referenced. Using the semi-gradient, 1
2

@�2t
@wi,t

can

be simplified as follows:

�1

2

@�
2
t

@wi,t
= ��t

@�t

@wi,t

= ��t
@

@wi,t
[�v(�(ot))]

= �t�i(ot)

(3.3)

This simplification may then be substituted back into the � update rule in

Equation 3.2 as so:

�i,t+1 ⇡ �i,t + ✓�t�i(ot)
@wi,t

@�i

(3.4)

The meta-weight �’s update can then be completed by defining an additional

memory vector h, where h is an approximation, hi,t+1 ⇡ @wi,t+1

@�i
. These

simplifications result in the following update rule:

�i,t+1 ⇡ �i,t + ✓�t�i(ot)hi,t (3.5)

To approximate @wi,t

@�i
incrementally in hi,t, I describe the update rule in terms

of w’s TD update: w w+ ↵�z, where z are the eligibility traces of a TD(�)

update.

hi,t+1 ⇡
@wi,t+1

@�i

=
@

@�i

[wi,t +↵i,t�tzi,t]

= hi,t +
@

@�i

[↵i,t�tzi,t]

= hi,t +
@↵i,t

@�i

�tzi,t +
@�t

@�i

↵i,tzi,t +
@zi,t
@�i

↵i,t�t

(3.6)

Using the product rule to simplify (3.6) leaves three remaining partial derivatives

to simplify. First, let us examine @↵i,t

@�i
. The step-sizes are defined as ↵ = e

�,

and the partial derivative may be taken as follows.

@↵i,t

@�i

=
@e

�i,t

@�i

= e
�i,t

(3.7)

38

Now, let us simplify @�t
@�i

.

@�t

@�i

= � @

@�i

[v(�(ot))]

= � @

@�i

X

j

wj,t�j(ot)

⇡ � @

@�i

[wi,t�i(ot)] = �hi,t�i(ot)

(3.8)

Let us simplify the final term @zi,t+1

@�i
as follows:

@zi,t+1

@�i

=
@

@�i

[��zi,t + �i(ot)] = ��
@zi,t
@�i

= 0 (3.9)

Equation (3.9) shows a decaying trace of the gradient of the eligibility traces.

Since the gradient is 0, this value will always be 0. With Equations 3.7, 3.8,

and 3.9, the update for h may be simplified as follows.

hi,t+1 ⇡ hi,t +
@↵t

@�
�tzt +

@�t

@�
↵tzt +

@zt
@�

↵t�t

⇡ hi,t + e
�i,t+1�tzi,t � e

�i,t+1�i(ot)zi,thi,t

= hi,t[1�↵t+1�i(ot)zi,t] +↵i,t+1�tzi,t

(3.10)

The memory vector h is a decaying trace of the cumulative sum of updates

for each feature. The learning update on the meta-weights � is proportional

to the current error, and a trace of recent weight updates ��h, and is scaled

by the magnitude of recent weight updates h. Intuitively, if many updates

are correlated, and h is large, then it would have been a more efficient use of

experience to make a larger step. The decay term, 1�↵t+1�i(ot)zi,t determines

the rate at which historical weight updates contribute to the current estimate of

h. I make the assumption that the decay term should not change the direction

of h, so the update is positively bounded, denoted with relu(1�↵t+1�i(ot)zi,t).

Having completed the update for � and h, the derivation of semi-gradient

TIDBD is completed, as shown in Algorithm 3 below.

Following the original derivation of IDBD (Sutton, 1992), � may produce a

real-valued state vector. However, in this thesis all TIDBD experiments use a

binary feature vector to produce the agent-state �(o).

39

Algorithm 3 Semi-gradient TIDBD.
initialise:

vectors h 2 0n, z 2 0n, and both w 2 Rn and � 2 Rn as desired; scalar
✓ > 0; observe environment o.
repeat For each observation o0, cumulant c:

� c+ �w>
�(o0)�w>

�(o)
for element i = 1, 2, · · · , n do

�i �i + ✓��i(o)hi

↵i e
�i

zi zi��+ �i(o)
wi wi +↵i�zi
hi hi relu(1�↵i�i(o)zi) +↵i�zi

o o0

One may note that semi-gradient TIDBD is similar to the original IDBD

formulation (Algorithm 2). The most notable change is that TIDBD’s h trace

is now modulated by not just the active features �, but also the eligibility traces

z. This means that while the updates to step sizes will be limited to currently

active features �(o), the trace of recent weight updates include discounted past

activations in z.

3.2.4 Derivation of ordinary-gradient method

In the previous section, I derived IDBD for TD with a semi-gradient. In this

section, I present an alternative, and derive TIDBD as stochastic meta-descent

using the ordinary-gradient. The derivation of TIDBD is started by describing

the update rule for �—the meta-weight vector that defines the step-size. In the

ordinary-gradient case, the gradient is calculated with respect to the estimated

value, and the target. That is, @�t
@wi,t

= @
@wi,t

[ct+1 + �w>
t �(ot+1)�w>

t �(ot)]. In

the ordinary-gradient setting, the update to � is simplified as follows:

�i,t+1 ⇡ �i,t � ✓�t
@�t

@wi,t

@wi,t

@�i

= �i,t � ✓�t

@[ct+1 + �w>
i,t�i(ot+1)�w>

i,t�i(ot)]

@wi,t

@wi,t

@�i

= �i,t � ✓�t[��i(ot+1)� �i(ot)]
@wi,t

@�i

= �i,t � ✓�t[��i(ot+1)� �i(ot)]hi,t

(3.11)

40

As was the case for semi-gradient TIDBD, �’s update is completed by defining

an additional memory vector hi approximating @wi,t

@�i
. Again, h is approximated

recursively:

hi,t+1 ⇡
@wi,t+1

@�i

=
@[wi,t + e

�i,t+1�tzi,t]

@�i

= hi,t +
@e

�i,t+1

@�i

�tzi,t + e
�i,t+1

@�t

@�i

zi,t + e
�i,t+1

@zi,t
@�i

�i,t

(3.12)

The simplification of Equation 3.12 follows the same pattern as the semi-gradient

simplification. The only differentiating term separating the semi-gradient and

ordinary-gradient method is @�t
@�i

, as the gradient of � in the ordinary-gradient

case includes both the target and the value estimate. The remaining @�t
@�i

may

be simplified as follows:

@�t

@�i

=
@

@�i

[ct+1 + �w>
t �(ot+1)�w>

t �(ot)]

=
@

@�i

[
X

j

ct+1 + �wj,t�j(t+ 1)�wj,t�j(t)]

⇡ @

@�i

[ct+1 + �wi,t�i(ot+1)�wi,t�i(ot)]

= �hi,t�i(ot+1)� hi,t�i(ot)

(3.13)

The update rule for h (3.12) may be completed by substituting in @�t
@�i

defined

above in Equation 3.13, with the simplifications defined in the preceding semi-

gradient generalisation for @zi,t
@�i

in Equation 3.9 and @e�i,t+1

@�i
in Equation 3.7.

hi,t+1 ⇡ hi,t + e
�i,t+1�tzi,t + e

�i,t+1 [�hi�i(ot+1)� hi�i(ot)]zi,t

= hi,t[1 +↵i,t+1zi,t[��i(ot+1)� �i(ot)]] +↵i,t+1�tzi,t
(3.14)

Having defined the updates for h in Equation 3.14 and � in Equation 3.11,

ordinary-gradient TIDBD may be implemented as shown in Algorithm 4.

41

Algorithm 4 Ordinary Gradient TIDBD
initialise:

Vectors h 2 0n, z 2 0n, and both w 2 Rn and � 2 Rn as desired; A scalar
✓ > 0; observe environment o 2 Rn

.

repeat For each observation o0 and cumulant c:
� c+ �w>

�(o0)�w>
�(o)

for For element i = 1, 2, · · · , n do
�i �i � ✓�[��(o0)� �(o)]hi

↵i e
�i

zi zi��+ �i(o)
wi wi +↵i�zi
hi hi relu(1 +↵izi[��i(o0)� �i(o)]) +↵i�zi

o o0

3.3 Does a Single, Shared
Step Size by TIDBD Outperform Ordinary
TD?

I now compare both semi-gradient and ordinary-gradient TIDBD algorithms to

TD with a fixed step-size. As many aspects of both semi-gradient and ordinary-

gradient TIDBD are the same, I refer to them collectively as TIDBD. Although

TIDBD’s strength is in its ability to tune step sizes on a per-feature basis, I

first assess the ability of TIDBD to improve upon traditional TD prediction

in a setting with a shared step-size. By examining the simpler case where

TIDBD adapts a single step size, it is possible to examine what performance

benefits we can attribute to step size adaptation via TIDBD separate from the

advantages of learning feature relevance.

To use TIDBD, an initial step size must be chosen by initialising the meta-

weights ↵0 = e
�0 , and a meta step size ✓ must be chosen to manage learning of

weights. It is desirable for TIDBD to perform as well as or better than TD

with a fixed and tuned step size over a broad variety of initial values �0, and

✓: that TIDBD performs as well as TD learner that has been tuned, without

requiring much tuning itself.

42

Figure 3.1: Gridworld Problem.

3.3.1 Grid world

I now compare ordinary-gradient and semi-gradient TIDBD to fixed step size

TD on a synthetic prediction task. I created a prediction task by generating

a Markov Reward Process from a grid-world problem originally described

in (Sutton & Barto, 2018) (depicted in Figure 3.1). Each tile in the 5 ⇥
5 grid-world represents a state. The state transitions are the four cardinal

directions—north, south, east, and west—chosen by an equiprobable random

policy. Transitions which would leave the grid resulted in staying in the same

state and a reward of -1. Regardless of the action selected by the agent in state

A or B, it transitions to states A
0 and B

0 respectively with a probability of 1.

A transition from A to A
0 yields a reward of 10 and a transition from B to B

0

yields a reward of 5. All other transitions receive a reward of 0. The agent’s

starting state is the top left-hand corner. Each independent run consists of the

equiprobable random policy acting for 30000 time-steps. All reported results

are averaged over the last 30000 steps of 30 independent trials.

43

(a) Semi-gradient TIDBD.

(b) Ordinary-gradient TIDBD.

Figure 3.2: Parameter study of semi and ordinary-gradient TIDBD. Static step
size TD in black. The x-axis denotes the initial step-size all learners use. In
the case of TD(0), this step-size never updates. For both Semi and Ordinary-
gradient TIDBD, the step-size is adapted online during the experiment with a
meta step-size value denoted by the colour of the line, and described in the
legend.

44

In this experiment, the performance of both semi-gradient and ordinary-

gradient TIDBD are compared with a TD learner for a variety of initial step-size

settings. Ordinary TD, semi-gradient TIDBD, and ordinary-gradient TIDBD

were compared with initial step sizes ↵0 distributed between 0.0005 and 0.5. For

all prediction methods, I used � = 0 and � = 0.99. For TIDBD, the parameter

sweep included 21 different meta step-size ✓ values equally distributed between

0 and 0.2—the range for which IDBD was originally compared over (Sutton,

1992). When ✓ = 0, the initial step size ↵0 is never updated and TIDBD and

TD are equivalent.

Figure 3.2 depicts the mean squared error of both semi-gradient and

ordinary-gradient TIDBD varying for settings of their meta step size. Semi-

gradient TIDBD is less sensitive to meta step size ✓ values than ordinary

TIDBD. For all but ↵0 = 2.5⇥ 10�2, there are broad settings of ✓ such that

semi-gradient TIDBD attains better final performance than ordinary TD. For

every initial step size in this parameter sweep, except for ↵0 = 2.5⇥ 10�2 and

↵0 = 1⇥ 10�2, there are settings of ✓ such that ordinary-gradient TIDBD is

an improvement over ordinary fixed step size TD.

For all but two initial step-size settings, there are meta step-size values ✓ for

which ordinary-gradient and semi-gradient TIDBD perform as well as or better

than TD with a single-shared step-size. That is, even without the advantages

of adapting step-sizes on a per-feature basis, TIDBD can attain performance

similar to TD on a synthetic prediction task. However, TIDBD’s performance

is sensitive to ✓: an additional meta step-size parameter introduced by TIDBD.

In the following section, we apply normalisation techniques from AutoStep

(Mahmood et al., 2012) to reduce sensitivity ✓, and create a step-size adaptation

method that is effectively tuning-free.

45

3.4 Auto TIDBD: AutoStep for TD Learning

For most of the initial step-size settings in the previous section, both ordinary-

gradient and semi-gradient TIDBD was able to perform as well as or better

than TD for some meta-step-size ✓ value at each ↵0 value; however, for ordinary-

gradient TIDBD, the best ✓ values varied for different ↵0 values.

One benefit of TD with a static shared step size is that Reinforcement

Learning practitioners have an intuition of what range of step-size ↵ values will

yield acceptable performance in general; however, the optimal step size value

will vary from between problems. With TIDBD and other similar meta-descent

methods, the performance is dependent on both the initial step-size ↵0, and a

meta step size ✓—an additional value for practitioners to develop an intuition

for.

AutoStep (Algorithm 5)—an extension of IDBD—reduced sensitivity to

the setting of the meta step size ✓ and prevented divergence in the supervised

learning setting (Mahmood et al., 2012). To prevent divergence, AutoStep

makes two additions to IDBD. First, the meta-weight update is normalized by a

decaying average of recent weight updates. Second, the step sizes are normalized

by the amount of error that was reduced on a given example by performing a

learning update—termed the effective step size. By normalizing the current

step sizes, a weight update will never overshoot as a result of a weight update

on the current observed example: the error cannot be over-corrected on a given

example to the point that error is introduced.

AutoStep maintains ⌘, a running trace of recent weight updates to normalize

updates to the step sizes. At each time-step AutoStep takes the maximum

between the current meta-weight update |�oh| and a decay of the previous

maximum ⌘i +
1
⌧↵io2

i (|�oihi|� ⌘), where scalar ⌧ is a large value that weights

the decay of ⌘.

⌘ max(|�oh|,⌘ +
1

⌧
↵o2(|�oh|� ⌘)) (3.15)

One might consider why the maximum is decayed rather than simply

stored—as is done with NOSID (Dabney, 2014). In real-world data sources,

46

noise and other outliers could distort the absolute recorded maximum, making

the normaliser adjust input values into an unrepresentative range. By decaying

the maximum, a learner can recover gradually from extreme data points.

After the meta-weight vector has updated, the resulting step size ↵ is

normalised by the effective step size
Pn

i=1(↵io2
i). The effective step size

describes the amount by which error on the current example is reduced by

making a weight update. An effective step size equal to one means that the error

has been entirely reduced for the current example. By dividing the current step

size ↵ by max(
Pn

i=1(↵io2
i), 1), over-shooting the update on a given example is

prevented.

Algorithm 5 AutoStep
initialise:

Vectors h 2 0n, ⌘ 2 0n. Initialise w 2 Rn and ↵ 2 Rn as desired; a scalar
µ > 0 and a small constant ⌧ > 0. observe the environment o 2 Rn

.

repeat For each observation o0, cumulant c:
� c+ �w>

�(o0)�w>
�(o)

for element i = 1, 2, · · · , n: do
⌘i max(|�oihi|,⌘i +

1
⌧↵io2

i (|�oihi|� ⌘))
if ⌘i 6= 0: then

↵i ↵i exp(µ
�oihi
⌘i

)

M max(
Pn

i=1(↵io2
i), 1)

for element i = 1, 2, · · · , n do
↵i ↵i

M
wi wi +↵i�oi

h hi(1�↵io2
i) +↵i�oi

o o0

47

3.4.1 AutoStep for TD

Having introduced AutoStep, I now add Auto-step’s normalization to both

semi-gradient and ordinary-gradient TIDBD to improve their stability.

First, I define the effective step-size in the on-policy TD setting. The

effective step size is computed by taking the relative difference between the

error before the weight update, �t, and the error after the weights have been

updated �
+
t , or �t��+t

�t
. The error �

+
t = ct+1 + �vt+1(�(ot+1)) � vt+1(�(ot)) is

defined using the weights after the update from time-step t.

For supervised learning, the notion of an effective step size is straightforward:

there is a known target value and the error reduced on a given time-step is

directly observable. However, TD learning uses bootstrapping. For TD learning,

the effective step size is a biased estimation dependent on how accurate the

value-function is in estimating the value of the following step v(�(ot+1)).

�t � �
+
t

�t
=

[ct+1 + �vt(�(ot+1))� vt(�(ot))]

�t

� [ct+1 + �vt+1(�(ot+1))� vt+1(�(ot))]

�t

=
[�vt(�(ot+1))� vt(�(ot))]

�t

� [�(vt(�(ot+1)) + (↵t+1�tzt)>�(ot+1))� (vt(�(ot)) + (↵t+1�tzt)>�(ot)]

�t

(3.16)

Here, �+t is expanded as the TD error of the current time-step t using the

value-functions from the following time-step, vt+1. Value functions may be

written recursively as the sum of the previous time-step’s value-function

vt(�(ot)) and the current weight update ↵t+1�tzt. So, vt+1(�(ot)) = vt(�(ot)) +

[↵t+1�t(t)zt]>�(ot).

�t � �
+
t

�t
=

[�vt(�(ot+1))� �vt(�(ot+1))]

�t

� [vt(�(ot))� vt(�(ot))]� [�↵t+1�tz>t �(ot+1)�↵t+1�tz>t �(ot)]

�t

=
�[�↵t+1�tz>t �(ot+1)�↵t+1�tz>t �(ot)]

�t

= �(↵t+1zt)
>[��(ot+1)� �(ot)]

(3.17)
48

The resulting effective step size is �(↵z)>[��(ot+1)��(ot)]. This is an intuitive

result, as the amount by which an agent will reduce its error on a given example

is the difference between the update made to the features active in the target

�(ot+1) and the changes made to the features in the state �(ot).

The effective step-size is the same for both ordinary-gradient and semi-

gradient methods. Because the effective step-size is calculated with respect to

the underlying TD error, and simplified using the underlying TD updates, it

will not change if the meta-learning method uses a different objective, or if a

different gradient is used.

Having defined the effective step-size for TD, I now generalise AutoStep’s

decaying trace of meta-weight updates to TIDBD. To do so, I return to

bare-notation without time-step subscripts: for example, �t = �. AutoStep

normalises updates to the step-sizes by maintaining a running trace of the

absolute value of the weight-updates.

max(|�oihi|,⌘i +
1

⌧
↵io

2
i (|�oihi|� ⌘i)) (3.18)

For ordinary-gradient TIDBD, The absolute weight update is |�[��(ot+1) �
�(ot)]h|, and the current active step size is ↵[��(ot+1) � �(ot)]. Thus, the

trace ⌘ of the maximum weight update is:

max(|�[��i(ot+1)� �i(ot)]hi|,⌘i�
1

⌧
↵i[��i(ot+1)� �i(ot)]zi(|��i(ot)hi|� ⌘i))

(3.19)

For semi-gradient TIDBD, the absolute weight update is |��(ot)h|, and the

current active step size is ↵�(ot). Thus, the trace ⌘ of the maximum weight

update would be:

max(|��i(ot)hi|,⌘i +
1

⌧
↵i�i(ot)zi(|��i(ot)hi|� ⌘i)) (3.20)

For simplicity, I only present ordinary-gradient AutoTIDBD in Algorithm

6. The only modification of Algorithm 6 required to produce semi-gradient

AutoTIDBD, is to change the ⌘ update from the max provided in Equation

3.19 to the max in Equation 3.20.

49

Algorithm 6 Ordinary-gradient AutoTIDBD
initialise:

Vectors h 2 0n, ⌘ 2 0n, z 2 0n. Initialise w 2 Rn and � 2 Rn as desired;
a scalar ✓ > 0 and a small constant ⌧ > 0. observe the environment o 2 Rn.
repeat For each observation o0 and cumulant c:

� c+ �w>
�(o0)�w>

�(o)
⌘i max[

|�[��i(o0)� �i(o)]hi|,
⌘i � 1

⌧↵i[��i(o0)� �i(o)]zi(|��i(o)hi|� ⌘i)
]
for element i = 1, 2, · · · , n: do

if ⌘i 6= 0 then
�i �i � ✓

1
⌘i
�[��i(o0))� �i(o)]hi

M max(�e�[��(o0)� �(o)]>z, 1)
� � � log(M)
↵ e

�

z z��+ �(o)
w w +↵�z
h h relu(1 +↵[��(o0)� �(o)]z) +↵�z
o o0

I have generalised AutoStep to TD learning, which I call AutoTIDBD. Now

I assess AutoTIDBD’s performance to determine whether it can perform better

or equal to than tuned ordinary TD(0) while being relatively insensitive to

its meta step size ✓, meeting one of my core criteria for an adaptive step size

algorithm.

50

(a) Parameter study of semi-gradient AutoTIDBD for varying ↵0 and ✓ values.

(b) Parameter study of ordinary-gradient AutoTIDBD for varying ↵0 and ✓ values.
Error reported is the asymptotic mean squared error over 30 independent trials.

Figure 3.3: Parameter study of semi and ordinary-gradient Auto TIDBD. Static
step size TD in black. The x-axis denotes the initial step-size all learners use.
In the case of TD(0), this step-size never updates. For both Semi and Ordinary-
gradient TIDBD, the step-size is adapted online during the experiment with a
meta step-size value denoted by the colour of the line, and described in the
legend.

51

3.5 How well Does AutoTIDBD Adapt a
Single Step Size?

In Figure 3.3, a parameter study of AutoTIDBD’s sensitivity on the previously

introduced grid world task (Section 3.3.1) is presented. Similar to the previous

semi-gradient TIDBD results, there are broad ranges of ✓ values for which

semi-gradient AutoTIDBD outperforms ordinary TD in Figure 3.3a. Moreover,

there is no best meta step-size ✓ value across all initial step-size values ↵0:

the ordering of performance over the meta step-size varies for different initial

step sizes. For the lowest points in the bowl, around 2.5⇥ 10�2 to 1⇥ 10�1,

the smallest meta-step size values are best performing. Outside this range

of best performance, the largest meta step-size values are best performing.

Semi-gradient AutoTIDBD still requires tuning in this setting to perform as

well as fixed step-size TD consistently across initial step-sizes. In Figure 3.3b,

ordinary-gradient AutoTIDBD performs as well as or better than TD for all

meta step-size values ✓ swept over, and the ordering is consistent across initial

step-size values ↵0. While the absolute best performance may vary for different

values of ↵0, for ordinary-gradient AutoTIDBD, the change in performance as

✓ varies is predictable and consistent.

An important consideration of these experiments is the number of step sizes

being adapted by the IDBD-based methods I generalised. For all experiments

presented in this section, a single step-size is shared amongst all features. This

limitation enables us to examine the performance of TIDBD and AutoTIDBD

without the advantages of adapting step sizes on a per-feature basis. Even

without the representation learning effects that per-feature step-size adaptation

affords, ordinary-gradient AutoTIDBD performs as well as or better than

ordinary TD learning on this synthetic prediction task.

52

(a) A subject with electrodes attached
to their wrist flexors and extensors.

(b) The BentoArm performing a modi-
fied Box and Blocks task.

Figure 3.4: Experiment setup for the robotic prediction task.

3.6 How Robust is AutoTIDBD to Selection of
Meta Step Size ✓ When Adapting Many Step-
sizes?

In the previous sections, I showed that on a synthetic prediction task, ordinary-

gradient AutoTIDBD was able to perform as well as or better than TD with

a fixed step-size. I now evaluate how well AutoTIDBD performs when using

a vector of many step sizes—when it is performing representation learning.

From here forwards, I consider ordinary-gradient AutoTIDBD, which I refer

to as OG AutoTIDBD. Although semi-gradient AutoTIDBD achieves lower

error in than OG AutoTIDBD for many meta-parameter settings, I choose OG

AutoTIDBD for the remainder of empirical analysis due to its stability: OG

AutoTIDBD rarely has an error greater than ordinary tuned TD learning, and

there is a consistent ordering of performance over meta step-size ✓ values. In

this section, I evaluate OG AutoTIDBD on a known, challenging, real-world

prediction problem that has been used to both assess new learning methods

(Seijen & Sutton, 2014) and as a domain for applying predictive knowledge in

practice (Edwards, Dawson, Hebert, Sherstan, et al., 2016; Pilarski, Dawson,

Degris, Carey, Chan, et al., 2013).

3.6.1 Robotic prediction task

The prediction problem in this experiment consisted of predicting the temporally

extended future values of signals of interest within the data stream of a robotic

53

arm as a user controlled it to perform a manual manipulation task. The data-set

for this evaluation was drawn from a prior study (Edwards, Hebert, et al.,

2016). Similar data has been used in the analysis of temporal difference learning

methods (c.f. True Online TD Seijen and Sutton, 2014). In this dataset, tasks

were carried out using the Bento Arm (Dawson et al., 2014), depicted in

Figure 3.4b. Data was recorded while four participants used signals from their

upper-arm muscles to control the robot to perform an object placement task

(approved protocol #Pro00030709, University of Alberta institutional ethics

review board). Signals in the data stream included the moment-by-moment

position, velocity, load, temperature of all the robot’s motors, along with the

control signals being sent by the human user. Users were tasked with switching

between the multiple controllable degrees of the robot arm to move balls from

one side of a divided box to another.

In this dataset four participants each performed the manipulation task a

total of six times: three times with a non-adaptive control system, and three

times with an adaptive control system that changes over time in response to

the participant’s behaviour (c.f. Edwards, Hebert, et al., 2016), creating a total

of 24 independent trials. Robotic platforms provide data that is inherently

non-stationary: sensor readings drift over time, and mechanical systems change

through wear-and-tear. The inclusion of data from the adaptive control case

brings additional non-stationarity to the prediction problem: non-stationarity

is introduced as the user becomes more proficient at the manipulation task,

and as the control system begins to adapt to the user’s preferred movements.

In this setting no single scalar step-size is best at all times, as the prediction

problem changes over time. As has been previously noted (Pilarski, Dawson,

Degris, Carey, Chan, et al., 2013), finding appropriate features and setting

appropriate parameters for learning systems is a known challenge in this robotic

control domain. End-user time is precious, and designers cannot possibly test

their prediction algorithms on datasets which are representative of all the

situations the robot might encounter in deployment. Aspects such as non-

stationarity and the irregularities introduced through human-in-the-loop control

therefore make this dataset an appropriate one for studying the robustness of
54

OG AutoTIDBD in predicting a real-world data stream.

(a) Average cumulative error of TD(�) for various ↵ settings.

(b) Average cumulative return error of OG AutoTIDBD for various ✓ settings.

Figure 3.5: Cumulative error comparison of TD and OG AutoTIDBD for
prediction of hand position. The best setting of ↵ varies across different �

settings for ordinary TD learning. For OG AutoTIDBD, there exists a broad
range of ✓ values for which performance is acceptable.

55

3.6.2 Sensitivity to meta step size ✓ in a
prosthetic prediction problem and performance rel-
ative to existing methods.

In this section, two kinds of comparisons are made. First, I analyse the perfor-

mance of OG AutoTIDBD in comparison to fixed step-size TD to determine

whether OG AutoTIDBD requires less tuning than TD learning when adapting

many step-sizes. Second, I compare OG AutoTIDBD to a variety of existing

step-size adaptation methods for RL to assess how well existing methods trans-

late to the non-stationary prediction setting, and how well OG AutoTIDBD

performs in comparison to them.

Each learner in this comparison predicted the angular position of the robot’s

hand motor (the gripper’s aperture), as in Seijen and Sutton (2014). TileCoding

(Sutton & Barto, 2018) was used to construct a binary feature vector of size 210

with 8 tilings and used the velocity of the hand, the position of the hand, and the

participant’s control signals to construct the feature vector. An additional bias

feature was concatenated to the feature-vector, resulting in 9 active features.

OG AutoTIDBD was compared to NoSID, SID, AutoSID (Dabney & Barto,

2012), RMSProp (Tieleman & Hinton, 2012), and AlphaBound (Dabney, 2014),

implemented as described in their respective source material. AlphaBound is

initialised with a step size of 1, as originally specified. Each learning method

used a discount of � = 0.95.

All IDBD-based methods initialize their step-sizes as 1
9 . This step-size was

chosen because it follows a practitioner rule-of thumb for TD to set the step-size

as 1/#active features. We can see some empirical sense in this folk-knowledge

by examining the performance of TD on this prediction task (Figure 3.5a): a

step-size of 1
9 yields performance that does not diverge on the task.

First, let us compare OG AutoTIDBD when adapting many step sizes to

TD’s performance. For OG AutoTIDBD to be an improvement over ordinary,

fixed step size TD, it should be less sensitive to settings of ✓ than TD is to

settings of ↵. In Figure 3.5a, the sensitivity of static step size TD(�) is shown

for a variety of ↵ values across � settings. There is no single step size ↵ which

56

Figure 3.6: Absolute cumulative return error averaged over 24 independent
trials for a variety of learning methods. Error bars are SEM. Each algorithm is
presented for the best setting of ↵ or ✓ and is compared by varying � between
0 and 0.9. TD with RMSProp, AutoSID, and NOSID could not be plotted on
the same chart, as they had errors which were too large to be compared.

performs well for all � values. In Figure 3.5b OG AutoTIDBD’s performance

on the same prediction problem is shown. OG AutoTIDBD is less sensitive to ✓

than TD(�) is to the setting of ↵, and OG AutoTIDBD performs as well as or

better than TD(�), except for large meta step-size values. Importantly, one of

the best performing meta step-size values across the experiment is ✓ = 10�2, the

meta step-size originally identified by Mahmood et al. as the best performing

meta step-size for AutoStep over a variety of supervised learning problems

(Mahmood et al., 2012).

Now let us examine how well existing step-size adaptation methods translate

to this non-stationary prediction setting, and evaluate how well OG AutoTIDBD

performs in comparison to them. In Figure 3.6, the average cumulative error

for the best tuned parameter settings for multiple prediction learners is shown.

TIDBD is visually compared against both SID and AlphaBound. TD with

RMSProp, AutoSID, and NOSID could not be plotted on the same chart, as

they had errors which were too large to be compared.

Both Semi-gradient TIDBD and Ordinary-gradient TIDBD outperform

SID—A scalar version of IDBD for TD learning; however, neither consistently

attain errors less than nor equal to ordinary TD.
57

On this non-stationary prediction task, OG AutoTIDBD attained perfor-

mance equal to, or better than TD for all settings. Except for AlphaBound

at large values of �, OG AutoTIDBD performed as well as, or better than all

existing step-size adaptation methods compared against.

(a) Average absolute cumulative return error of TIDBD(0) for different values of ✓.
Each line represents the error of a prediction with its own unique signal of interest.
Each on-policy prediction has the same �, but is predicting a different signal of
interest.

(b) Average absolute cumulative return error of OG AutoTIDBD(0) for different
values of ✓. Each line represents the error of a prediction with its own unique signal
of interest. Each on-policy prediction has the same �, but is predicting a different
signal of interest.

Figure 3.7: Cumulative error for different meta-step size values across a variety
of different prediction problems on the bionic limb. Predictions of velocity,
position, and load for all five servos of the robot arm are depicted.

58

3.6.3 Sensitivity to meta step size ✓

across prediction problems

I previously assessed the performance of OG AutoTIDBD across meta step

size settings for predictions of the gripper. On the gripper prediction task,

there was a broad range of meta step-size ✓ settings for which OG AutoTIDBD

attained acceptable performance. Moreover, OG AutoTIDBD achieved lower

cumulative error than all methods compared against, with the exclusion of

AlphaBound at large � values. In this section, I explore whether the best

settings of ✓ are relatively invariant over different robot prediction problems.

Using the data and experimental setup from Section 3.6.1, I now compare

the sensitivity of OG AutoTIDBD and TIDBD on a variety of prediction

problems. Each of the signals produced by the arm are distinct; therefore

predicting each signal is a different problem. If the best meta step-size is

invariant across prediction problems, then OG AutoTIDBD can be seen as a

tuning-free step-size adaptation method.

In Figure 3.7a, the sensitivity of ordinary-gradient TIDBD to its meta-

parameter ✓ settings is shown. Each line represents the performance of ordinary-

gradient TD in predicting a different signal of interest from the arm. For

Ordinary-gradient TD without AutoStep’s normalization, the best setting of ✓

for each prediction problem is different. For several prediction problems, the

best value of ✓ results in divergence on for other prediction problems. ordinary-

gradient TIDBD may be less sensitive to initialization of its parameters than

ordinary TD, but must still be tuned for each target domain.

In Figure 3.7b the same meta-sensitivity for OG AutoTIDBD is depicted

across meta step-size ✓ settings. The valley of best performance is relatively

invariant across ✓ values: the best meta step-size for any prediction problem is

one of the best settings for all the other problems.

OG AutoTIDBD meets the requirements I introduced at the beginning of

this chapter: It performs as well as or better than ordinary TD(�)—even when

only adapting a single step size, it is less sensitive to settings of ✓ than TD(�)

is to ↵, it has broad ranges of meta step-size values ✓ for which performance

59

is acceptable, and the best ✓ settings are relatively invariant across problems.

OG AutoTIDBD is a bias-adaptation step size method which does not require

tuning across applications.

3.6.4 Can AutoTIDBD perform representation learning?

I have demonstrated that OG AutoTIDBD can outperform scalar step-size

adaptation methods and ordinary TD on real-world prediction problems by

tuning its step sizes, and that it is less sensitive to its parameters than or-

dinary TD. I now evaluate whether OG AutoTIDBD can effectively perform

representation learning by assigning step-size values based on feature relevance.

Can OG AutoTIDBD differentiate between features that are relevant to the

prediction problem, and those which are not? To answer this question, I return

to the prediction task introduced in Section 3.6.1 and analyse the change in

step size values at � = 0.95. I introduced noisy features to the agent’s feature

vector by randomly masking 25% of the binary features. Masked features were

activated with a probability of 0.5. After completion of the experiment, the

noisy features selected were analysed to ensure that some masked features were

normally highly active.

If OG AutoTIDBD can learn the relevance of features, we should expect

that the noisy features will be given smaller step-sizes over the duration of

an experiment, and that there should be a separation between the ordinary

features and the noisy features. Figure 3.8 depicts the magnitude of all step sizes

averaged over all trials. step sizes corresponding to noisy features (coloured in

greyscale) consistently decrease over time. Noisy features shrink as experience

determines them to be uncorrelated with the error. This creates a separation

between features: none of the noisy features have values within the range

of ordinary features—all of the noisy features were correctly given smaller

step sizes. There are certain time-steps for which all the step sizes suddenly

decrease. On these time-steps, the effective step size was greater than 1, leading

to the normalization of the meta-weight vector to prevent over-shooting. OG

AutoTIDBD can perform representation learning by assigning appropriate step

sizes, meeting my final criteria for a step size adaptation method.
60

Figure 3.8: Average magnitude of step sizes over all trials. Noisy features are
in greyscale, ordinary features are in colour.

3.7 Examining AutoTIDBD for Real-world Robotics

Artificial agents deployed in the real-world face continued challenges: the real-

world is non-stationary and complex. How the environment might change over

time, and the situations encountered by the agent cannot be entirely foreseen

by system designers. These challenges are compounded when they are deployed

for long periods of time. For these reasons, developing learning methods that

support lifelong continual learning is of importance for agents that inhabit the

real-world. As articulated in prior sections of this chapter, it is natural that a

long-lived agent should modify its learning parameters independent of human

intervention, and over time. In mammals, the process of destabilising memories

and making them susceptible to change is similar to a temporary increase in

learning rates in an autonomous agent (Sinclair & Barense, 2018).

In this section, I continue to assess OG AutoTIDBD on a robotics platform.

First, I demonstrate again that OG AutoTIDBD is less sensitive to step

size settings than ordinary TD learning, and that OG AutoTIDBD performs

consistently for a broad set of initial parameter values. Second, I demonstrate

that by examining step sizes learned through OG AutoTIDBD, common sensor

failures can be detected. In particular, I consider situations where settings
61

where sensor readings exhibit two common failure modes: 1) where sensor

values become “stuck” constant values, and 2) where sensors themselves become

noisy. As a primary conclusion of this chapter, I demonstrate that by examining

the step size values learned via OG AutoTIDBD, insight into the operation

and internal learning processes of long-lived continual learning agents can be

gained.

Figure 3.9: The Modular Prosthetic Limb (MPL), a robot arm with many
degrees of freedom and sensors used for the experiments in this chapter.

Figure 3.10: Decoded percept data from the robot over the 30 minutes of the
experiment. The phases of the arm resting and the phases of the arm moving
are clearly distinguishable for the position, velocity, and load sensors. The
values of the temperature sensors increase over the experiment, with additional
increases during the phases of movement.

62

3.7.1 Experimental setup

The experiments in this section use data collected from the Modular Prosthetic

Limb (MPL v3) (Bridges et al., 2011)—a state-of-the-art bionic limb capable

of human-like movements. The MPL has 17 degrees of freedom, across 26

articulated joints in the shoulder, elbow, wrist, and hand. Each individual

motor has a load, position, temperature, and current sensor. Each fingertip

on the hand has a 3-axis accelerometer with 14 pressure pad sensor arrays.

Altogether, the MPL provides 108 real-valued sensor readings (Figure 3.10).

Robot Actuation:

To create a non-stationary stream of experience during experimental trials,

the robot arm performed a series of complex natural motions, followed by

a phase of rest. The experiment started with the robot holding its position

for five minutes and was followed by five minutes in which the arm repeated

a complex pattern. The arm engaged in a complex natural movement: e.g.,

grasping motions and flexing individual fingers. The movement was 100 seconds

long and was repeated three times during the five-minute movement phase.

The arm alternated between rest and movement three times, resulting in six

distinct phases of behaviour over 30 minutes.

During the rest phase, the sensor readings on the robotic limbs report a

relatively constant signal up to machine precision. In contrast, during the

movement phase sensor readings are challenging to predict. By switching

between different modes of actuation, non-stationarity is explicitly created

within the prediction problem. I report results on a per-phase basis to capture

the effects of non-stationarity on learning.

Predictions: For the following experiments, estimates of the return of

each of the 108 individual sensor readings are learned. The cumulant ci is

the ith sensor reading. Each GVF is learned on-policy, and each GVF has a

constant discount of � = 0.9 for all predictions.

A discount of 0.9 is approximately a horizon of 10 time-steps. Time-steps

were approximately 0.265 seconds apart, resulting in an estimated accumulation

over approximately 2.65 seconds. This time-horizon captures slow movements

63

with appropriate resolution: e.g., extension and flexion of the elbow joint.

However, for faster movements, such a prediction horizon provides a more

coarse accumulation.

Each GVF’s state was constructed using the whole observation vector: all

108 sensor readings. Sensor readings were normalised and passed through a

function approximator to produce a feature vector. For the following exper-

iments, a Selective Kanerva Coder (Travnik & Pilarski, 2017) is used as a

function approximator. Selective Kanerva Coders are parameterised by two

values: the number of prototypes used n, and ⌘ the number of prototypes

active on each time-step. The number of prototypes n determines the size of

the feature vector, and the prototypes ⌘ determine how many features are

active for a given input vector.

GVF estimates were computed offline after data collection. As a result, the

clock time required to update a prediction and produce an estimate did not

impact the duration of a time-step.

The performance of TD and OG AutoTIDBD are compared based on the

root mean squared prediction error (RMSE) (Equation 3.21), averaged over all

prediction estimates.

RMSEt =

vuuut
P108

i=1

✓
G

(i)
t �x(st)>w(i)

t���G(i)
t

���

◆2

108
(3.21)

The superscript (i) denotes the ith prediction of all 108 GVFs. Each

difference is normalised by the absolute value of the return to ensure that

prediction errors between sensors of different ranges were comparable.

Parameter Count Candidates
n 4 10000, 20000, 30000, 40000
⌘ 6 0.001, 0.002, 0.004, 0.008, 0.016, 0.032
↵ 11 0.001

n·⌘ , 0.002
n·⌘ , 0.004

n·⌘ , 0.008
n·⌘ , 0.016

n·⌘ , 0.032
n·⌘ , 0.064

n·⌘ , 0.128
n·⌘ ,

0.256
n·⌘ , 0.512

n·⌘ , 1.024
n·⌘

Table 3.1: Parameter candidates tested in full factorial design.

64

All OG AutoTIDBD learners use an initial step size ↵0 of 1
n⌘ , where n⌘

corresponds to the number of active features. For ordinary TD, results are

presented for the step-size that yielded the best RMSE for each individual

sensor. Step size values ranging from 0.001
n⌘ to 1.024

n⌘ were swept over for step-size

selection. Both TD and OG AutoTIDBD are compared on different numbers

of prototypes n and activation ratios ⌘. Values of n and ⌘ were chosen

based on the recommendations provided by (Travnik & Pilarski, 2017). OG

AutoTIDBD introduces a meta step-size parameter, ✓. For the parameter

sensitivity in section 3.7.3, the meta step-size is presented over a sweep of

✓ = {0.005, 0.01, 0.02, 0.04, 0.08, 0.16}. For all other results, the meta step-size

is not tuned, but set to 0.02, a value that was in the range of best performance

across many prediction problems presented earlier in this chapter (Figure 3.7b).

Failure simulation:

Mechanical failure and noisy sensor readings are common in real-world

robotics. A physical system will eventually fail, and no sensors provide perfect

readings. Learning methods should be sensitive to this reality: learning methods

should be able to cope with the special challenges of real-world learning. To

this end, this section investigates how OG AutoTIDBD reacts when confronted

with two commonly occurring sensor failures: 1) stuck sensors and 2) broken

sensors. Stuck sensors output a constant signal with a small amount of sensor

noise (Li & Yang, 2012); broken sensors often output Gaussian noise with a

high variance (Ni et al., 2009).

In both experiments, the signals from all four sensors in the elbow were

replaced: in the first, with Gaussian noise of N (1, 0.5) for the stuck sensors,

and with Gaussian noise of N (0, 10) for the broken sensors.

3.7.2 Experiment: comparison of fixed step size
TD and OG AutoTIDBD

I now examine whether OG AutoTIDBD can obtain acceptable performance

in comparison to TD learning. In particular, I focus on how OG AutoTIDBD

performs in response to non-stationarity: how quickly OG AutoTIDBD adapts

to changes in the prediction task. Over a series of movements, which I refer to as

65

Figure 3.11: RMSE for Experiment 1: functioning sensors. The top pane shows
the RMSE for both classic TD and OG AutoTIDBD for each of the different
phases. The middle and bottom panes show violin plots for the RMSE, for OG
AutoTIDBD and classic TD, respectively. All results are the average over 30
independent runs.

Movement Phase Fixed step size OG AutoTIDBD
Rest 1 1532 1223
Rest 2 984 1009
Rest 3 1023 1047

Movement 1 1105 1324
Movement 2 1086 1184
Movement 3 1003 1072

Table 3.2: Average RMSE over 30 independent runs

phases, OG AutoTIDBD’s error is compared with TD learning. I compare how

prediction error is accumulated over each phase, the variance in performance

across parameter settings, sensitivity to parameters, and how the distribution

of learned step-sizes change in response to non-stationarity.

I first examine how much error OG AutoTIDBD accumulates relative to

ordinary TD learning across the successive phases of learning. In Figure

3.11 the root mean squared error is presented for both classic TD and OG

AutoTIDBD in a setting where all sensors are functional. The top pane of

Figure 3.11 reports the RMSE for each phase of rest and movement. Error starts

high at the beginning of the experiment, and decreases over each successive
66

phase. The error for the second rest phase is considerably lower. Perhaps

unintuitively, the error for the third rest phase increased again. This can

be explained by the sensor data from Figure 3.10. One of the load sensors

started to drift in the third rest phase. As this pattern had not been seen

in any of the rest phases before, the RMSE peaked again—the pattern of a

drifting sensor had not been learned yet. For the phases of movement, a steady

decrease in RMSE was observed. Overall, OG AutoTIDBD had a slightly

higher RMSE for the 30-minute experiment. The exact errors for each phase of

rest and movement are given in Table 3.2. It is important to recognise that our

parameter sweep over step sizes provides an advantage to classic TD; because

the step sizes were chosen to minimise the RMSE for the full experimental data,

the choice of step-size for the TD learner inherently provided an advantage,

which OG AutoTIDBD did not receive. In a real-world application, providing

this advantage via tuned parameters would not be possible, as the learner

would be constantly faced with new, unknown data after the parameters have

been set. Despite this advantage, OG AutoTIDBD and classic TD performed

comparably with respect to RMSE.

The errors reported are with respect to the best parameter settings for

both OG AutoTIDBD and TD learning. How sensitive is OG AutoTIDBD

to the selection of learning parameters in comparison to TD? Unsurprisingly,

TD’s performance was strongly impacted by the chosen learning rate, as

evidenced by the standard deviation of error across parameter combinations.

TD with a shared single step size had a standard deviation of the RMSE

over all 264 n, ⌘, and ↵ combinations of �TD_264 = 4.3⇥ 104. In comparison,

once the best step sizes for classic TD were selected, the standard deviation

for the remaining 24 combinations of n and ⌘ was �TD_24 = 3.0 ⇥ 102. By

tuning the step-size parameter, TD’s performance is substantially improved,

independent of the function approximator’s parameters. In contrast, OG

AutoTIDBD has less variance over parameter combinations: it is less sensitive

to its selected parameters. OG AutoTIDBD attained a standard deviation of

�OG AutoTIDBD = 1.5⇥ 103 over the 24 Kanerva coder parameters. This value

is approximately 30 times smaller than �TD_264, but approximately 5 larger
67

than �TD_24. OG AutoTIDBD has higher standard deviation than TD learning

with a tuned step-size �TD_24; however, tuned TD’s performance depends on

knowledge that is determined after the experiment is complete: which step-size

values yield the best performance for TD learning. OG AutoTIDBD attained

acceptable performance without the need to manually tune the step size. This

result indicates that OG AutoTIDBD can act as an alternative to tuned classic

TD learning, without the time and labour-intensive setup that TD learning

requires for tuning.

The suitability of OG AutoTIDBD for real-world robotics depends not

only on its sensitivity. The computational complexity and additional time

required to maintain OG AutoTIDBD’s meta-weight vector must also be taken

into consideration. For each weight in the 108 GVFs, an additional step size

was required. Given a feature representation with 30, 000 features per GVF,

3, 240, 000 step sizes were required in this particular setting. Per GVF, three

additional vectors of the same size as the number of features are required. In

the implementation of this experiment, each of the three additional weight

vectors required 0.24 megabytes, totalling an additional 0.72 megabytes.

The additional computation to update this larger number of step sizes

increased the time to update all GVFs from 0.025 seconds to 0.28 seconds.

However, since this corresponds to nearly four updates per second, it was still

within the requirement for prosthetic limb control.

The computations were performed using a Linux Mint 18.3 OS system with

an i7� 7700HQ CPU with a clock rate of (3.80) GHz, (6) MB of shared L3

cache and 32GB DDR4 RAM. With the ongoing evolution of hardware, in

the future it will be possible to maintain and update even greater numbers of

GVFs or to reduce the time needed for computation.

OG AutoTIDBD assigns step sizes on a per-feature basis. Because each

feature has a unique step size, the amount that each weight is affected by

an update will vary over time. Using OG AutoTIDBD, step sizes related

to features uncorrelated with the current prediction task will be reduced.

As introduced previously, weighting updates on a per-feature basis can be

interpreted as a feature selection mechanism—OG AutoTIDBD actively adapts
68

its representation based on interactions with the environment.
AAMAS’19, May 2019, Montreal, Canada Johannes Günther, Alex Kearney, Nadia Ady, Micheal R. Dawson, and Patrick M. Pilarski

(a) Step sizes at initialization (b) Step sizes after the �rst movement phase

(c) Step sizes after the second movement phase (d) Step sizes at the end of the experiment

Figure 4: Step-size development over the course of the experiment. Each subplot shows the step-size distribution for a snapshot
of the experiment. As TIDBD adapts the step sizes, this distribution will change.

sensors, the average step size is 0.0006, while it is 0.00077 in the
experiment where all of the sensors are functioning as expected.
The RMSE for the 104 functioning sensors, given broken elbow
sensors, was calculated for both a TIDBD Horde and a classic TD
Horde. The information provided by the elbow sensors is used in the
feature representation x(s), but since these sensors are broken, they
only provide irrelevant, distracting information to the predictors.
For the classic TD Horde, the RMSE for the 104 functioning sensors
increases to 1, 315, 850.16. Step-size adaptation using TIDBD results
in a signi�cantly lower RMSE of 509, 220.75.

Using TIDBD to update the step sizes without human interaction
requires additional computation and memory. The time to update
the GVFs increases from 0.025s to 0.28s. For each of the three
additional weight vectors, 0.24 megabytes are required, totalling
in additional 0.72 megabytes, when implemented in Python. The
computations were performed, using a Linux Mint 18.3 OS system
with an i7�7700HQ CPU with a 3.80GHz clock rate, 6MB of shared
L3 cache and 32GB DDR4 RAM.

5 DISCUSSION
This work investigates the e�ect that TIDBD has on predictions
about the signals provided by a sensor-rich robotic arm. As a base-
line, classic TD with an extensive parameter search was imple-
mented. Three di�erent scenarios were introduced: the predictions
for di�erent patterns of movement and rest, the predictions for the
same patterns when the four elbow sensors are stuck and report a
slightly noisy constant signal, and the predictions for the patterns
when the four elbow sensors are broken and only report noise.

In the scenario where our sensors are fully functional, TIDBD
and classic TD perform comparably with respect to the root mean
squared error (RMSE) between the normalized predictions and the
normalized returns, given the best parameters are chosen for TD.
This result indicates that TIDBD can act as an alternative to tuned
classic TD learning, without the time- and labour-intensive setup
that TD learning requires for tuning. TIDBD exhibits a higher RMSE
at the beginning of the experiment, as its step sizes are initialized
more aggressively and are not tuned to the predictive task. The
RMSE decreases over the course of the experiment for both TD

Figure 3.12: Step size development over the course of the experiment. As
OG AutoTIDBD adapts the step sizes, this distribution will change. Subplot
(A) shows the step sizes at initialisation. Subplot (B) shows the step size
distribution after the first movement phase. Subplot (C) shows the step size
distribution after the second movement phase. Subplot (D) shows the step size
distribution at the end of the experiment.

Figure 3.12 shows four snapshots of the distribution of the step sizes over

the experiment, where the sensors are functional. From these plots, we can

see signs of representation learning by identifying feature relevance. While all

step-sizes are initialised with the same value, some features are given small

step sizes–limiting their impact on learning updates–while other features are

given greater weight and more impact on learning. In each subplot, the orange

bar shows step sizes that had not yet been updated due to the corresponding

features not being activated; the blue bars represent the step sizes that had been

updated by OG AutoTIDBD. Subplot (a) shows the step sizes at initialisation.

All step sizes were initialised to 0.00104. As expected, subplots (b), (c) and

69

(d) show that the longer the experiment had run, the more the step sizes had

spread out from their initial value. Subplot (d) shows that the step sizes were

set by the end of the experiment within the range from 8.0⇥ 10�5 to 2.5⇥ 10�3.

3.7.3 Experiment: parameter sensitivity for
TD and OG AutoTIDBD

Using OG AutoTIDBD to automatically adapt parameters requires the use

of meta-parameters. To investigate the sensitivity of OG AutoTIDBD with

respect to initial step sizes ↵ and the newly introduced meta step size ✓, sweeps

were performed on different initial values of step sizes and different meta step

sizes (Figure 3.13). As expected, the RMSE for TD forms a bowl over the initial

step size values: for both large and small step sizes, TD performs poorly. To

find step size values that provide acceptable performance, experiment designers

typically perform a sweep over many settings, as has been done here.

As expected, OG AutoTIDBD is less sensitive to initial parameters. While

the performance is more steady over different initial step size values, RMSE

does vary over different meta-step sizes.

It can be seen that the highest error for both classic TD and OG AutoTIDBD

occurs during the first phase (Rest 1). This can easily be explained by all GVFs

being initialised without any knowledge about the sensor readings; the RMSE

for the first time steps will therefore be high. Together, the results in this

chapter not only support the usability of OG AutoTIDBD to autonomously

learn and update step sizes for predictions without the need of human assistance,

but also autonomously adapt the representation that is used for a Predictive

Knowledge approach. As OG AutoTIDBD updates the step sizes based solely

on interactions with the environment and is grounded in the observations that

are received from said environment, it can truly function on its own—even

when implemented in a long-lived application.

3.7.4 Experiment: stuck sensors

Within the realm of robotics, the state representation is often negatively im-

pacted by damage to the sensors. In this section, I explore how OG AutoTIDBD
70

(a) Accumulated RMSE over all tested initial step sizes

(b) Zoom-in for selected initial step sizes

Figure 3.13: Accumulated RMSE over the experiment, depending on the initial
step size. The first plot shows the overall accumulated error over the whole
range of tested step sizes for TD and OG AutoTIDBD with different meta step
sizes ✓. While the performance of TD dramatically worsens for small step sizes,
OG AutoTIDBD exhibits more consistent and better behaviour for different
meta step sizes. Subplot (b) zooms in on larger step sizes to highlight the
typical bowl-shaped performance line for TD. Although the error for TD is
slightly smaller with carefully tuned step sizes, OG AutoTIDBD shows more
robust performance with respect to the initial step sizes and the meta step
sizes.

71

Figure 3.14: Step sizes distribution for the four elbow sensors (a) and the
remaining 104 sensors (b), when the four elbow sensors are stuck. Step sizes
increase noticeably in comparison to the original experiment. The largest step
sizes are twice as big.

reacts to physical damage by examining performance on data with simulated

broken and stuck sensors. In this section, I continue to use the behaviour

demonstrated in the first experiment to generate data. In this experiment,

the values of the elbow sensors are replaced with low-variance Gaussian noise,

N (1, 0.5), to simulate them being stuck. The distribution of the adapted step

sizes at the end of this experiment can be found in Figure 3.14.

In comparing Figure 3.14 with Figure 3.12, of particular note is the fact

that, with simulated stuck sensors, some step sizes were adapted to be much

larger than any adapted during normal operation; the maximum step size when

all sensors were functioning was 0.0025, while Figure 3.14 shows step sizes of

up to 0.005, approximately twice as large.

The step sizes for both the predictions with stuck sensor signals as their

cumulants and for the remaining “unaffected” predictions increased in magni-

tude. At first, this result may seem counter-intuitive. For a constant signal

with a small amount of noise, one could expect the step sizes to decrease, as

such a signal does not contain a significant amount of information. In the

setting at hand, this reaction is countered by the choice of representation. As

the Kanerva coder prototypes were randomly distributed in space, the small

amount of noise could be expected to constantly lead to different prototypes

being activated. At the same time, the cumulants were nearly constant because

72

Figure 3.15: Step sizes distribution for the four elbow sensors and the remaining
104 sensors.
Step sizes distribution for the four elbow sensors (a) and the remaining 104
sensors (b), when the four elbow sensors are broken. The step sizes for the

four broken sensors are noticeably reduced compared to the experiment
without broken sensors.

the variance was small.

This discrepancy between almost stationary cumulants and a changing rep-

resentation appears to have led to increasing step sizes, since OG AutoTIDBD

tried to achieve the necessary updates in fewer steps. Each feature was assigned

a higher value, likely due to these updates being distributed over a wider range

of features, resulting in higher step sizes. Although these increasing step sizes

did not necessarily improve the representation, they are clearly distinguishable

from step sizes that occurred during normal operation of the robotic arm, thus

providing important information about sensor failure.

3.7.5 Experiment: broken sensors

The problems of broken sensors are common in robotics and of great interest in

long-term autonomous systems. For the final experiment, I examine whether

OG AutoTIDBD produces different step-size distributions when sensors emit

noise consistent with a common physical failure. In this case, the four elbow

sensors are replaced with Gaussian noise, N (0, 10), which corresponds to broken

sensors that output noise. Such broken sensors do not contain meaningful

information, as their output will be purely random.

Figure 3.15 shows the step size distribution averaged over all predictions

73

for the experiment with broken sensors that produce high-variance noise drawn

from N (0, 10). Subplot (a) depicts the step size distribution for the four

sensors that output noise. The maximum step size is only 0.0017. The step

sizes observed during this experiment were considerably smaller than they were

in the experiments where all sensors functioned normally. The average step size

for broken sensors is 0.00037, while the average step size for these four sensors

in the experiment with functioning sensors is 0.00065. Subplot (b) shows the

distribution for the remaining 104 sensors. Although the maximum in this

experiment, with a value of 0.0028, was almost identical to the maximum of

0.0025 in the experiment where all sensors function normally, there is a larger

relative difference in the average step sizes. For the experiment with broken

sensors, the average step size was 0.0006, while it was 0.00077 in the experiment

where all the sensors function as expected.

As broken sensors are part of the feature representation x(s) that is used to

estimate each GVF, the RMSE of functioning sensors will increase significantly.

The RMSE for the 104 functioning sensors, given broken elbow sensors, was

calculated for both OG AutoTIDBD learner and classic TD learner. The infor-

mation provided by the elbow sensors was used in the feature representation

x(s), but since these sensors are broken, they only provided irrelevant, dis-

tracting information to the predictors. For the classic TD learners, the RMSE

for the 104 functioning sensors increased to 1.3 ⇥ 106. Step-size adaptation

using OG AutoTIDBD resulted in a considerably lower RMSE of 5⇥ 105 in

this experiment.

As expected, the step sizes corresponding to the four sensors that were

replaced by noise decreased considerably compared to the step sizes during

normal operation. Based on the interaction with these sensors, OG AutoTIDBD

decreases the step sizes for the noisy sensors, reducing their influence on learned

estimates. The step sizes for the remaining 104 sensors remained almost the

same as in normal arm operation. However, the distribution of step sizes in the

intact sensors changed slightly as more step sizes decreased in value, potentially

to exclude features that correspond to the noisy inputs from impacting the

predictions about the functioning sensor values. The RMSE for the remaining
74

104 sensors supports this intuition, as it is ⇠2.5 times lower (1.3 ⇥ 106 for

classic TD vs. 0.5⇥ 106 for OG AutoTIDBD) for OG AutoTIDBD than for

classic TD.

3.7.6 Discussion on real-world experiments

In this section, I investigated OG AutoTIDBD through four different exper-

iments to better understand how OG AutoTIDBD performs in a real-world

setting. Experiments were performed with the Modular Prosthetic Limb

(MPL)(Johannes et al., 2011; Johannes et al., 2020). All four experiments

utilise data from alternating patterns of rest and movement. These four exper-

iments resulted in three contributions. First, I demonstrated OG AutoTIDBD

to be a practical alternative to an extensive step size parameter search. Second,

I showed how OG AutoTIDBD can be used to detect and characterise common

sensor failures. As a third contribution, I explored OG AutoTIDBD’s sensitivity

to its meta step size and to its initial step sizes in comparison to classic TD.

Experiment 3.7.2 I compared the predictive performance of classic TD

with an extensive parameter search to the predictive performance of OG

AutoTIDBD. The additional computation required by OG AutoTIDBD was

still within reasonable limits for real-time computation, and the memory used

for OG AutoTIDBD is negligible on modern systems.

The results show that OG AutoTIDBD and classic TD performed compara-

bly in terms of root mean squared error (RMSE). Although there is a set of

fixed step sizes for which classic TD exhibits slightly less error on the data set.

Experiment 3.7.3: I examined the accumulated RMSE for TD and OG

AutoTIDBD when initialised with step sizes of different magnitudes. While the

performance for TD is affected by the initial step size value, OG AutoTIDBD is

less sensitive to its initial step sizes and its meta step size. This indicates that

the usage of OG AutoTIDBD is more robust with respect to its initialisation,

making it a viable alternative to a large search for parameters.

Experiment 3.7.4: I then explored the changes in the learning rates with

several stuck sensors. The changes in the OG AutoTIDBD step sizes were

clearly distinguishable from changes seen during normal functioning of the arm
75

(as explored in the first experiment), therefore providing an indicator to detect

this type of sensor failure.

Experiment 3.7.5: I replaced several sensors with high-variance noise,

simulating broken sensors. OG AutoTIDBD decreased the step sizes corre-

sponding to the broken sensors, which resulted in these inputs being gradually

excluded from the updates—it automatically learned the unimportance of these

inputs.

These four results—the permanent updates of step sizes to accommodate

non-stationarity, the distinct reaction to stuck sensors, the automatic feature

selection for uninformative sensors, and the robustness with respect to its

initialisation—are promising key features for long-term autonomous agents.

They empower an agent not only to adapt its learning based on interactions

with its environment, but also to evaluate and improve its own perception of

the said environment. Furthermore, since step sizes contain information about

the past for each feature, they can provide an important source of information

for the agent itself to learn from. As argued before this work (Günther et al.,

2018; Schultz et al., 1997; Sherstan et al., 2016), these introspective signals

provide a helpful source of information to enable an agent to better understand

its environment and its own functioning within its environment. The insights

presented in this chapter provide a deeper understanding and intuition about the

effects of OG AutoTIDBD, with the aim of helping other designers create agents

that are capable of autonomous learning and adaptation through interaction

with their environment.

76

3.8 Related Literature, Limitations, and Future
Work

As discussed in Section 2.5.3, this thesis is not the first work to generalize

IDBD to the Reinforcement Learning problem setting. There exist five other

generalisations of IDBD to RL. In Dabney’s thesis Scalar Incremental Delta-

Bar-Delta (SID), Normalized Scalar Incremental Delta-Bar-Delta (NOSID),

and a variant of AutoStep are introduced (Dabney, 2014). Each of these

generalizations use the �-return as the objective, use an ordinary-gradient, and

adapt a single step-size shared across features. Concurrent with this thesis,

Thill generalized IDBD to policy evaluation, using the �-return as the objective,

by taking a semi-gradient, and adapting a vector of many step-sizes (Bagheri

et al., 2016). Similarly, IDBD was recently generalized to a policy-gradient

variant called Meta-Trace (Young et al., 2019).

This thesis adds to the literature by performing a comparison of ordinary-

gradient and semi-gradient derivations in situations where either a single shared

step-size is adapted, or a vector of many step-sizes is adapted. Moreover, I

explore the effects of learning feature-relevance using TIDBD. I demonstrated

that TIDBD gives features with random noise smaller step-sizes, reducing their

contributions to weight updates. In Section 3.6, I compare my vector-based

IDBD methods against scalar step-sized methods including SID, NOSID, and

AlphaBound (Dabney & Barto, 2012) to evaluate whether TIDBD’s represen-

tation learning provides some benefit over methods without representation

learning. Feature relevance was further explored in two common sensor failure

settings: sensors with stuck values, and high-variance noise. In both cases,

indications of failure were present when analysing the step-size values. Finally,

this thesis explores IDBD-based step-size adaptation in non-stationary settings,

including real-world robotic prediction tasks, giving us greater insight into

the performance of IDBD-based methods outside of simulation. This chapter

contributes to the literature by making new empirical comparisons, exploring

the effects of feature relevance, and applying IDBD-based methods to real-world

tasks.

77

The derivation of OG AutoTIDBD presented in this thesis is limited to

methods that use linear function approximation. Moreover, all experiments

presented in this chapter use binary features. Generalisations of IDBD for

non-linear supervised learning methods exist (Schraudolph, 1999), and could

be generalised to TD learning in the future. In addition, this generalisation

is limited to on-policy predictions with replacing and accumulating traces.

Further extension is required before OG AutoTIDBD can be used with off-

policy prediction methods (see Chapter 5), and methods with different eligibility

traces such as True Online TD (Seijen & Sutton, 2014).

Future research could explore alternative uses of learned step sizes. Step

sizes learned with IDBD methods describe the relevance of a given feature to the

task at hand. Similar to how examination of step-sizes indicated broken sensors,

examination of step-sizes may aid in evaluating the potential of a prediction

based on its given feature representation before it has been completely learned.

Preliminary evaluation of predictions based on step sizes could be beneficial

to prediction architectures such as Horde (Sutton et al., 2011), where large

collections of predictions are proposed, learned, and maintained in real time

as a learner interacts with their environment. In such situations, limited

computational resources must be used effectively; being able to better identify

promising predictions in early learning could support agents in selecting what

predictions to learn.

Learned step sizes may also be an effective way to drive computational

curiosity and intrinsic motivation (Linke et al., 2020). Many intrinsic motivation

systems rely on metrics that drive exploration based on error on a given

task (Oudeyer & Kaplan, 2009). One challenge of error-based motivation is

differentiating between situations where the error is high because not enough

learning has occurred and situations where the error is high because some

signal or portion of the environment is not learnable. Learned step sizes, if

used in combination with traditional error-based forms of intrinsic motivation,

may be better able to differentiate between aspects of the environment are

novel and aspects that are unlearnable.

78

3.9 Conclusion

In this chapter, I presented an approach to generalising Incremental Delta-

Bar-Delta to temporal-difference learning. I extended TIDBD to AutoTIDBD,

using normalization methods from AutoStep to improve the robustness of

AutoTIDBD. Adapting step sizes with OG AutoTIDBD yields performance

equal to or better than TD methods with a tuned static step size, even on

stationary problems. On non-stationary tasks, I showed that OG AutoTIDBD

can find appropriate step sizes and differentiate between relevant and irrelevant

features. In a number of real-world robotic prediction tasks, I demonstrated

that OG AutoTIDBD is less sensitive to choices of meta step sizes ✓ and

initial step sizes ↵0 than ordinary TD is to settings of ↵. OG AutoTIDBD

performs as well as or better than TD with a tuned step size for broad a broad

range of meta step size settings that are relatively invariant over prediction

problems. AutoTIDBD based step size learning systems show promise of

learning feature relevance and performing meta learning in an incrementally

and online, lessening dependence on feature construction and parameter tuning.

79

Chapter 4

What’s a Good Prediction? New
Directions for Evaluating Agent
Knowledge

Contributions of this chapter:

1. An analysis of accuracy as a means of determining usefulness of
learned GVF estimates as features.

2. A proposal for evaluating the usefulness of GVFs as features which
considers both the accuracy of estimates and the relevance of the
features.

3. A generalisation of IDBD and AutoStep to off-policy learning to
provide a measure of feature relevance.

In the previous chapter, I examined how meta-learning methods might

enable an agent to modify how learning occurs independent of designer in-

tervention. Now, let us turn our attention to what an agent learns. Our

discussion of what agents should learn to predict begins with an examination of

common evaluation methods used in Predictive Knowledge agents. I argue that

contrary to popular belief, the accuracy of a prediction estimate is insufficient

to determine whether a prediction estimate is useful. In this chapter, I demon-

strate the limitations of existing approaches to evaluation: that strict measures

of accuracy are insufficient for evaluating GVFs for use as inputs in further

decision-making processes. In particular, I demonstrate the consequences of

poor evaluation when GVF estimates are used as features for further learning

80

processes. Addressing these shortcomings, I introduce a new method of evalu-

ating GVFs that takes into account the relevance of a GVF’s features. To this

end, I generalise AutoTIDBD to the off-policy policy-evaluation setting.

4.1 Introduction

Constructing general knowledge by learning task-independent models of the

world can help agents solve challenging problems. However, the construction

and evaluation of such models remains an open challenge. The most common

approach to evaluating models is to assess their accuracy with respect to

observable values. However, the prevailing reliance on estimator accuracy as a

proxy for the usefulness of knowledge has the potential to lead us astray. This

belief is rooted in how truth is understood within Predictive Knowledge: that

an agent’s beliefs about the world—its predictions—are true if they can be

verified by comparing estimates to observed values (Ring, 2021; Sutton, 2011).

Such a verification stance is far from unusual. Throughout machine intelli-

gence, researchers often use accuracy as a means of measuring performance and

as a way of determining quality across many possible models (Barbieri, 2007;

Russell & Norvig, 2010; Sutton, 1992). It is common to justify a particular

learning method or architecture as superior to others by demonstrating how

well it beats the state of the art on benchmarks (Bellemare et al., 2013; Deng,

2012; Krizhevsky & Hinton, 2009; Panayotov et al., 2015). Time has shown that

when state-of-the-art systems are deployed and are finally evaluated via their

use, there are unforeseen practical effects that are brought to bear. Computer

vision systems can suffer from catastrophic misclassification when adversarial

patches are applied to a stream (Brown et al., 2017). Permutations to an audio

stream can similarly result in misclassification, while remaining imperceptible

to human participants (Qin et al., 2019).

In this chapter, I demonstrate the conflict between accuracy and usefulness

through a series of illustrative examples, including both a thought experiment

and an empirical example in MineCraft, using the General Value Function

framework (GVF). In particular, this chapter demonstrates that accuracy is not

81

a guarantor of usefulness. Having identified challenges in assessing an agent’s

knowledge, I propose an alternate evaluation approach that arises naturally in

the online continual learning setting: I recommend evaluation by examining

internal learning processes, specifically the relevance of a GVF’s features to the

prediction task at hand. This chapter contributes a first look into evaluation of

predictions through their use, an integral component of Predictive Knowledge

that is unexplored.

A cornerstone of intelligence is knowledge. It is no surprise that much

Artificial Intelligence research has focused on designing algorithms that enable

agents to construct knowledge of their world. In this thesis, I consider knowledge

to be an agent’s ability to conceptualise aspects of its environment by forming

predictive models of its world. The term model is sometimes restricted to

estimating the probability of state transitions; however, there are multiple

approaches to building world models that enable agents to better perform

on decision-making tasks (Barreto et al., 2017; Ha & Schmidhuber, 2018;

Jaderberg et al., 2017). In this chapter, I take a broad view of what counts as

a model, including predictions that forecast future input values an agent might

experience (Koop, 2008; Ring, 2021). In this sense, agents construct knowledge

of their world by learning to model and forecast aspects of the environment

they inhabit.

The benefits of constructing knowledge by forecasting inputs are evident

in computational Reinforcement Learning (Sutton & Barto, 2018), where an

agent must learn to act optimally to maximise some expected cumulative future

reward. Instead of directly finding the optimal policy, agents often learn the

expected reward, or value, of states in their environment. When learning the

value of a state, it becomes easier to determine what the optimal actions are.

Value functions are deeply related to the problem of control, and the

distinction between the main task (finding the optimal policy) and the model

(estimating the value of a state) is subtle. However, modelling the environment

does not need to end with estimating the value of states: modelling other

aspects of the environment can also support decision-making (Comanici et al.,

2018; Edwards, Hebert, et al., 2016; Günther et al., 2016; Jaderberg et al.,
82

2017; Koop, 2008; Sherstan et al., 2015; White, 2015). For example, it may

be useful for an agent to estimate how different inputs change in response

to its behaviour (Jaderberg et al., 2017): How an agent can control what it

observes through its actions. These models of the world that are independent

of a particular task or goal an agent is trying to achieve can be used flexibly

on different problems, including new and unseen tasks (Barreto et al., 2017;

Sherstan et al., 2018).

Learning models independent of the main task both supports agents in

solving complex problems and forms the basis of general knowledge of the

world that can be applied to new and unseen problems. How well an agent has

acquired knowledge is often measured using quantitative metrics: for example,

by directly measuring the accuracy of a model’s estimate (Modayil et al., 2014;

Pilarski & Sherstan, 2016; White, 2015), or by examining the reward received

by an agent on the main task (Jaderberg et al., 2017). Systems with better

quantitative results are believed to better encode knowledge on a particular

task.

As the main contribution of this chapter, I demonstrate that evaluating

knowledge is not the same as evaluating task performance: there are new

challenges that need to be addressed. In particular, a model with higher

estimated accuracy does not imply that the model better supports learning to

solve the main problem, or task.

This distinction is introduced by constructing a series of examples and

related experiments. In the first experiment, traditional evaluation techniques

led to poor model choices. In the second experiment, these poor model choices

result in poor performance when used to inform decision-making. Finally, the

last experiment demonstrates that by examining internal learning processes,

system designers can avoid some consequences of relying solely on measures of

accuracy for model selection.

83

(a) An agent that cannot observe the true state of the environment; This agent in
a room can only observe what it can see in front of itself and whether the agent
bumped into something.

(b) Using limited sight and touch sensation, spatial awareness can be phrased as
predictions about moving around the room: e.g., “can I touch something in front of
me?”, or “how many steps until I bump into a wall on my left”?

Touch

 reach out

 = bump

Touch Left

 Turn Left

 = Touch

Touch Right

 Turn Right

 = Touch

Environment

(c) A prediction about bumping is used to construct a touch prediction, the output
of which is used as the target for the touch-left and touch-right predictions.
Adapted from Ring (Ring, 2021).

Figure 4.1: Using the limited senses available to the agent, it must construct
an abstraction such that it can understand a world it can never completely see.
One way of constructing an agent’s knowledge of the world is by predicting
what would happen if the agent behaved in a certain way.

84

4.2 Understanding the World
Through General Value Functions

The arguments apply broadly to evaluating machine learning models via accu-

racy and error alone. To focus this discussion, I ground the arguments in a

single learning problem of interest: learning predictions as an agent interacts

with its world. Predictions play an important role in the construction of knowl-

edge for both artificial agents and biological intelligence. Humans and animals

continually make many predictions about their sensations (Clark, 2013; Gilbert,

2009; Pezzulo, 2011; Pezzulo et al., 2013; Rao & Ballard, 1999; Wolpert et al.,

1995). With this in mind, I use predictions to discuss the challenge of analysing

knowledge in artificial agents.

As introduced earlier in this thesis, General Value Functions (GVFs) are

a way for artificial agents to learn and make predictions incrementally and

online, as an agent interacts with the environment (White, 2015). GVFs are

entirely self-supervised and can be learned independent of the task an agent is

undertaking through off-policy learning (Maei, 2011). In this chapter, I use

GVFs as a computational tool to make the arguments presented clear, although

the arguments presented are independent of GVFs themselves and broadly

applicable to situations where models are evaluated independent of their use.

4.3 How GVFs are Specified and Learned

General Value Functions estimate the future value of a signal in a sequential

decision-making process. On each time-step t an agent observes inputs ot

from the environment and takes an action at that results in a change in the

environment, and thus a new observation ot+1. GVFs estimate the future

accumulation of a cumulant c, where c is some signal of interest available to

the agent through its subjective stream of experience. In the simplest case,

this could be the accumulation of some element of an agent’s observation c 2 o.

The accumulation is discounted by a scalar value 0 � < 1 and is conditioned

on a particular policy ⇡: the probability of taking action at given ot. The

85

discounted sum of future c is called the return, and is defined over discrete

time-steps t as Gt = E⇡[
P1

k=0(
Qk

j=1(�t+j))ct+k+1]—the expectation of how a

signal will accumulate over time.

When humans interact with the environment, they construct models of the

world by constantly forecasting and anticipating what will happen next (Gilbert,

2009; Rao & Ballard, 1999; Wolpert et al., 1995). Similarly, an agent can build

up self-supervised models that describe the environment through predictive

questions such as “If I do this, I expect that” with General Value Functions

(Comanici et al., 2018; Ring, 2021; White, 2015). An agent can express more

abstract aspects of its environment with predictions by beginning with simple,

primitive predictions about future features and interrelating them—making

forecasts of forecasts. Such primitive predictions can inform more complex

predictions in two ways: one prediction may be used as an input in another,

or one prediction may be used as a cumulant c of another prediction. I refer

to these predictions of another GVF’s output as higher-order predictions. By

interrelating predictions, agents can conceptualise aspects of the environment

that extend beyond the immediate observation stream (Koop, 2008; Ring, 2021;

Schlegel et al., 2021).

Predictions as knowledge are constructed by starting with low-level im-

mediate predictions about sensation. For example, an agent may begin to

build a model of spatial awareness by predicting whether there is something

in front of it: if the agent reaches out, would it be able to touch something?

This simple primitive prediction could be used to inform more abstract models:

e.g., if the agent were to turn left or right, would there be something next to

it? How long can the agent drive before it hits an obstacle? By interrelating

predictive models, an agent can express more abstract, conceptual aspects of

the environment (Comanici et al., 2018; Ring, 1997; Sutton et al., 1999; Veeriah

et al., 2019) in a self-supervised way.

GVFs can be estimated using Temporal-difference (TD) learning methods

(Sutton, 1988). TD learning estimates a value-function v such that v(�(ot)) ⇡
E⇡[Gt|ot]: a function that estimates the return at a given time-step given

the agent’s observations. On each time-step the agent receives a vector of
86

observations o 2 Rm. A function approximator � : o! Rn—such as a neural

net, Kanerva coder, or tile coder—encodes the observations into a feature

vector. The estimate for each time-step v(�(ot),w) function of learned weights

w 2 Rn, and the current feature vector—v(ot,w) = w>
�(ot).

The parameters that modify the learning process are learning parameters.

Learning parameters change how the value function is approximated, but do

not change the value function definition. Learning parameters include the step

size ↵ which scales updates to the weights, the eligibility trace decay � and

the function-approximator � used to construct state.

4.3.1 The Challenge of Constructing Knowledge

It is impossible to know everything about the world. Certainly, an agent cannot

predict everything about its world. One challenge for constructing models of

the world is deciding of all the predictions an agent could learn to make, which

subset can inform decision-making best. Not all predictions are created equally:

two approximate GVFs may have the same question parameters—�, ⇡, and

c–and yet produce very different estimates. Disparity in accuracy can be caused

my many factors, including the learning parameters chosen, the distribution

of experience trained on, feature construction, the step size parameter. Each

factor contributes to how well an estimator can be learned.

4.4 Experiment 1: How Poor Evaluation
Impacts Predictive Features

In this section, I construct a synthetic prediction problem and explore how

common online error metrics can be misleading.

4.4.1 Evaluation by empirical return error

To choose between models, there needs to be a method to compare them. In

long-lived domains, it is not feasible to compare GVFs to the true expected

return of their cumulant c: an agent does not often have access to the true

return from its stream of experience. Instead, GVFs are often assessed based

87

on an estimate of the true return, the empirical return error : the difference

between the current estimate v(�(ot)) with an approximation of the true return

(Edwards, Hebert, et al., 2016; Günther et al., 2016; Pilarski et al., 2012). The

return is estimated by maintaining a buffer of length b of previous cumulants c,

such that G̃t =
P

b

k=0(
Qk

j=1(�t+j))ct+k+1). The error for time-step t can then

be constructed given the agent’s experience by G̃t � vt(�(ot)). The empirical

return error is not objective: it is calculated with respect to what the agent

happens to experience and store in its buffer—it can only express the error for

observations represented in the buffer, not the error for all possible observations

or states of the world.

In simple Markov Reward Processes, this may not be an issue: maintaining

a large enough buffer b will yield an error relatively unbiased over states.

However, in many domains of interest, this is not possible: i.e., in robotics

the state-space is often so immense that maintaining a buffer of observations

would be a time-intensive and impractical demand. Instead, applications often

settle for an empirical return error that covers only a portion of the state-space

(Edwards, Hebert, et al., 2016; Günther et al., 2020; Günther et al., 2016;

Pilarski & Sherstan, 2016). In doing so, some states are inherently prioritised

over others, as they are split into two categories: the portions of state-space

that are evaluated, and the portions that are not. When evaluating methods

in this way, it is implicit that some states are privileged over others: that error

matters more in one set of states over another.

4.4.2 A synthetic example

I present two hypothetical estimators of the same value-function in Figure 4.2

as an example of how empirical error can be gerrymandered by state. A binary

square-pulse is the cumulant c for which two hypothetical value functions

estimate the discounted return. The dotted line is the scaled return Gt of the

cumulant c with a discount factor of � = 0.3 that is being estimated. A perfect

prediction will match the return G of the signal: rising before the signal of

interest c rises, and falling before the pulse returns to 0. Such a value estimate

is predictive—it forecasts the signal of interest.
88

Figure 4.2: Two estimates of the same signal: one in green and one in orange.
The cumulant c is indicated by the grey square pulse. The scaled return Gt of
the cumulant is presented as a dotted line. Two hypothetical value function
estimates of the return are presented in green and orange.

Two hypothetical value-functions are presented: 1) In orange, an estimator

that tracks the cumulant by returning the last observed cumulant value; 2)

in green, an imperfect but predictive estimate. The tracking estimator is not

predictive: it rises and falls after the signal of interest. The predictive estimate

does not exactly match the return being estimated, but rises and falls prior

to changes in the underlying cumulant being estimated. While the tracking

estimate fails to anticipate the square pulse, it has a lower empirical return

error for the movement phases is presented. If a designer were evaluating the

two predictions and choosing between these two estimators using prediction

error alone, they would observe that the tracking estimator is superior to the

predictive estimator: it has a lower cumulative error. This becomes an issue

when these estimates are intended to inform decision-making. For instance, if

an agent is predicting a collision, identifying the collision has occurred after

the fact is not useful in supporting decision-making.

89

4.4.3 Experimental summary

While this synthetic example is contrived, there are many situations in which

an agent would benefit from making such a prediction; being able to detect

the onset of events is often useful in decision-making (Modayil & Sutton, 2014;

Schlegel et al., 2021). For example, in the previous section, I worked out an

example where an agent built a sense of spatial awareness (Figure 4.1) by

predicting whether it could touch something in front of itself; In the spatial

awareness example, touch is a binary signal that rises and falls, similar to this

simple synthetic example. Such predictions are not made in a vacuum: the

motivation for learning models is to use them to inform decision-making.

4.5 Experiment 2: How Performance is Impacted
by Poor Predictive Features

With a simple example, the previous section demonstrated how accuracy

can be misleading in differentiating between forecasts. Such forecasts are

motivated by their use: using the learned estimates as either 1) predictive

input features to another learning process, or 2) a signal of interest for further

abstract predictions. I now discuss how dependence on accuracy negatively

impacts downstream learning processes that use these learned estimates, and

can critically undermine representation learning. To this end, I construct a

network of interrelated predictions: a collection of predictions where a learned

estimate is used to inform other learning processes.

The core motivation of learning models of the environment is to use such

models to improve decision-making. The appeal of learning GVFs is the ability

to build modular and hierarchical forecasts about the world—forecasts that

can be used as predictive features for other learning processes. This is achieved

by 1) using an estimate as an input feature when making a higher-order GVF,

or 2) using a learned estimate as a cumulant for another GVF. In this section,

I demonstrate that poor evaluation in lower-order GVFs has consequences for

the performance of higher-order GVFs. To demonstrate these challenges in

evaluation, let us turn our attention to the off-policy prediction setting.
90

(a) Cumulative RUPEE for tile-coded touch estimate (green) and bias-bit touch
estimate (orange).The tracking estimate accumulates error at a slower rate than the
anticipatory prediction. Evaluating based on RUPEE alone, it appears that the
tracking model is best, despite leading to catastrophic prediction error when used
to inform touch-left and touch-right (c.f. Figure 4.5). The anticipatory touch
estimate has a greater accumulation of error throughout the experiment, despite
being a better estimator for informing touch-left and touch-right predictions.

(b) Cumulative RUPEE for touch-left and touch-right estimates that use as a
cumulant the tile-coded (green) and bias bit (orange) touch estimate. Estimates
dependent on the tracking GVF for learning have a greater cumulative error than
the GVFs dependent on the Tile Coder GVF. Error as accumulated at roughly the
same rate as the anticipatory GVFs, making it challenging to distinguish which of the
prediction is better, despite wildly different outcomes when comparing prediction to
ground-truth (c.f. Figure 4.5). The error of the lower-order models does not always
determine their effectiveness in informing further learning.

Figure 4.3: Cumulative Recent Unsigned Projected Error Estimate (RUPEE)
over 250,000 time-steps for the ‘touch-left’ and ‘touch-right’ predictions averaged
over 30 independent trials.

91

4.5.1 Estimating error for off-policy learning

Off-policy predictions are conditioned on a particular policy that may not

be the agent’s present behaviour policy. Though conditioned on a specific

policy, off-policy GVFs can be learned while engaging in behaviours that do

not strictly match the target policies of the prediction. Because the behaviour

an agent is engaging in may not precisely match the policy an off-policy

prediction is using for target behaviour, it is often not possible to compute the

empirical return error. The buffer b collected from the agent’s experience may

represent experience induced by a policy different from the policy with which

a prediction is specified; therefore, the return calculated from the buffer will

not be representative of the off-policy return.

An off-policy error metric that can be calculated incrementally online is

RUPEE: the Recent Unsigned Projected Error Estimate (White, 2015). RUPEE

estimates the mean squared projected Bellman error of a single GVF. See White

(2015) for an explanation of RUPEE on pages 119-122. Intuitively, RUPEE is

an estimate of learning progress with respect to the input features used by the

agent in learning. While RUPEE does not imply prediction accuracy, RUPEE

provides a computationally efficient way to determine when a forecast learned

off-policy is approaching its best estimate (White, 2015).

RUPEE requires an additional parameter �0 > 0 which specifies a decay

rate for the exponential moving average of both ⌧ and �e—an exponential

moving average of the TD error and eligibility traces. See Sutton and Barto

(2018) for a discussion of eligibility traces and TD(�). A higher �0 value results

in a longer horizon for the moving average. Where e is the forecast’s eligibility

traces, � is the TD error, and ĥ is the same as the update in GTD(�); RUPEE

is estimated as follows:

⌧ (1� d0)⌧ + d0

d d0

⌧

92

�z (1� d)�z+ ��z

RUPEE
q

|ĥ>�zd|

As was the case when evaluating on-policy predictions via empirical return

error, estimating off-policy learning progress using RUPEE, is insufficient to

differentiate between useful and useless estimators.

4.5.2 Predictions estimated

In the previous experiment, I demonstrated how using prediction error as a

direct proxy for model quality can mislead. I now demonstrate how misevalu-

ating the quality of GVFs can lead to poor performance in general. To do so, I

introduce a network of predictions adapted from Ring’s thought experiment

on spatial knowledge (Ring, 2021), depicted in Figure 4.1. In this setting, the

most basic GVF is touch: in plain terms, predict whether the agent would

feel a surface if it extended its hand. Two natural higher-order predictions can

be based on this: touch-left and touch-right (predict whether the touch

GVF would activate if the agent turned left or right, respectively). Further

higher-order predictions can build up to basic navigation and spatial awareness

(Ring, 2021). However, to successfully build these concepts an agent must first

get the simple, primary prediction right.

4.5.3 Experimental environment

These predictions are made in a MineCraft (Johnson et al., 2016) grid-world

that reflects the spatial awareness task I previously introduced (Figure 4.1).

This example is a simplification of the thought experiment introduced in Ring

(Ring, 2021). The world is a square pen which is 30 ⇥ 30 and two blocks high.

The mid-section of each wall has a silver column, and the base of each wall is a

unique colour. On every time-step, the agent receives observations ot which

contain: 1) the pixel input from the environment (Figure 4.4a), and 2) whether

the agent is touching something.

93

(a) The visual input of the agent. (b) Subsampling of 100 random pixels.

Figure 4.4: A visual representation of the agent’s visual input by subsampling
100 random pixels.

4.5.4 Results

Similar to the previous synthetic example, there are two sets of value functions:

one that predicts, and one that tracks. The two GVF networks presented are

specified with the same question parameters, but differ in answer parameters

used. Both sets of GVFs are approximating the same values; however, the way

they learn their approximation differs. One touch prediction uses a Tile Coder

(Edgar An et al., 1991; Sutton & Barto, 2018) as a function approximator,

and the tracking GVF uses only a single bias unit as a representation. This

representation is chosen, as it is clear that a bias unit feature is insufficient to

inform any of the chosen predictions: an agent cannot predict whether it can

touch a wall using a constant feature to represent the MineCraft world.

This experimental setup directly parallels the on-policy synthetic example

in a more complex environment. As was the case in the previous thought

experiment, by comparing the two touch predictions based on their error

(Figure 4.3a), it appears that the bias unit GVF is superior to the tile-coded

GVF—that the estimate that provides no predictive information is superior.

When examining the actual predictions made by each GVF, it is clear that

the prediction estimate with a greater RUPEE more closely anticipates the

signal of interest (Figure 4.5a). The reason the prediction using a bias unit is

not useful is that it tracks. An architect designing a system understands this

prediction is poor because it is redundant: the immediate sensation of touch

94

Touch estimate
increases as wall is

approached and
falls as the agent

turns away
(predictive)

Interval where the
agent can touch a
wall (ground truth)

Touch estimate rises
only after touch
action is taken

 (tracking)

(a) Tile-coded touch estimate (green) and bias-bit touch estimate (orange). Estimates
are presented after having calculated the weight update for each time-step.

Touch-right estimate rises
preemptively as the tracking estimate
increases, even when there is no wall

to the right of the agent.

Touch-right estimate
increases as the agent turns
so that the wall is on its right.

Interval where the agent
can touch a wall if it
turns right
(ground truth)

(b) touch-right estimates. Estimates are presented after having calculated the
weight update for each time-step.

95

Touch-left estimate increases
only when appropriate given

the context of the actions,
fewer false positives even

though the underlying touch
prediction used as cumulant

has higher RUPEE

Touch-left estimate increases even
when the agent has the wall on its
right: because the underlying touch
prediction used as cumulant only
tracks observations, this higher-

order estimate cannot distinguish
between touch-left and touch-right

(c) touch-left estimates. Estimates are presented after having calculated the weight
update for each time-step.

Figure 4.5: Each sub-figure depicts estimates of each of the GVFs in the agent’s
network for 150 examples of the agent approaching a wall and then turning
left. 5 examples of the trajectory are drawn from 30 independent trials: results
presented are averaged over 150 examples of the same trajectory.

tells us whether an agent is touching something. The intent of the prediction

is to compactly express whether an agent can touch a wall without needing

to engage in the behaviour. When the agent does touch a wall, the prediction

is updated and stored in the weights of the GVF. Only when the agent is

touching a wall will the bias unit GVF predict that it can touch a wall. By

looking at RUPEE alone, this critical shortcoming is missed.

These predictions are not learned in a vacuum: the purpose of making the

touch prediction, is to enable the higher-order predictions to be learned. In

systems that use GVFs to construct an agent’s knowledge of the world, these

predictions are intended to inform further learning processes: either other value

functions that describe more abstract aspects of the world, or the behaviours

96

an agent uses to accomplish its goals. Low RUPEE or low return error in

an estimator does not necessarily equate to more useful predictions for these

further decision-making purposes. The challenges of differentiating between a

good and bad touch prediction have an impact that extends beyond the single

prediction and influences the touch-left and touch-right predictions.

In this minecraft example, an agent benefits from not only an accurate

touch prediction, but one which is capable of informing Touch Left and Touch

Right predictions. In Figure 4.5, the RUPEE of Touch Left and Touch Right

is depicted. There are two sets of these predictions: the first, using the bias

bit GVF’s prediction as its cumulant; the second, using the tile-coded GVF

as its cumulant. In the second layer, the GVFs all share the same function

approximator: they both use sufficient representations to learn a reasonable

estimate. For the higher-order predictions, a random sub-sampling of the

pixel input, binary touch signal, and touch prediction are all tiled together

to construct the state for each GVF. The only differentiating factor is which

cumulant is used: the prediction from either the tracking touch GVF, or the

anticipatory touch GVF.

When examining the first layer’s Touch predictions, the tracking GVF

seemed superior based on RUPEE. When examining the RUPEE of the second

set of predictions (Figure 4.3b), it is possible to glimpse the downstream effects

of this misunderstanding. Although only slight, the GVFs dependent on the

tracking Touch prediction have a higher RUPEE than those using the predictive

Touch GVF. This point is brought into focus when examining the predictions

made by each touch-left and touch-right prediction (Figures 4.5b and

4.5c). Examining average trajectories where the agent approaches a wall and

turns left, the touch-right prediction using the tracking touch GVF as a

cumulant (Figure 4.5b, in orange) rises and falls with its underlying GVF. The

touch-right prediction with a tracking cumulant predicts the wall even before

turning such that the wall is to its right, while the touch-right prediction

with a predictive cumulant can better match the ground-truth. This disparity

is further exacerbated in Figure 4.5c, where it is clear that the touch-left

prediction dependent on the tracking touch GVF as a cumulant incorrectly
97

anticipates a wall is on its left, even as it turns away from it. Through examining

the error—the metric used to inform Predictive Knowledge architectures—this

is missed. The use of a prediction tells us more about the quality of that

prediction than error alone. By using a poor underlying touch prediction, the

higher-order GVFs become unlearnable.

4.5.5 Experimental summary

In the previous section, it was shown that poor behaviour of estimates can be

hidden by commonly used error metrics. This kind of inquiry into the structure

of predictions undertaken in the prior section is not easily automated: it relies

on inspection by system designers. Moreover, these precise comparisons are

limited to simple domains. The room that the agent inhabits is so simple that

it is possible to acquire the ground-truth to examine the predictions as is done

in Figure 4.5. In many domains of interest, this ease of comparison to the

ground-truth is simply impossible. Each of these factors further frustrates the

problem of determining what to learn, and whether particular GVFs are useful

for informing decision-making.

Predictive Knowledge aims to be more than a niche of machine learning

research. At its heart, Predictive Knowledge is a proposal about machine

knowledge (Koop, 2008; Ring, 2021; Sutton et al., 2011; White, 2015)—as

much epistemology as it is computing. If an agent’s beliefs are predictions of

sensorimotor inputs, then it is necessary to have a notion of whether such beliefs

are true and can be considered knowledge. The prevailing suggestion is that a

prediction is true—that an agent’s beliefs can be considered knowledge—insofar

as they are accurate (Ring, 2021; Sutton et al., 2011). More than an anaemic

academic discussion, deciding what beliefs count as true is of great importance

for machine knowledge. One must take care to ensure that as an agent is

constructing knowledge, it is building from sound beliefs. In the preceding

section, I highlighted the limits of accuracy as the arbiter of truth in machine

knowledge, and the consequences that follow. In the following section, I propose

a metric to fill this gap: evaluation of prediction usefulness by examining a

value function’s internal learning process.
98

4.6 Proposal: Evaluation of Feature relevance

I demonstrated that error in isolation of any additional information is misleading:

empirical return error and RUPEE are insufficient to determine whether a

model is useful for informing downstream decision-making by an agent. This

inability to assess the usefulness of predictions is a major hurdle, the purpose

of constructing knowledge is its use in supporting decision-making. If measures

of accuracy verified using data available to the agent are not enough to assess

the usefulness of a model, what should a designer do?

One need not only look at signals external to the agent for clues about

performance: it is possible to look inwards and examine the learning process

to assess an agent’s knowledge—how the agent is modifying its parameters.

Examining an agent’s parameters is not unusual. For example, Unexpected

Demon Error (UDE), can be used to gauge how ‘surprising’ a given observation

is to an agent (White, 2015). By examining the surprise, it is possible to gauge

how current experience relates to past experiences—e.g., detecting faults in a

system (Günther et al., 2018).

There are many such parameters that an agent can modify during learning,

and that modification can be monitored. Of particular interest are meta-

learning methods: higher-order learning processes that modify the learning

parameters of an agent (e.g., IDBD Sutton, 1992). One notable example is

step size (learning rate) adaptation.

As discussed in the preceding chapter, IDBD-based step-size adaptation

can be viewed as a form of representation learning. Representation learning

describes how an agent encodes data or experience to support decision-making

(Bengio et al., 2013). By assigning each individual input a specific step size, an

input is weighted proportional to its relevance to some downstream learning

task. For instance, AutoTIDBD assigns a step size ↵i to each weight wi,

adjusting the step size based on the correlation of recent weight updates. If

many weight updates are made in the same direction, it would have been more

efficient to make one large update with a larger ↵i. If an update has over-shot,

then the weight updates will be uncorrelated, and thus the step size should be

99

smaller.

All else being equal, a good model is one whose features are well aligned

with the prediction problem at hand. Even in early learning where an agent is

adjusting its model, or in situations where non-stationarity in the environment

may introduce unexpected error, if the features are relevant to the prediction

task can be expected to produce a reasonable estimate in expectation. One

way to determine the relevance of features is by learning step sizes.

4.6.1 Derivation of off-policy Semi-gradient AutoTIDBD

To demonstrate how step sizes as feature relevance can be informative, I gener-

alize Semi-gradient AutoTIDBD (Kearney et al., 2019) to GTD(�), creating

a step-size adaptation method suited for the off-policy touch, touch-left,

and touch-right predictions I previously introduced. Off-policy AutoStep for

GTD adds a few additional memory parameters to perform step-size adapta-

tion. From here forwards, I refer to off-policy semi-gradient AutoTIDBD as

SG AutoTIDB.

Here, I derive the relevant updates as follows. SG AutoTIDBD minimises

the gradient of the squared TD error with respect to the meta-weight vector �

that specifies the agent’s step size on each time-step.

�i,t+1 = �i,t �
1

2
✓
@�

2
t

@�i

= �i,t �
1

2
✓

X

j

@�
2
t

@wj,t

@wj,t

@�i

(4.1)

@�2t
@�i

is expanded using the chain-rule. As in (Sutton, 1992), and prior chapters,

the assumption is made that the effect of changing the step size ↵i = exp(�i)

for some feature �i,t will predominantly be on the weight wi.

�i,t+1 ⇡ �i,t �
1

2
✓
@�

2
t

@wi,t

@wi,t

@�i

(4.2)

TIDBD minimizes the squared TD error � = ct+1 + �v(�t+1)� v(�t), where c

is the cumulant, � is the discount factor, and v is the value function, and � is

100

the state as constructed by a function approximator.

�1

2

@�
2
t

@wi,t
= ��@[�v(�i,t)]

@wi,t

= �t�i,t

(4.3)

�i,t+1 ⇡ �i,t + �t�i,t
@wi,t

@�i

(4.4)

I denote @wi,t

@�i
as !. GTD(�) updates the weights as w w +↵[�z� �(1�

�)(z>h)�t+1]. The update to ! can be written recursively as follows:

!t+1 =
@

@�

h
wt +↵t+1(�tzt � �(1� �)�t+1z

>
t ht)

i

= !t + �tzt
@

@�
[↵t+1] +↵t+1zt

@

@�
[�t] +↵t+1�t

@

@�
[zt]

� @

@�
[↵t+1]�(1� �)�t+1z

>
t ht �↵t+1�(1� �)�t+1

@

@�
[z>t ht]

⇡ !t +↵t+1�tzt �↵t+1!t�tzt �↵t+1�(1� �)�t+1z
>
t ht

�↵t+1�(1� �)�t+1z
>
t

@

@�
[ht]

= !t +↵t+1

✓
�zt � !t�tzt � �(1� �)�t+1(z

>
t ht + z>t ⌘t)

◆

(4.5)

In GTD(�) the bias-correction update is h h+↵(�z� (h>
�t)�t). Similar

to !, @ht
@� is denoted as ⌘. The ⌘ update is as follows:

⌘t+1 =
@

@�

h
ht +↵t+1(�tzt � (h>

t �t)�t)
i

= ⌘t +
@

@�
[↵t+1]�tzt +↵t+1

@

@�
[�t]zt +↵t+1�t

@

@�
[zt]�↵t+1(h

>
�t)�t

�↵t+1
@

@�
(h>

t �t)�t

⇡ ⌘t +↵t+1�tzt �↵t+1!t�tzt �↵t+1(h
>
t �t)�t �↵t+1(⌘

>
t �t)�t

(4.6)

101

SG AutoTIDBD’s three additional updates are now defined for GTD(�)

IDBD. This results in GTD IDBD.

� � + ✓��t!t (4.7)

⌘ ⌘ +↵

✓⇣
z
�
� � !t

�
�
�
h+ ⌘

�>
�t

⌘>
�t

◆
(4.8)

! ! +↵

✓
z
�
� � !t�t

�
� ��t+1(1� �)z>(h+ ⌘)

◆
(4.9)

To generalize AutoStep (Mahmood et al., 2012) to GTD(�) requires two

additions to GTD(�): 1) a running average of meta-weight updates to prevent

instability in the meta-weight vector caused by dramatic changes in the target

of the underlying learning method, and 2) a normalization by the effective step

size to prevent over-shooting on an individual example.

The effective step size describes the amount by which the error has been

reduced on a particular example after a weight update. If the effective step

size is greater than one, then the agent has over-shot on a particular exam-

ple. To prevent over-shooting, the step size on each time-step is divided by

max(1, �t��+t
�t

), where is the TD error using the weights after taking a learning

step �
+
t = ct+1 + �vt+1(�t+1) � vt+1(�t). To find the effective step size, the

following is simplified:

�t � �
+
t

�t
=

1

�t
�
h⇣

ct+1 + �vt(�t+1)� vt(�t)
⌘

⇣
ct+1 + �vt+1(�t+1)� vt+1(�t)

⌘i

=
1

�t

h⇣
�vt(�t+1)� vt(�t)

⌘
�

⇣
�vt+1(�t+1)� vt+1(�t)

⌘i

(4.10)

Which can be simplified to the resulting effective step-size:
h
↵t+1zt �

�(1� �)�t+1z>t ht

�

i>h
�t � ��t+1

i
(4.11)

On each time-step IDBD updates the step sizes by ��!. AutoStep takes a

decaying trace of the IDBD’s weight update, ⇠ max(|��!|, ⇠+ 1
⌧↵�z(|��!|�

102

⇠)), where ⌧ is a parameter that specifies how quickly ⇠ decays. This has the

effect of maintaining a decaying trace of the maximum update, such that a

large change in the underlying learning target does not lead to instability in

the step size parameter update.

These updates can then be combined with the underlying GTD(�) updates

to produce SG AutoTIDBD(�) (Algorithm 7).

Algorithm 7 SG AutoTIDBD: GTD(�) with AutoStep step size tuning.
1: initialise:
2: initialise vectors !, ⌘, ↵, z, ⇠, and w of size n (number of features).
3: Set ⌧ as a decay value e.g., 104 and ✓ as a meta step size (e.g., 10�2).
4: begin:
5: Observe initial �
6: Take initial action a

7: repeat interaction with environment:
8: Observe next state �

0 and cumulant c.
9: � c+ �w>

�
0 �w>

�t

10: ⇠ max:
�

|��!|,
⇠ + 1

⌧↵�z(|��!|� ⇠)�

11: for i = 1, 2, . . . , n: do
12: if ⇠i 6= 0: then
13: ↵i ↵i exp(✓

��!
⇠i

)

14: M max:
�

1,h
↵z� �(1��)�t+1z>h

�

i>h
�t � ��t+1

i

�

15: ↵ ↵
M

16: ⇢ ⇡(�,a)
µ(�,a)

17: w w +↵(�z� �(1� �)z>h�0)
18: h h+↵(�z� (h>

�)�)
19: z ⇢(z��+ �)

20: ! ! +↵

✓
z
�
� � !�

�
� ��

0(1� �)z>(h+ ⌘)

◆

21: ⌘ ⌘ +↵

✓⇣
z
�
� � !t

�
�

�
h+ ⌘

�>
�

⌘
�

◆

22: � �
0

103

(a) The average active step size for both touch predictions. Anticipatory prediction
in green; tracking-based prediction in orange.

(b) Average active step size for the touch-left and touch-right predictions. Antic-
ipatory predictions in green; tracking-based predictions in orange.

Figure 4.6: The average active step sizes for each layer of both the prediction
and tracking networks averaged over 30 independent trials. Error bars are the
standard error of the mean.

104

(c) Average weighted feature relevance 1
↵ |w| for touch predictions. Anticipatory

tile-coded prediction in green; tracking bias-bit prediction in orange.

(d) Average weighted feature relevance 1
↵ |w| for the touch-left and touch-right

predictions. Anticipatory predictions in green; tracking-based predictions in orange.

Figure 4.6: The average weighted feature relevance 1
↵ |w| for each layer of both

the prediction and tracking networks. Each is run over 30 independent trials.
Error bars are the standard error of the mean.

105

4.7 Experiment 3: Analysing Feature Relevance

Having generalised TIDBD to GTD(�), I now return to the previously intro-

duced MineCraft room domain and perform the same experiments, now using

step-size adaptation.

4.7.1 Experimental setup

In Figure 4.6 the average active1 step size value for the duration of the exper-

iment is depicted. As was the case in the prior experiments, two agents are

each learning three predictions: touch, touch-right, and touch-left. One

agent has a representation sufficient to learn the underlying touch prediction

with reasonable accuracy (green), while the other does not (orange).

4.7.2 Results: examining feature relevance

By examining the step size values, it is possible to visually differentiate be-

tween the tracking and predictive touch-left and touch-right predictions

(Figure 4.6b); however, the corresponding touch predictions are not appre-

ciably different upon examination of their step sizes late in learning progress

(as shown in Figure 4.6a). Independent of learned weights, step sizes do not

tell the full story; step sizes ↵ are a weighting of features � when learning

some weights w. The learned step sizes ↵ in combination with the learned

weights w give greater insight into the performance of a GVF. In Figure 4.6

a combination of the absolute value of the learned weights and step sizes are

plotted: 1
↵ |w|. The magnitude of the step size describes progress in learning,

so 1
↵i

is a measurement of learning progress for a particular feature. Intuitively,

a feature which is stable, and thus has a small ↵i, and has a relatively large

weight wi is preferable.

By examining the learned step sizes and weights 1
↵ |w|, it is finally possible

to separate the tracking and anticipatory touch predictions using an easily
1This agent’s function approximator is a tile-coder. The tile-coder outputs a binary feature

vector—only a portion of all features are active on a given time-step. The average absolute
step size is multiplied by the number of active features so that two function approximators
with differing active feature sizes will have equivalent scale and can be compared.

106

calculated metric (Figure 4.6d). As the step sizes decrease, the value of both

the tracking and anticipatory predictions rises; however, since the magnitude

of the weight w is low for the bias-bit, its weighted feature value remains low.

This clarity in comparison carries over to the touch-left and touch-right

predictions (Figure 4.6d). From Figure 4.6b, it is clear the tracking-based

touch-left and touch-right predictions’ step sizes never decay—the tracking

predictions’ step sizes maintain an average value of approximately 0.25 for the

duration of the trials, while the anticipatory predictions’ step sizes decay as

the predictions are learnt. This results in a pronounced bifurcation between

the two predictions. By looking at weighted features, it is possible to see and

interpret what has been lost in the error estimate.

4.7.3 Conclusion

Using step sizes to inform other aspects of learning is a well-established practice.

For instance, learned step sizes have been used for feature discovery (Mahmood

& Sutton, 2013), and to drive exploration (Linke et al., 2020). Recent work

has suggested that step sizes can be used to monitor the status of robots and

indicate when physical damage has occurred in a system (Günther et al., 2020;

Günther et al., 2019). Prior work in biological systems has shown there is more

to representation learning than error minimization: for example, attention plays

an important role in shaping how humans cognitively map their environment

(Radulescu et al., 2019). This provides a suggestive interpretation of the

benefits of adaptive step sizes. Moreover, using internal learning measurements

to evaluate Predictive Knowledge systems has been suggested in other works

(Sherstan et al., 2016); in this chapter, I provide a first exploration of how

learned step-sizes may be utilised for introspection. Using the learning method

generalised in this chapter, SG AutoTIDBD for GTD(�), an agent can learn

step sizes online and incrementally while interacting with the environment.

In situations where traditional prediction error metrics fail, the magnitude of

learned weights and step sizes enables differentiation between GVFs that are

useful in informing further predictions, and GVFs that are not. In brief, GVFs

can be evaluated in a meaningful, scalable way using feature relevance.
107

4.8 Relevance & Related Work

In this chapter, the arguments presented focus on a particular set of predictions

in two experiments; however, the conclusions drawn apply to real-world appli-

cations of GVFs as well. From industrial laser welding (Günther et al., 2020)

to autonomous vehicle navigation (Graves et al., 2021), error estimation is the

means by which model quality is estimated prior to and during deployment.

In situations like these where models are evaluated based on strict measures

of accuracy, further decisions based on computed results are susceptible to

the evaluation and performance issues raised in this chapter. While I focus

on machine intelligence, similar observations about the primacy of prediction

error have been made in cognitive neuroscience. For example, accuracy is

not all that informs internal representations of location; additional factors

such as attention also shape human spatial models (Radulescu et al., 2019).

Moreover, attention has been used successfully to augment explainability when

ML models are used for decision-making (Xu et al., 2015). I proposed that in

general, solely considering estimates of model error are insufficient. While this

chapter’s discussion has focused in particular on applications of General Value

Functions, I believe the conclusions drawn are not dependent on the learning

methods themselves. The issues raised with respect to the use of models in

decision-making transcend the learning methods discussed, and are relevant

across all discussions of modelling in machine learning.

4.9 Contributions of This Chapter

In this chapter, I challenged a belief in Predictive Knowledge: that a prediction’s

accuracy is related to its usefulness. As a first contribution of this chapter, I

demonstrated how strict measures of accuracy can be misleading. I further

showed how critical areas of performance can be hidden by biased measures

of error, leading to a poor choice of model. Building on this observation, I

demonstrated how poor evaluation of learned models can lead to more serious

errors in downstream learning tasks (e.g, prediction) that depend on these

model estimates. As a final contribution, I proposed an alternative evaluation
108

approach that instead examines an agent’s learned parameters as a basis for

certifying learned knowledge, specifically focusing on learned weights and step

size values. Using these additional sources of information, I showed that it was

possible to differentiate between useful and useless models in a setting that

was indistinguishable when using standard error or accuracy-based assessments.

This chapter therefore contributes a novel look into how predictive models

evaluation and use are related. Decoupling the evaluation of predictions from

strict measures of accuracy is a key step towards building general, modular

representations of knowledge.

109

Chapter 5

What Should An Agent Know?
Online Discovery of Useful
Predictions

Contributions of this chapter

1. An online incremental learning process by which agents can shape
what predictions are learned for use as input features.

2. A demonstration that an agent with no prior knowledge of the
environment can find predictions that provide useful inputs for
decision-making in two partially observable environments.

In the previous chapter, I discussed the challenges an agent faces in choosing

what to learn. In particular, I highlighted how an agent should evaluate

predictions based on their usefulness for decision-making rather than their

accuracy. In this chapter, I build on the insight of usefulness as a means of

determining what to learn about by constructing a method of learning the

question parameters of both off-policy and on-policy GVFs by meta-gradient

descent while an agent is interacting with its environment.

5.1 Introduction

In computational Reinforcement Learning, a growing body of work seeks to

construct an agent’s perception of the world through predictions of future

sensations (Comanici et al., 2018; Koop, 2008; Rafiee, 2018; Ring, 1994; Sutton,

2009; Sutton & Tanner, 2004; White, 2015); predictions about environment

110

observations are used as additional input features to improve goal-directed

decision-making. An open challenge in this line of work is determining from

the infinitely many predictions that the agent could possibly make which

predictions support decision-making. This challenge is apparent in continual

learning problems where a single stream of experience is available to a singular

agent. As a primary contribution, I introduce a meta-gradient descent process

by which an agent learns what predictions to make, the estimates for its

chosen predictions, and how to use those estimates to generate policies that

maximize future reward—all during a single ongoing process of continual

learning. In this chapter, I consider predictions expressed as General Value

Functions: temporally extended estimates of the accumulation of a future signal.

I demonstrate that through interaction with the environment an agent can

autonomously select predictions that reduce the impact of partial-observability,

resulting in performance similar to expertly specified GVFs. By learning,

rather than manually specifying these predictions, the agent can identify useful

predictions in a self-supervised manner, taking a step towards fully autonomous

systems.

It has long been suggested that predictions of future experience can pro-

vide useful and intuitive features to support decision-making—particularly in

partially observable or non-Markovian environments (Jaeger, 2000; Littman

et al., 2002; Wolfe et al., 2005). It is true for biological agents: humans and

animals build predictive sensorimotor models of their world. These predictions

of experience form the basis for biological perception (Gilbert, 2009; Rao &

Ballard, 1999; Wolpert et al., 1995). A principled and well-understood way

of making temporally extended predictions in computational Reinforcement

Learning is by estimating many value functions. Value functions predict the

long-term expected accumulation of a signal in a given state, and can predict

not only reward, but any signal available to an agent via its senses (White,

2015).

In this chapter, I studied how an agent can autonomously choose GVFs to

augment its observations to construct its own agent-state: an approximation

of the environment state from the agent’s subjective perspective.
111

An open challenge when using GVF estimates as input features is deter-

mining what aspects of an agent’s experience to predict. Of all the possible

predictions an agent could make, which subset of GVFs are useful to inform

and support decision-making? The system designer often makes this choice

(Dalrymple et al., 2020; Edwards, Hebert, et al., 2016; Günther et al., 2016;

Modayil & Sutton, 2014). However, recent work has explored how an agent

may autonomously specify its own GVFs. Previous work has explored generate-

and-test approaches to specifying GVFs: an agent uses a heuristic to propose

what predictions should be estimated and after a period of learning GVFs with

a low perceived utility are replaced with new candidates (Schlegel et al., 2018).

Determining which GVFs to replace is a core challenge for generate-and-test

approaches: A GVF may be accurate and have low prediction error, but just

because a prediction is well estimated does not mean that it is useful as a

predictive feature for control, as explored in the previous chapter. Examining a

learned prediction estimate without considering its use—as is done in generate-

and-test for GVF specification—inherently limits the ability of an agent to

choose useful predictive features.

An alternative to random selection of GVFs is to parameterise the specifi-

cation of a GVF and perform meta-gradient descent. By taking the gradient of

a control learner’s error with respect to a GVF’s meta-parameters, what each

prediction is about can be incrementally updated based on feedback from the

control learner. Although not used for learning predictive inputs, recent work

has shown early success in using meta-gradient descent as a means of learning

meta-parameters that specify GVFs (Veeriah et al., 2019) for use as auxiliary

tasks (Jaderberg et al., 2017).

When used as auxiliary tasks, GVF estimates themselves are not directly

used in decision-making, but rather as regularisers for the control agent’s

artificial neural network. The auxiliary constrain the network to not only

provide good action-value estimates, but also value estimates. The value

estimates, or predictions, learned by the agent are not used in further decision-

making, but are rather a by-product of the constraints placed on the network.

In this auxiliary task setting, the parameters that determine what is being
112

predicted and the parameters that are used to select actions are explicitly

kept and learned independent of one another. I propose a meta update where

the core RL update of a control learner directly influences what an agent is

predicting.

In this chapter, I integrate the discovery and use of GVFs for Reinforce-

ment Learning control problems. I present a fully self-supervised approach,

using meta-gradient descent to autonomously discover GVFs that are useful as

predictive features for control. I do so by parameterising the functions that

determine what aspect of the environment a GVF prediction is about, and

constructing a loss that shapes the predictions based on the control agent’s

learning process. The resulting meta-learning method can be successfully im-

plemented incrementally and online. By this process, agents can autonomously

specify GVFs to be used directly as features by a control learner to solve two

partially observable problems. The meta-learning process introduced in this

thesis provides a new solution to a long-standing problem in using GVFs as

predictive input features.

Agent

Value-based
Control

GVFsGVFsGVFs

Environment

v

o o

a

o

Control

? ?

Q(s, a; w)

?(o,v)
st

Q(st, a)
?wt

atrt+1

ot vt

r

?i

?i(o, v) ?? ?c

?i

st ?t ct??i
t

GVF
vi

t

??? ?t

??c ?t

? t

a

otvt-1

Figure 5.1: Depiction of meta-gradient agent structure. Left: the control
agent updates its action-value function Q(s, a;w) according to the TD-error �
and chooses actions according to policy ⇡ based on value estimates. Center:
The typical agent-environment diagram of Reinforcement Learning, where
the control agent learns values as a function of both observations and GVF
outputs. Right: a GVF outputs predictions according to its current weights
V (s;⌫), while its updates are defined by the cumulant c, discount �, and
policy-correction ⇢.

113

5.2 Learning What to Predict by Meta-gradient
descent

The meta-learning process (Figure 5.1) operates on an agent structured in

three parts :

1. a value-based control unit that learns weights w for an action-value

function (Figure 5.1, left);

2. a collection of GVFs that each learn weights ⌫ to output prediction vector

v (Figure 5.1, right); and

3. a set of meta-weight vectors ! that parameterize each GVF’s learning

rule (the right half of Figure 5.1, right).

The control unit is a typical Q-learning agent, although it learns a value

function over the agent-state s, which is constructed from the observations o

and a vector of GVF predictions v, rather than observation alone. The vector

of GVF predictions, along with the current observation, is transformed into

the control agent-state using a differentiable function �.

st = �(ot,vt) (5.1)

The approximate action-value function Q(st, a;wt) may be learned by any

relevant RL algorithm.

The prediction vector vt is output by a collection of GVFs. The i
th GVF

has an agent-state sit �
i(ot,vt�1) independent of the control agent’s. Here

�
i is the state transformation function for the i

th GVF. GVFs may use any

Reinforcement Learning method for learning, but their structure is defined by

three functions of the current state: the cumulant or target c, the discount or

termination signal �, and the policy ⇡ (c.f. Chapter 4 in White, 2015). The

cumulant function c
i
t+1 z(ot+1;!

c,i
t) determines the current target for GVF i:

in classic RL, the cumulant simply selects the current reward rt. The discount

factor � determines how far into the future the signal-of-interest should be

attended to. While most commonly the discount is a fixed value, the discount

114

can be any function of the current state �̄
i
t+1 g(ot+1;!

g,i
t). The policy

allows each GVF to condition its prediction on specific behaviours, and is

used to compute the importance-sampling correction against the behaviour µ:

⇢
i
t =

⇡i(sit,at;!
⇢,i
t)

µ(sit,at)
. The output of a GVF is determined not only by the current

weights ⌫ but also the functions that define its update procedure. Here, ! refers

to the collective parameters that define the GVF structure, disambiguated with

superscripts when necessary.

During execution of the meta-learning process, each time-step contains an

action and learning phase. First, the agent receives an observation from the

environment ot, which is used to compute the GVF states.

sit �
i(ot,vt�1) (5.2)

For each GVF i, the prediction value v
i
t is calculated as a function of the

GVF state sit and prediction weights ⌫i. In this case, the value is a linear

combination of the weights and the current state.

v
i
t = V (sit;⌫

i
t) = ⌫i>

t sit v
i
t+1 = ⌫i>

t sit+1 (5.3)

The vector of GVF predictions vt = v
1···n
t , along with the current observation,

is transformed into the control agent-state.

st �(ot,vt) (5.4)

The policy unit ⇡ uses Q(st, a;wt) to determine the next action1. For

instance, the Q values may be defined as a linear combination of weights and

state:

Q(st;wt) = w>
t st (5.5)

Once the action is executed and (ot+1, rt+1) received, the learning phase

begins.

The key to this meta-learning method is that the Q-learning error, as noted

earlier (illustrated with the red lines in Figure 5.1, right), is a function of not

only the value function weights w, but also the agent-state vector s.
1in the following results, the agent uses ✏-greedy action selection.

115

The control learner’s agent-state is constructed from the observations, and

the GVF predictions. During the learning step, each prediction’s weights

are updated according to their question parameters: the cumulant c
i
t+1

z(ot+1;!
c,i
t), discount �̄i

t+1 g(ot+1;!
g,i
t), and policy ⇡(sit, at;!

⇢
t). The GVFs

are updated according to �
i
t c

i
t+1 + �̄

i
t+1v

i
t+1 � v

i
t. Having updated the

predictions, the control learner’s agent-state at t + 1 is st+1 = �(ot+1,vt+1),

where vt+1 = v
1···n
t+1 .

The control agent-state a function of the GVF estimates, which in turn are

adjusted according to the meta-weight vectors ! through the GVF’s question

parameters. Using weights from t+ 1 and the observations from t an auxiliary

estimate v
0,i
t V (sit;⌫

i
t+1) is used to form a new prediction vector v0

t = v
0,1···n
t

with which a loss is constructed to update the meta-weight vector based on

the control agent’s error: Lt = �
C2

t where �
C
t = rt+1 + �

C maxa Q(st+1, a;wt)�
Q(s0t, at;wt). For the ith GVF, meta-weight vector j 2 {c, g, ⇢} is adjusted.

!c,i
t+1 !c,i

t � ↵
cr!c,i�

C2

t (5.6)

Expanding the squared TD error without the non-differentiable max function

yields the following

!c,i
t+1 !c,i

t + ↵
c
�
C
t r!c,iQ(s0t, at;wt) (5.7)

!⇢,i
t+1 !⇢,i

t + ↵
⇢
�
C
t r!⇢,iQ(s0t, at;wt) (5.8)

!�,i
t+1 !�,i

t + ↵
�
�
C
t r!�,iQ(s0t, at;wt) (5.9)

Using the meta-weight vectors, each GVF computes the current ⇢t, ct+1,

and �̄t+1, and updates its predictions weights ⌫. Full pseudocode is provided

in Algorithm 8.

116

Algorithm 8 MGD self-supervised predictive Reinforcement Learning.
Choose hyperparameters: control agent’s state function approximator �,
step-size ↵

C , discount �
C , and exploration rate ✏.

for all i 2 GVFs do
Choose state approximator �

i, eligibility trace factor � and step-size ↵
⌫

for GVF updates; choose ↵
j for j 2 c, g, ⇢ for meta-learning updates.

Initialise learners:
Initialise Q-learning weights w1 # Q values defined in Eq’n 5.3
for all i 2 GVFs do

Initialise weights ⌫i
1, traces zi0 and !j,i

1 for j 2 c, g, ⇢, and prediction v
i
0.

BEGIN: Receive initial observation o0; choose action a0

v0 v
1···n
0 # Collect initial value estimates in a vector

Take action a0, observe r1 and o1; choose a1; skip updates such that v1 v0

si···n1 �
i···n(o1,v0) # Construct initial GVF states

s1 �(o1,v1) # Construct initial control agent state
repeat For timestep t = 1 onwards:

Take action at, observe rt+1 and ot+1

GVF Value Update
for i 2 GVFs do

sit+1 �
i(ot+1,vt) # Compute state for each GVF

c
i
t+1 z(ot+1;!

c,i
t)

�̄
i
t+1 g(ot+1;!

g,i
t)

⇢t ⇡(sit,at;!
⇢,i
t)

µ(sit,at)

v
i
t ⌫i>

t sit
v
i
t+1 ⌫i>

t sit+1

�
i
t c

i
t+1 + �̄

i
t+1v

i
t+1 � v

i
t

zit ⇢t(�̄i
t+1�z

i
t�1 + sit)

⌫i
t+1 ⌫i

t + ↵
⌫
�
i
tz

i
t

v
0,i
t ⌫i>

t+1s
i
t

vt+1 v
1···n
t+1 # Collect value estimates in a vector

st+1 �(ot+1,vt+1) # Compute current agent-state
Control Agent Update
�
C
t rt+1 + �

C maxa Q(st+1, a;wt)�Q(st, at;wt)
wt+1 wt + ↵

c
�
C
t rwQ(st, at;wt) # Update control agent weights wt

Meta-gradient Update
v0
t v

0,1···n
t

s0t �(ot,v0
t) # compute agent-state for MGD update

�
0C
t rt+1 + �

C maxa Q(st+1, a;wt)�Q(s0t, at;wt)
for i 2 GVFs do

for each parameterized GVF component j 2 {c, g, ⇢} do
!j,i

t+1 !j,i
t + ↵

j
�
0C
t r!j,iQ(s0t, at;wt) # Update meta-weights

Choose at+1 according to Q(st+1, a;wt+1), and exploration rate ✏.

117

Figure 5.2: The monsoon problem. On each time-step the agent observes a
binary value that determines whether the crops have grown. Growth of crops
is determined by both the action an agent takes (to water crops or not), and
the unobserved underlying season. There are four phases of the season that an
agent can exist in: two monsoon and two drought (inner circles). The outer
arrows indicate how the seasons change as the agent transitions through the
cycle.

5.3 Can an Agent Learn What to Predict?

Using the meta process introduced can an agent find useful GVFs for use as

predictive input features? I evaluate the meta specification of GVFs on a

partially observable control problem, Monsoon World (Figure 5.2). Monsoon

world is a small, clear example of a situation where temporal abstraction

is necessary to solve the problem. This enables a clear assessment whether

meta-gradient descent (MGD) is capable of specifying useful predictions, and a

clear examination of the kinds of predictions the agent learns to specify.

In Monsoon World, there are two seasons: monsoon and drought. The

underlying season determines whether the agent receives reward for its chosen

action; however, the underlying season is not directly observable. Although

the agent cannot directly observe seasons, it can observe the result of a given

action: something impacted by the seasons. The agent tends to a field by

choosing to either water, or not water their farm. Watering the field during a

drought will result in a reward of 1; watering the field during monsoon season

118

does not produce growth and results in a reward of 0, and vice versa during a

drought. If the agent chooses the right action corresponding to the underlying

season, a reward of 1 can be obtained on each time-step. Regardless of the

action chosen by the agent, time progresses and the agent transitions.

Agent � �
i

�
!

Observations agg agg -
Expert agg agg -
MGD lin agg lin

(a) Function approximators used for each agent component.
Agent ✏ ↵

Q
↵
V

↵
⇢

↵
c

Observations 0.1 0.01 0.1 - -
Expert 0.1 0.01 0.1 n/a n/a
MGD 0.5 0.0001 0.1 0.001 0.1

(b) Hyperparameters for each agent.

Figure 5.3: Parameter settings for different agent configurations

This monsoon world problem can be solved, and an optimal policy found,

if the agent reliably estimates how long until watering produces a particular

result. Such estimates can be phrased as echo GVFs (c.f. Schlegel et al., 2021).

Echo GVFs estimate the time to an event using a state-conditioned discount

and cumulant. In plain terms, by estimating “How long until watering produces

growth”? and “How long until not watering produces growth”? the agent can

resolve the partially observable aspects of the environment. Indirectly, these

capture the time until either the monsoon or drought. These two predictions

can be described as off-policy estimates: predictions that are conditioned on a

particular behaviour. Given the agent has two actions where a0 is not watering

and a1 is watering, “if the agent waters” can be described as a deterministic

policy ⇡ = [0, 1]. The signal of interest is, ct+1 = 1 if rt+1 = 1 & 0 otherwise.

Similarly, a state-dependent discounting function terminates the accumulation,

�̄t = 0 if ct+1 = 1 & 0.9 otherwise. Off-policy GVFs can be estimated online,

incrementally, while the agent is engaging in behaviours that do not strictly

match the target policies of the prediction (Maei, 2011). Having constructed the

119

Figure 5.4: Three different learners that use 1) only the environmental obser-
vations as inputs (Agent Observations in blue), 2) two additional inputs that
express the seasons (Agent Expert in orange), 3) two additional predictions
that are updated using meta-gradient descent (Agent MGD in black). Each
independent agent’s reward is averaged over 30 independent trials. Error bars
are standard error.

aforementioned GVFs, an agent can express what is hidden from its observation

stream: how long until the next season. While no information was given

about the season, the agent can learn about the seasons indirectly by making

action-conditional predictions about its observations.

5.4 Learning to Specify GVFs in Monsoon World

GVF estimates can resolve the partial observability of monsoon world. Through

MGD, can an agent specify such GVFs? I compare three different agent con-

figurations (Figure 5.4): 1) a baseline agent that only receives environmental

observations as inputs (in blue), 2) an agent that in addition to the environ-

mental observations, two inputs that capture underlying seasons (‘oracle’, in

orange), and 3) an agent that has two GVFs whose cumulants and policies are

learned through meta-gradient descent (in black).

Learning by MGD to specify GVFs introduces two additional sets of meta-

weight vector to initialise: weights !⇡ that specify the policy a prediction is

conditioned on, and weights !c that determine the signal of interest from the

environment that is being learnt about. Policy weights !⇡ are initialised to an
120

a Log transform of prediction estimates
Where v holds the value estimate from n GVFs.
Where max �t is determined by the g function.

procedure transform(v)
v clip(log(v)/ log(max �t), 0, 1)
return v

b State aggregation of predictions, agg
Where v are the value estimates from n GVFs.
Where vi < 10
Where memsize is the allocated length for the binary feature vector.

procedure state(v)
s = zeros(memsize)
i bv0 + v1 ⇤ 10c
s[i] = 1
return s

Figure 5.5: Standard function approximation steps for Echo GVFs.

equiprobable weighting of actions, and use a Softmax activation function v
i
t =

softmax(o>
t w

⇡
t) so that their sum is between [1, 0]. The cumulant meta-weight

vectors !c are initialised to �5, and a sigmoid activation sigmoid(x) = 1
1+e�x

is applied such that ct+1 = sigmoid(o>
t+1!

c
t) bounding the cumulant between

[0,1]. An L2 regulariser is applied to the meta-loss with � = 0.001. The GVF’s

weights are initialised to 0. The control learner is a linear Q-learner that

uses ✏-greedy action selection with ✏ = 0.5. The control agent’s weights are

initialised uniformly randomly between [0,1). Agents ran for a total of 1 million

time-steps, and were evaluated during the final 1000 time-steps following a

greedy policy with ✏ = 0.

Different function approximators are used to transform the given inputs

to an agent-state sit = �(ot,vt�1). Echo GVF estimates are in log-space (c.f.

(Schlegel et al., 2021) for more information on echo GVFs). Before using

an echo GVF’s estimate as inputs, a log transformation is applied to them

(see Algorithm 5.5a). A simple state-aggregation algorithm, aggis given in

Algorithm 5.5b. Linear function approximation is abbreviated as lin.
121

(a) Value estimates from each GVF during all independent trials.

(b) The meta-weight vector !c for cumulants learned.

(c) The meta-weight vector !⇡ during all independent trials.

Figure 5.6: Predictions learned, and the meta-parameters specified each GVF.
There are two distinct GVF specifications that produced prediction estimates
which enabled the agent to solve the problem.

122

Three agents are compared in the Monsoon environment: an agent that

learns a value solely over the observations, Observations; an agent that learns

over both observations and expert-specified GVFs, Expert; and an agent that

learns over both observations and GVFs discovered through meta-gradient

descent, MGD.

Each agent has a specific function-approximator for each of its components.

All RL agents have a function approximator used by the control unit, �. A

GVF based agent also has a choice of function approximator for the GVF

predictions, �i. Finally, the meta-gradient agents may also have a function

approximator used for the meta-parameter update.

Parameters were chosen by performing a sweep across different values,

choosing the best performing combination for each agent during the final 1000

evaluation steps in the experiment.

5.4.1 Meta-parameter specification

The GVF’s policy ⇡ is a fixed policy: the meta-weight vector determines the

policy a GVF is conditioned on, but they are not a function of the observations:

⇡ softmax(!⇢). The cumulant c is a function of the observations, ct+1 =

�(o>
t+1!

c
t), where !c is the meta-weight vector for the cumulant, and ot+1 is

the most recent environment observation.

In Figure 5.4, the average reward per time-step is plotted during the final 100

time-steps during which agent performance is evaluated given greedy behaviour.

Although the agents deterministically follow their policy during the evaluation

phase, learning still occurs during the evaluation phase: updates are made to

the GVFs, which affect the input observations to the control agent (in the case

of the MGD agent), and the control learner continues to update its action-value

function. This continued learning accounts for irregularity in the oscillations.

The policy learnt using only environment observations similar to randomly

choosing an action: the learned policy is no better than a coin-toss (Figure 5.4,

depicted in blue). This is as expected, given observations alone are insufficient to

determine the optimal action on a given time-step. When the underlying season

is provided as input (depicted in orange), the learned policy is approximately
123

optimal. By augmenting environmental observations with predictive features

that estimate the time to each season, an agent can solve the problem. Using

meta-gradient descent, the agent can solve the task with performance on-par

with the hand-crafted solution without being given what to predict.

5.4.2 What GVFs are specified by meta-gradient descent?

If an agent can find GVFs to solve the monsoon world, what are the useful

predictions the agent found and are they the same as expert specified GVFs?

In Figure 5.6a, the value-estimates on the final 10 time-steps of each run are

presented, as well as the meta-weight vector for the cumulants (Figure 5.6b)

and policies (Figure 5.6c). Two distinct types of policy and cumulant were

learned for each of the two GVFs. In one of the 30 independent trials, the

agent failed to solve the problem; the learned meta-weight vector of this failed

trial is depicted independently. The third column illustrates how different

the relationship of the two value estimates are in this failure case (from both

successful and expert-specified GVFs). In the remaining 29 of 30 runs, the

agent succeeds.

Over the course of successful runs, GVFs found by MGD do not look

exactly like the echo GVFs introduced in Section 5.3. Some characteristics are

similar: i.e., one of the policies approaches ⇡ ⇡ [1, 0]; however, the other policy

⇡ ⇡ [0.8, 0.2] looks different from the deterministic policies. Even when the

value estimates output by the self-supervised GVFs are similar to those from

expert-specified GVFs, the cumulant and policies can be quite different.

For the best parameter settings in the sweep conducted, one of 30 inde-

pendent trials failed, achieving an average reward per-step of 0.5 (note this

performance is similar to that of the agent with only environmental observa-

tions). For this failed run, the learned policy and cumulant do not fit the

categorisations of cumulants or policies learned in successful trials. Importantly,

the learned value estimates presented to the control agent as features do not

share the same cyclic values that capture the underlying seasons of the environ-

ment. From this failed run, it is clear that simply adding any prediction does

not enable the agent to solve the problem: in successful trials, the policies and
124

Agent heat sourceshelter shelter

wind
hazard

Figure 5.7: A depiction of the frost hollow problem. Frost hollow is a linear
walk where an agent collects a unit of heat by standing at the fire in the
centre state. Once the agent accumulates 6 units of heat, it receives a reward
of 1. The only way to receive reward in frost hollow is by accumulation of
internal heat points that are converted in to reward once the threshold of 6 heat
units is reached. Every 8 time-steps, a wind hazard gusts for two consecutive
time-steps, removing all the agent’s accumulated heat if it is exposed to the
hazard. To avoid losing its heat, the agent can take shelter in either of the end
states. On each time-step, the agent observes its own location, the amount of
heat it has accumulated, and whether the wind hazard is present.

cumulants learned by MGD are meaningful and specific to the environment

and enable the agent to solve the problem.

5.5 Learning to Specify GVFs in Frost Hollow

The previous example explored whether using MGD an agent could learn to

specify predictions to resolve the partial-observability of its environment. In

this section, two additional complications are added: 1) instead of a linear

control agent, a more complex function approximator is used; 2) the agent is

in a domain with sparse reward, complicating the GVF specification process.

Frost Hollow (depicted in Figure 5.7) (Brenneis et al., 2021; Butcher et al.,

2022) was first proposed as a joint-action problem where a learned GVF is

passed as an input feature to another agent, making it well suited for assessing

whether via MGD an agent can autonomously choose what GVFs to learn.

125

Agent ↵
V

↵
Q

Observations n/a n/a
Expert 0.001 n/a
MGD 0.001 0.0001

Table 5.1: Best parameter settings for different agent configurations

Agent Type Cumulative Reward:
Evaluation Phase

Environment
observations 7± 2.9

Expert Specified
GVF 3.3± 1.6

GVF specified
via MGD 18.7± 4.2

Figure 5.8: Average cumulative reward and standard error of the mean during
final 1000 evaluation steps for best configuration of each agent. The mean
and standard error of the mean are reported over 30 independent trials. The
maximum possible cumulative reward is 50.

While simple, Frost Hollow poses a difficult learning problem. The reward

is sparse: an agent can only observe a reward after successfully accumulating

heat and dodging regular hazards. It takes at a minimum 50 time-steps, or

5 successive cycles of dodging the hazard successfully, before the agent can

acquire a single reward. While the hazard itself is observable to the agent

when active, the agent must preemptively take shelter before the hazard’s

onset to avoid losing its accumulated heat. All of this must be learnt from a

sparse reward signal. Learning an additional GVF and using its estimate as an

additional predictive feature can enable both humans, and value-based agents

to successfully gain reward (Brenneis et al., 2021; Butcher et al., 2022).

In the frost-hollow setting, the control agent receives a single on-policy

prediction as an additional input feature: the GVF is conditioned on the

agent’s behaviour rather than a policy specified by MGD. The discount � is

a constant value of 0.9, following Butcher et al. (2022). The meta-gradient

learning process is compared to two baselines: one where the control agent

126

Figure 5.9: The mean cumulative reward for each agent during all of learning in
Frost Hollow. Error bars are the standard error of the mean over 30 independent
trials.

Figure 5.10: A depiction of the weights of the meta-weight vector !c for
cumulants learned. Inputs 0� 6 are a binary encoding of the agent’s location
in the linear walk. Input 7 is a binary feature that encodes whether the wind
hazard is present. Input 8 is the accumulated heat.

127

receives an expert defined GVF, as specified in Butcher et al. (2022), and one

where an agent that receives only the environment observations—no additional

predictive features or information. In this setting, the control learner is a DQN

agent (Mnih et al., 2015) adapted from Dopamine (Castro et al., 2018). The

control agent has two feed-forward layers with 512 units, and weights were

initialised with a uniform Golorot initialiser (Glorot & Bengio, 2010) with a

scale of 1. All agents are trained for 249 000 time-steps, and their performance

is evaluated on the final 1000 time-steps. During the evaluation phase the ✏ is

set to 0.01, limiting non-greedy actions. All reported results are averaged over

30 independent trials.

As in the Monsoon World experiments, the meta-weight vector that specifies

the cumulants is a linear combination of features and weights with no activation

function. For a single GVF the cumulant at time-step t is: ct = !>
t ot. The

meta-weights that specify the cumulant !c are initialized uniformly randomly.

GVF weights are initialised at with a value of 0. The GVF in the frost-hollow

experiment uses a bit-cascade representation, as in Butcher et al. (2022). The

control agent uses an artificial neural network as its function approximator.

In particular, this experiment uses a JaxDQNAgent from Castro et al. (2018)

with the default parameter configurations for all control agents. Additional

reported parameters were chosen by performing a sweep across different values,

choosing the best performing combination for each agent during the final 1000

evaluation steps in the experiment.

In Figure 5.8, the average cumulative reward is reported during the final

evaluation steps. If an agent is deterministically following the optimal policy

during the evaluation phase, the maximum possible cumulative reward is 50.

In Butcher et al. (2022), the best performing agent with a highly specialised

representation was able to achieve a cumulative reward of around 40; however,

many of the agents with hand-selected predictions received a cumulative reward

of approximately 30.

In this experiment, the baseline agent without any additional predictions

achieves an average cumulative reward of 7. By adding another predictive input

feature that is specified by MGD, the agent was able to achieve an average
128

cumulative reward of 18.7. Of note, the MGD agent learned to specify a

cumulant that is different from those chosen in Butcher et al. (2022). Successful

runs learn a cumulant that predominantly weights the accumulated heat, input

8 (as depicted in Figure 5.10). In Figure 5.10 the average meta-weight vector

specifying the cumulant over the course of the entire experiment is reported. In

Butcher et al. (2022), the expert chosen prediction is of the oncoming hazard:

input 7. There is a logic to the prediction selected by MGD: the heat an agent

accumulates is directly related to reward; reward is received after an agent

acquires 12 heat points. Moreover, the heat accumulated is indirectly related to

the hazard: if the agent is unprotected before the hazard, it should anticipate

a drop in its accumulated heat. By predicting accumulated heat, the agent

is dually capturing information about both the sparse reward signal and the

original aspect of the environment that the expertly defined prediction sought

to predict.

Interestingly, the baseline agent that used an expert-specified prediction

from Butcher et al. (2022) performed less well than the MGD agent, receiving an

average cumulative reward of 3.3. This is a revealing example: while the expert-

specified GVF was well suited to the tabular setting explored in prior work

(Butcher et al., 2022), its effectiveness as a predictive feature did not generalise

to this function approximation setting. This highlights a challenge that is

present across domains and environmental settings. What predictive features

may be useful to an agent is influenced not only by the environment, but also by

differences in state construction and the underlying learning method. Together,

these factors all influence what GVFs may be useful for decision-making.

5.6 Limitations & Future Work

In this chapter, I demonstrate for the first time that end-to-end learning of

GVFs used as predictive inputs is possible. Moreover, I demonstrate this within

the setting where GVFs were originally proposed: continual life-long learning.

This has been an open challenge in GVF research since their introduction over

ten years ago. However, this chapter is not the final word on MGD discovery

129

of GVFs. Assessing how well the method presented scales in environments with

non-stationarity, or greater observational complexity, is important future work.

In this chapter, I decided to fix the discount �—the time-horizon over which a

prediction is estimated. Previous work has enabled GVFs to be learned over

multiple timescales at the same time, enabling inference over arbitrary horizons

(Sherstan et al., 2020). Future work could explore how Sherstan et al.’s �-net

formulation could improve the scalability and flexibility of the meta-learning

process introduced. This chapter makes progress in enabling agents to choose

what to predict. How an agent may decide the number of predictions to learn

remains an important open question. Similarly, it remains to be explored how

an agent can incrementally increase its capacity by adding new predictions

during lifelong learning. One possibility is to arrange predictions in multiple

layers, similar to GVF networks (Schlegel et al., 2021). Questions concerning

GVF structure and scale are exciting open frontiers, and this thesis provides a

foundation that enables such questions to be asked in future work.

5.7 Conclusion

In this chapter, I introduced a process that enables agents to meta-learn the

specifications of predictions in the form of GVFs. This process enabled agents

to learn what aspects of the environment to predict to use as additional input

features, while also learning the predictions themselves and learning a control

policy. This meta-learning process was developed in an online, incremental

fashion, making it possible for long-lived continual learning agents to self-

supervise the specification and learning of their own GVFs. An agent with

no prior knowledge of the environment was able to select predictions that

yielded performance equitable to, or better than agents using expertly chosen

predictive features. Even in an environment with a sparse reward, an agent

was still able to learn to specify useful predictions to use as additional features

based on the control-learner’s error.

130

It has long been suggested that predictions of future experience in the form of

GVFs can provide useful features to support decision-making in computational

Reinforcement Learning. Requiring system designers to re-specify the GVFs for

every permutation of an agent and its environment is a burden for applications

of predictive features, and yet it is still the norm in both research and applied

settings. Fundamentally, the requirement of designers to hand-specify GVFs

prevents the development and the application of Predictive Knowledge agents,

especially in long-lived continual learning domains that may exhibit non-

stationarity. In this chapter, I contributed a meta-gradient descent processes

by which agents were able to find GVFs that improved decision-making relative

to environment observations alone.

131

Chapter 6

Future Horizons

This thesis concerned itself with how an agent may develop knowledge of

its world through interaction with its environment. In particular, I explored

and refined the subfield of Predictive Knowledge (Koop, 2008; Ring, 1994;

Sutton, 2009; White, 2015), a growing collection of work that seeks to express

an agent’s knowledge through collections of predictions of future sensations.

This approach to machine knowledge draws inspiration from a wide body of

work in biological intelligence that has shown that humans and animals build

sensorimotor models of the world and that these models form the basis of

perception (Rao & Ballard, 1999; Wolpert et al., 1995). Similarly, Predictive

Knowledge enables an agent to construct knowledge of its world from the

agent’s subjective perspective, independent of human intervention.

In this thesis, I explore predictions as value functions (Sutton & Barto, 2018).

Value functions estimate the discounted sum of some future signal observed

under a target agent behaviour. Value functions can be learned incrementally,

online, in a self-supervised fashion. Based on a strong foundation, predictive

approaches to machine knowledge have faced two key challenges: how do agents

decide what to predict, and how do agents learn their predictions? This thesis

addressed these two questions.

Let us now reflect on the contributions of this thesis and on how these

questions were approached.

132

6.1 Adapting Step Sizes & Bias

In this thesis, I contributed a step-size adaptation method for temporal differ-

ence learning that I call TIDBD. Through TIDBD, an agent can incrementally

adapt its step sizes while interacting with its environment based on its per-

formance on a prediction task. To do so, TIDBD introduces a new meta step

size that must be chosen. TIDBD was empirically compared to ordinary TD

learning on a stationary prediction problem. I demonstrated that when used

to adapt a single step size shared amongst features, TIDBD outperforms TD

for a wide variety of meta step size values. Similar to ordinary TD, this thesis

presented evidence that TIDBD is sensitive to its meta step size. Like many

machine learning methods that take steps in the direction of a gradient, or

error, the best choice of meta step size varies from one problem to the next. To

address this sensitivity, I incorporated AutoStep style normalisation into the

update of TIDBD, which I name AutoTIDBD. I found that AutoTIDBD can

outperform ordinary TD learning for a broader set of meta step size values on a

stationary prediction task. On this stationary problem, AutoTIDBD performs

better than TD for a broader set of step size and meta step size combinations

than TIDBD without AutoStep’s normalisation. I then empirically evaluated

TIDBD on a non-stationary prediction task where step sizes are assigned on

a per-feature basis. Similar to prior results, I found that AutoTIDBD is less

sensitive than TIDBD to meta-step size selection and that it outperformed

many existing step-size adaptation methods. A promise of adapting step sizes

on a per-feature basis is the ability to perform representation learning by

scaling features autonomously. On the same non-stationary prediction task, a

portion of the input features were assigned to be noisy, and demonstrated that

AutoTIDBD tuned the step sizes of noisy features down.

One goal of this thesis was to develop a method of adapting the step sizes

and features used to learn General Value Functions. In particular, I was

concerned with developing a method of adapting step sizes suited for the real-

world: a means of adapting how GVF predictions are learned in a never-ending

and non-stationary learning problem with noisy inputs. On robotic prediction

133

tasks, I evaluated existing step-size adaptation methods originally presented in

episodic, stationary learning environments. In doing so, this thesis provides

new insights on how existing step-size methods perform in real-world learning

settings.

6.2 Evaluation

In this thesis, I critically evaluated error metrics that form the basis of GVF

evaluation. The primary motivation of learning predictions in Predictive Knowl-

edge is their use: ultimately, predictions are a way for agents to conceptualise

the world, and those conceptualisations should be in service to decision-making.

How does an agent determine whether to rely on a prediction? It is a common

belief that predictions should be chosen based on their error. I argue that error

is not always correlated with whether a prediction is useful for decision-making.

Using a simple binary prediction problem, I demonstrated how conventional

online evaluation methods do not always rank predictions effectively. Using a

network of predictions, I then demonstrated that poor methods of quantifying

performance for these initial estimates can lead to catastrophic impacts on

the performance of additional learning processes that depend on them. By

examining how agent performance is quantified, this thesis reveals a challenge

for Predictive Knowledge: determining how an agent disambiguates between

the good and the bad when differentiating between GVF estimates. Returning

to my first contribution, I generalise AutoTIDBD for off-policy policy evalua-

tion. Using off-policy AutoTIDBD, I demonstrated that designers and agents

can gain greater insight into the quality of a GVF estimate by examining the

relevance of the features a GVF uses in addition to the error estimate.

6.3 Meta-descent

Finally, this thesis turns its attention to GVF selection. How does an agent

identify which predictions will best support decision-making? Inspired by

Incremental Delta-Bar-Delta and meta-descent, I parameterise the components

of a GVF that determine what a GVF is about. I constructed a loss such that
134

what a GVF estimated was incrementally updated based on feedback from

a control learner solving a task. I demonstrated that an agent was able to

find predictions that—when used as features—enabled the agent to solve a

partially observable control task. On a sparse reward problem, an agent that

selected its own GVFs was able to outperform an agent using expert-chosen

predictions. Moreover, the meta-gradient agent found predictions that differed

from those chosen by domain experts. In my experiments, the control policy,

GVF estimates, and the specification of GVFs could all be learned online and

incrementally. Although the number of GVFs learned in each case were modest,

this work provides a new perspective on enabling agents to self-direct the

construction of Predictive Knowledge.

6.4 Future Directions

In this thesis, I contributed a new approach to self-organisation of predictions;

however, there is still important work to be done to bring this line of work to

its full potential. In this section, select areas of particular interest that remain

for future work are highlighted.

Meta-learning both what and how : This thesis opens up new directions

for the development of Predictive Knowledge agents. To analyse each learning

method independently, I did not use TIDBD when meta-learning the specifi-

cation of GVFs. The combined usage step-size adaptation and autonomous

GVF selection would be a further step in the development of truly autonomous

Predictive Knowledge agents.

Meta-gradient descent vs Generate and Test: While this thesis

made oblique references to using feature relevance as a means of augmenting

generate and test approaches to GVF selection, this remains possible future

work. Instead, I chose to focus on meta-descent approaches to specifying GVFs.

Furthermore, there are many possible avenues to enable GVF selection; further

exploration of this area is likely to yield improvements.

135

Hierarchical Collections of Predictions: In this thesis, I briefly touched

on collections of predictions that are structured as a network in Chapter 4,

following the thought experiment from (Ring, 2021). In this thesis, I do

not address how an agent could autonomously develop its own hierarchical

predictions; this interrelation of predictions is left for future work.

Constructive agents: The meta-descent method presented in this thesis

enabled agents to change the specification of a fixed set of predictions over

time. How such an agent may incrementally add or remove predictions over

time—or construct a network of predictions—remains to be explored.

Life-long environments: A motivation of Predictive Knowledge is the

development of agents that can autonomously and continuously learn about

their environment over a very long lifetime—agents that can continuously

learn and improve their performance with respect to a goal over time. I

explored continuing learning problems in this thesis; however, I did not explore

large learning environments where an agent could learn forever. How well a

Predictive Knowledge agent can grow and develop its understanding of the

world it inhabits during a long lifespan is a question that remains unanswered.

The final word: Prediction is integral to biological perception: humans

and animals continually anticipate what they may see next at any given

moment. Inspired by these biological systems, it has long been suggested

that artificial agents could use temporal-difference learning methods to learn

predictive models of their world. In this thesis, I present an approach to two

main challenges of Predictive Knowledge: enabling agents to modify how they

learn, and enabling agents to select what they learn about. In doing so, this

thesis presents an approach to removing two fundamental impediments to

research in Predictive Knowledge. This thesis both expands our understanding

of how predictive agents can learn autonomously and how Predictive Knowledge

agents can be applied to decision-making problems. It is my hope that this

work enables the further development of artificial agents that can continuously

develop knowledge of their world by autonomously learning from their subjective

stream of experience.

136

Bibliography

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau, D., Schaul, T.,
Shillingford, B., & De Freitas, N. (2016). Learning to learn by gradient
descent by gradient descent. Advances in Neural Information Processing
Systems, 3981–3989.

Bagheri, S., Thill, M., Koch, P., & Konen, W. (2016). Online adaptable learning
rates for the game connect-4. IEEE Transactions on Computational
Intelligence and AI in Games, 8 (1), 33–42. https://doi.org/10.1109/
TCIAIG.2014.2367105.

Baird, L. (1995). Residual algorithms: Reinforcement learning with function
approximation. Machine Learning Proceedings, 30–37.

Baranes, A., & Oudeyer, P.-Y. (2013). Active learning of inverse models with
intrinsically motivated goal exploration in robots. Robotics and Au-
tonomous Systems, 61 (1), 49–73.

Barbieri, M. (2007). Introduction to Biosemiotics: The New Biological Synthesis.
Springer Science & Business Media.

Barnard, E. (1993). Temporal-difference methods and Markov models. IEEE
Transactions on Systems, Man, and Cybernetics, 23 (2), 357–365.

Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul, T., van Hasselt, H. P.,
& Silver, D. (2017). Successor features for transfer in reinforcement
learning. Advances in Neural Information Processing Systems, 4055–
4065.

Becker, J. D. (1973). A model for the encoding of experiential information.
Computer Models of Thought and Language, 396–434.

Bellemare, M. G., Naddaf, Y., Veness, J., & Bowling, M. (2013). The arcade
learning environment: An evaluation platform for general agents. Journal
of Artificial Intelligence Research, 47, 253–279.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A
review and new perspectives. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35 (8), 1798–1828.

Bengio, Y., Goodfellow, I., & Courville, A. (2017). Deep Learning (Vol. 1).
MIT press Cambridge, MA, USA.

Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-
parameter optimization. Advances in Neural Information Processing
Systems, 24.

137

https://doi.org/10.1109/TCIAIG.2014.2367105
https://doi.org/10.1109/TCIAIG.2014.2367105

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter opti-
mization. Journal of Machine Learning Research, 13 (2).

Bhandari, J., Russo, D., & Singal, R. (2018). A finite time analysis of temporal
difference learning with linear function approximation. Conference On
Learning Theory, 75, 1691–1692.

Borsa, D., Barreto, A., Quan, J., Mankowitz, D. J., van Hasselt, H., Munos, R.,
Silver, D., & Schaul, T. (2019). Universal successor features approxima-
tors. International Conference on Learning Representations.

Bowling, M., & Veloso, M. (2002). Multiagent learning using a variable learning
rate. Artificial Intelligence, 136 (2), 215–250.

Boyan, J. A. (2002). Technical update: Least-squares temporal difference
learning. Machine learning, 49 (2-3), 233–246.

Brenneis, D. J. A., Parker, A. S., Johanson, M. B., Butcher, A., Davoodi, E.,
Acker, L., Botvinick, M. M., Modayil, J., White, A., & Pilarski, P. M.
(2021). Assessing human interaction in virtual reality with continually
learning prediction agents based on reinforcement learning algorithms:
A pilot study. arXiv:2112.07774.

Bridges, M. M., Para, M. P., & Mashner, M. J. (2011). Control system archi-
tecture for the modular prosthetic limb. Johns Hopkins APL Technical
Digest, 30 (3), 217–222.

Brown, T., Mane, D., Roy, A., Abadi, M., & Gilmer, J. (2017). Adversarial
patch. Machine Deception Workshop. arXiv:1712.09665.

Butcher, A., Johanson, M. B., Davoodi, E., Brenneis, D. J. A., Acker, L., Parker,
A. S. R., White, A., Modayil, J., & Pilarski, P. M. (2022). Pavlovian
signalling with general value functions in agent-agent temporal decision
making. arXiv:2201.03709.

Castro, P. S., Moitra, S., Gelada, C., Kumar, S., & Bellemare, M. G. (2018).
Dopamine: A research framework for deep reinforcement learning.
arXiv:1812.06110.

Chaput, H. H., Kuipers, B., & Miikkulainen, R. (2003). Constructivist learning:
A neural implementation of the schema mechanism. Workshop on Self-
Organizing Maps.

Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the
future of cognitive science. Behavioral and Brain Sciences, 36 (3), 181–
204.

Colunga, E., & Smith, L. B. (2005). From the lexicon to expectations about
kinds: A role for associative learning. Psychological Review, 112 (2), 347.

Comanici, G., Precup, D., Barreto, A., Toyama, D. K., Aygün, E., Hamel, P.,
Vezhnevets, S., Hou, S., & Mourad, S. (2018). Knowledge Representation
for Reinforcement Learning using General Value Functions. DeepMind.

Cunningham, M. (1972). Intelligence: its Organization and Development. Aca-
demic Press.

Dabney, W. (2014). Adaptive Step-Sizes for Reinforcement Learning (Doctoral
dissertation). University of Massachusetts, Amherst.

138

Dabney, W., & Barto, A. G. (2012). Adaptive step-size for online tempo-
ral difference learning. Twenty-Sixth AAAI Conference on Artificial
Intelligence.

Dalrymple, A. N., Roszko, D. A., Sutton, R. S., & Mushahwar, V. K. (2020).
Pavlovian control of intraspinal microstimulation to produce over-ground
walking. Journal of Neural Engineering, 17 (3).

Dawson, M. R., Sherstan, C., Carey, J. P., Hebert, J. S., & Pilarski, P. M.
(2014). Development of the Bento Arm: An improved robotic arm for
myoelectric training and research. Myoelectric Controls Symposium, 14,
60–64.

Dayan, P. (1993). Improving generalization for temporal difference learning:
The successor representation. Neural Computation, 5 (4), 613–624.

Degris, T., & Modayil, J. (2012). Scaling-up knowledge for a cognizant robot.
AAAI Spring Symposium Series.

Deng, L. (2012). The MNIST database of handwritten digit images for machine
learning research. IEEE Signal Processing Magazine, 29 (6), 141–142.

Drescher, G. L. (1991). Made-up Minds: A Constructivist Approach to Artificial
Intelligence. MIT press.

Edgar An, P., Miller, W. T., & Parks, P. (1991). Design improvements in asso-
ciative memories for cerebellar model articulation controllers (CMAC).
International Conference on Artificial Neural Networks, 1207–1210.

Edwards, A. L., Dawson, M. R., Hebert, J. S., Sherstan, C., Sutton, R. S.,
Chan, K. M., & Pilarski, P. M. (2016). Application of real-time machine
learning to myoelectric prosthesis control: A case series in adaptive
switching. Prosthetics and Orthotics International, 40 (5), 573–581.

Edwards, A. L., Dawson, M. R., Hebert, J. S., Sutton, R. S., Chan, K. M.,
& Pilarski, P. M. (2014). Adaptive switching in practice: Improving
myoelectric prosthesis performance through reinforcement learning. My-
oelectric Controls Symposium, 18–22.

Edwards, A. L., Hebert, J. S., & Pilarski, P. M. (2016). Machine learning
and unlearning to autonomously switch between the functions of a
myoelectric arm. Biomedical Robotics and Biomechatronics (BioRob),
514–521.

Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for
fast adaptation of deep networks. International Conference on Machine
Learning, 1126–1135.

Forestier, S., Portelas, R., Mollard, Y., & Oudeyer, P.-Y. (2022). Intrinsically
motivated goal exploration processes with automatic curriculum learning.
Journal of Machine Learning Research, 23 (1), 6818–6858.

Ghiassian, S., Patterson, A., White, M., Sutton, R. S., & White, A. (2018).
Online off-policy prediction. arXiv:1811.02597.

Ghiassian, S., & Sutton, R. S. (2021). An empirical comparison of off-policy
prediction learning algorithms on the collision task. arXiv:2106.00922.

Gilbert, D. (2009). Stumbling on Happiness. Vintage Canada.

139

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. International Conference on Artificial
Intelligence and Statistics, 249–256.

Goldman, A. I. (1976). Discrimination and perceptual knowledge. The Journal
of Philosophy, 73 (20), 771–791.

Graves, D., Günther, J., & Luo, J. (2021). Affordance as general value function:
A computational model. Adaptive Behavior.

Guerin, F., & Starckey, A. (2009). Applying the schema mechanism in continu-
ous domains. Conference on Epigenetic Robotics: Modeling Cognitive
Development in Robotic Systems.

Günther, J., Ady, N. M., Kearney, A., Dawson, M. R., & Pilarski, P. M. (2020).
Examining the use of Temporal-Difference Incremental Delta-Bar-Delta
for real-world predictive knowledge architectures. Frontiers in Robotics
and AI, 7, 34.

Günther, J., Kearney, A., Ady, N. M., Dawson, M. R., & Pilarski, P. M. (2019).
Meta-learning for Predictive Knowledge Architectures: A Case Study
Using TIDBD on a Sensor-rich Robotic Arm. International Conference
on Autonomous Agents and MultiAgent Systems, 1967–1969.

Günther, J., Kearney, A., Dawson, M. R., Sherstan, C., & Pilarski, P. M.
(2018). Predictions, surprise, and predictions of surprise in general value
function architectures. AAAI 2018 Fall Symposium on Reasoning and
Learning in Real-World Systems for Long-Term Autonomy, 22–29.

Günther, J., Pilarski, P. M., Helfrich, G., Shen, H., & Diepold, K. (2016).
Intelligent laser welding through representation, prediction, and control
learning: An architecture with deep neural networks and reinforcement
learning. Mechatronics, 34, 1–11.

Ha, D., & Schmidhuber, J. (2018). Recurrent world models facilitate policy
evolution. Advances in Neural Information Processing Systems, 31, 2450–
2462.

Hackman, L. (2012). Faster Gradient-TD Algorithms (Master’s thesis). Univer-
sity of Alberta.

Hallak, A., Tamar, A., Munos, R., & Mannor, S. (2016). Generalized emphatic
temporal difference learning: Bias-variance analysis. Thirtieth AAAI
Conference on Artificial Intelligence.

Harb, J., & Precup, D. (2017). Investigating recurrence and eligibility traces in
deep Q-networks. arXiv:1704.05495.

Huang, S., Papernot, N., Goodfellow, I., Duan, Y., & Abbeel, P. (2017). Ad-
versarial attacks on neural network policies. arXiv:1702.02284.

Hutter, M., & Legg, S. (2008). Temporal difference updating without a learning
rate. Advances in Neural Information Processing Systems, 705–712.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T., Leibo, J. Z., Silver, D.,
& Kavukcuoglu, K. (2017). Reinforcement learning with unsupervised
auxiliary tasks. 5th International Conference on Learning Representa-
tions.

140

Jaeger, H. (2000). Observable operator models for discrete stochastic time
series. Neural Computation, 12 (6), 1371–1398.

Johannes, M. S., Bigelow, J. D., Burck, J. M., Harshbarger, S. D., Kozlowski,
M. V., & Van Doren, T. (2011). An overview of the developmental
process for the modular prosthetic limb. Johns Hopkins APL Technical
Digest, 30 (3), 207–216.

Johannes, M. S., Faulring, E. L., Katyal, K. D., Para, M. P., Helder, J. B.,
Makhlin, A., Moyer, T., Wahl, D., Solberg, J., Clark, S., et al. (2020).
The modular prosthetic limb.

Johnson, M., Hofmann, K., Hutton, T., & Bignell, D. (2016). The Malmo
platform for artificial intelligence experimentation. International Joint
Conference on Artificial Intelligence, 4246–4247.

Kansky, K., Silver, T., Mély, D. A., Eldawy, M., Lázaro-Gredilla, M., Lou,
X., Dorfman, N., Sidor, S., Phoenix, S., & George, D. (2017). Schema
networks: Zero-shot transfer with a generative causal model of intuitive
physics. International Conference on Machine Learning, 1809–1818.

Kearney, A., Koop, A., Sherstan, C., Gunther, J., Sutton, R. S., Pilarski, P. M.,
& Taylor, M. E. (2018). Evaluating predictive knowledge. AAAI Fall
Symposium on Reasoning and Learning In Real-World Systems For
Long-Term Autonomy.

Kearney, A., Veeriah, V., Travnik, J., Pilarski, P. M., & Sutton, R. S. (2019).
Learning Feature Relevance Through Step Size Adaptation in Temporal-
Difference Learning. arXiv:1903.03252.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization.
International Conference on Learning Representations.

Koop, A. (2008). Investigating Experience: Temporal Coherence and Empirical
Knowledge Representation (Master’s thesis). University of Alberta.

Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from
tiny images. University of Toronto.

Li, X.-J., & Yang, G.-H. (2012). Fault detection for linear stochastic systems
with sensor stuck faults. Optimal Control Applications and Methods,
33 (1), 61–80.

Lin, L.-J. (1993). Reinforcement Learning for Robots Using Neural Networks.
Carnegie Mellon University.

Linke, C., Ady, N. M., White, M., Degris, T., & White, A. (2020). Adapting
behavior via intrinsic reward: A survey and empirical study. Journal of
Artificial Intelligence Research, 69, 1287–1332.

Littman, M. L., Sutton, R. S., & Singh, S. (2002). Predictive representations of
state. Advances in Neural Information Processing Systems, 1555–1561.

Liu, B., Liu, J., Ghavamzadeh, M., Mahadevan, S., & Petrik, M. (2016).
Proximal gradient temporal difference learning algorithms. International
Joint Conference on Artificial Intelligence, 4195–4199.

Lydia, A., & Francis, S. (2019). Adagrad—an optimizer for stochastic gradient
descent. International Journal of Information And Computing Science,
6 (5), 566–568.

141

Ma, C., Wen, J., & Bengio, Y. (2018). Universal successor representations for
transfer reinforcement learning. arXiv:1804.03758.

Maei, H. R. (2011). Gradient Temporal-difference Learning Algorithms (Doc-
toral dissertation). University of Alberta.

Mahmood, A. R. (2017). Incremental Off-policy Reinforcement Learning Algo-
rithms (Doctoral dissertation). University of Alberta.

Mahmood, A. R., & Sutton, R. S. (2013). Representation search through
generate and test. AAAI Workshop: Learning Rich Representations
from Low-Level Sensors.

Mahmood, A. R., Sutton, R. S., Degris, T., & Pilarski, P. M. (2012). Tuning-
free step-size adaptation. IEEE International Conference On Acoustics,
Speech and Signal Processing, 2121–2124.

Makino, T., & Takagi, T. (2008). On-line discovery of temporal-difference
networks. International Conference on Machine Learning, 632–639.

McCarthy, J., & Hayes, P. J. (1981). Some philosophical problems from the
standpoint of artificial intelligence. Readings in Artificial Intelligence,
431–450.

Milan, K., Veness, J., Kirkpatrick, J., Bowling, M., Koop, A., & Hassabis,
D. (2016). The forget-me-not process. Advances in Neural Information
Processing Systems, 29.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,
M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G.,
et al. (2015). Human-level control through deep reinforcement learning.
Nature, 518 (7540), 529–533.

Modayil, J., & Kuipers, B. (2008). The Initial Development of Object Knowledge
by a Learning Robot. Robotics and Autonomous Systems, 56 (11), 879–
890.

Modayil, J., & Sutton, R. S. (2014). Prediction driven behavior: Learning
predictions that drive fixed responses. The AAAI-14 Workshop on
Artificial Intelligence and Robotics.

Modayil, J., White, A., & Sutton, R. S. (2014). Multi-timescale nexting in a
reinforcement learning robot. Adaptive Behavior, 22 (2), 146–160.

Mugan, J., & Kuipers, B. (2008). Towards the application of reinforcement
learning to undirected developmental learning. Carnegie Mellon Univer-
sity.

Ni, K., Ramanathan, N., Chehade, M. N. H., Balzano, L., Nair, S., Zahedi, S.,
Kohler, E., Pottie, G., Hansen, M., & Srivastava, M. (2009). Sensor
network data fault types. ACM Transactions on Sensor Networks, 5 (3),
25.

Nöe, A. (2004). Action in Perception. MIT press.
Oudeyer, P.-Y., & Kaplan, F. (2009). What is intrinsic motivation? A typology

of computational approaches. Frontiers in Neurorobotics, 1, 6.
Oudeyer, P.-Y., Kaplan, F., Hafner, V., & Whyte, A. (2005). The playground

experiment: Task-independent development of a curious robot. AAAI
Spring Symposium on Developmental Robotics.

142

Panayotov, V., Chen, G., Povey, D., & Khudanpur, S. (2015). Librispeech: An
ASR corpus based on public domain audio books. IEEE International
Conference on Acoustics, Speech and Signal Processing, 5206–5210.

Pezzulo, G. (2011). Grounding procedural and declarative knowledge in senso-
rimotor anticipation. Mind & Language, 26 (1), 78–114.

Pezzulo, G., Donnarumma, F., & Dindo, H. (2013). Human sensorimotor
communication: A theory of signaling in online social interactions. PloS
one, 8 (11).

Piaget, J. (1954). The Construction of Reality in the Child. New York: Basic
Books.

Piaget, J., & Cook, M. (1952). The Origins of Intelligence in Children (Vol. 8).
International Universities Press New York.

Piaget, J., & Duckworth, E. (1970). Genetic epistemology. American Behavioral
Scientist, 13 (3), 459–480.

Pierce, D., & Kuipers, B. (1997). Map learning with uninterpreted sensors and
effectors. Artificial Intelligence, 92 (1), 169–227.

Pilarski, P. M., Butcher, A., Davoodi, E., Johanson, M. B., Brenneis, D. J.,
Parker, A. S., Acker, L., Botvinick, M. M., Modayil, J., & White, A.
(2022). The frost hollow experiments: Pavlovian signalling as a path to
coordination and communication between agents. arXiv:2203.09498.

Pilarski, P. M., Dawson, M. R., Degris, T., Carey, J. P., Chan, K. M., Hebert,
J. S., & Sutton, R. S. (2013). Adaptive artificial limbs: A real-time
approach to prediction and anticipation. IEEE Robotics & Automation
Magazine, 20 (1), 53–64.

Pilarski, P. M., Dawson, M. R., Degris, T., Carey, J. P., & Sutton, R. S.
(2012). Dynamic switching and real-time machine learning for improved
human control of assistive biomedical robots. 4th IEEE International
Conference on Biomedical Robotics and Biomechatronics, 296–302.

Pilarski, P. M., Dawson, M. R., Degris, T., Fahimi, F., Carey, J. P., & Sutton,
R. S. (2011). Online human training of a myoelectric prosthesis controller
via actor-critic reinforcement learning. IEEE International Conference
on Rehabilitation Robotics, 1–7.

Pilarski, P. M., Dick, T. B., & Sutton, R. S. (2013). Real-time prediction learning
for the simultaneous actuation of multiple prosthetic joints. IEEE 13th
International Conference on Rehabilitation Robotics (ICORR), 1–8.

Pilarski, P. M., & Sherstan, C. (2016). Steps toward knowledgeable neuropros-
theses. 6th IEEE International Conference on Biomedical Robotics and
Biomechatronics, 220–220. https://doi.org/10.1109/BIOROB.2016.
7523626.

Precup, D. (2000). Temporal Abstraction in Reinforcement Learning (Doctoral
dissertation). University of Massachusetts, Amherst.

Qin, Y., Carlini, N., Cottrell, G., Goodfellow, I., & Raffel, C. (2019). Impercep-
tible, robust, and targeted adversarial examples for automatic speech
recognition. International Conference on Machine Learning, 5231–5240.

143

https://doi.org/10.1109/BIOROB.2016.7523626
https://doi.org/10.1109/BIOROB.2016.7523626

Radulescu, A., Niv, Y., & Ballard, I. (2019). Holistic reinforcement learning:
The role of structure and attention. Trends in Cognitive Sciences, 23 (4),
278–292.

Rafiee, B. (2018). Predictive Knowledge in Robots: An Empirical Comparison
of Learning Algorithms (Master’s thesis). University of Alberta.

Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A
functional interpretation of some extra-classical receptive-field effects.
Nature Neuroscience, 2 (1), 79–87.

Ring, M. (1994). Continual Learning in Reinforcement Environments (PhD
Thesis). University of Texas at Austin.

Ring, M. (1997). CHILD: A first step towards continual learning. Machine
Learning, 28 (1), 77–104.

Ring, M. (2021). Representing Knowledge as Predictions (and State as Knowl-
edge). arXiv:2112.06336.

Russell, S., & Norvig, P. (2010). Artificial Intelligence a Modern Approach.
Pearson Education, Inc.

Schaul, T., Horgan, D., Gregor, K., & Silver, D. (2015). Universal value function
approximators. International Conference on Machine Learning, 37, 1312–
1320.

Schaul, T., Quan, J., Antonoglou, I., & Silver, D. (2016). Prioritized experience
replay. In Y. Bengio & Y. LeCun (Eds.), 4th International Conference
on Learning Representations, ICLR.

Schlegel, M., Jacobsen, A., Abbas, Z., Patterson, A., White, A., & White, M.
(2021). General value function networks. Journal of Artificial Intelligence
Research, 70, 497–543.

Schlegel, M., White, A., & White, M. (2018). A baseline of discovery for general
value function networks under partial observability. NeurIPS Workshop
on Reinforcement Learning under Partial Observability.

Schlegel, M., & White, M. (2022). Predictions predicting predictions. The 5th
Multi-disciplinary Conference on Reinforcement Learning and Decision
Making.

Schraudolph, N. N. (1999). Local gain adaptation in stochastic gradient descent.
9th International Conference on Artificial Neural Networks, 569–574.

Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of
prediction and reward. Science, 275 (5306), 1593–1599.

Schweighofer, N., & Arbib, M. A. (1998). A model of cerebellar metaplasticity.
Learning & Memory, 4 (5), 421–428.

Seijen, H. (2016). Effective multi-step temporal-difference learning for non-linear
function approximation. arXiv:1608.05151.

Seijen, H., & Sutton, R. (2014). True online TD(�). International Conference
on Machine Learning, 32 (1), 692–700.

Sellars, W. (1956). Empiricism and the philosophy of mind. Minnesota Studies
in the Philosophy of Science, 1 (19), 253–329.

Shapiro, L. G., & Stockman, G. C. (2001). Computer vision (Vol. 3). Prentice
Hall New Jersey.

144

Sherstan, C., Dohare, S., MacGlashan, J., Günther, J., & Pilarski, P. M.
(2020). Gamma-nets: Generalizing value estimation over timescale. AAAI
Conference on Artificial Intelligence, 34 (04), 5717–5725.

Sherstan, C., Machado, M. C., & Pilarski, P. M. (2018). Accelerating learning
in constructive predictive frameworks with the successor representation.
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2997–3003.

Sherstan, C., Modayil, J., & Pilarski, P. M. (2015). A collaborative approach
to the simultaneous multi-joint control of a prosthetic arm. IEEE Inter-
national Conference on Rehabilitation Robotics, 13–18. https://doi.org/
10.1109/ICORR.2015.7281168.

Sherstan, C., White, A., Machado, M. C., & Pilarski, P. M. (2016). Introspec-
tive agents: Confidence measures for general value functions. Artificial
General Intelligence, 258–261.

Silver, D. (2013). Gradient temporal difference networks. Tenth European
Workshop on Reinforcement Learning, 24, 117–130.

Sinclair, A. H., & Barense, M. D. (2018). Surprise and destabilize: Prediction
error influences episodic memory reconsolidation. Learning & Memory,
25 (8), 369–381.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences.
Machine Learning, 3 (1), 9–44. https://doi.org/10.1007/BF00115009.

Sutton, R. S. (1992). Adapting bias by gradient descent: An incremental version
of delta-bar-delta. Tenth National Conference on Artificial Intelligence,
171–176.

Sutton, R. S. (2009). The grand challenge of predictive empirical abstract knowl-
edge. Working Notes of the IJCAI-09 Workshop on Grand Challenges
for Reasoning from Experiences.

Sutton, R. S. (2011). Beyond reward: The problem of knowledge and data.
International Conference on Inductive Logic Programming, 2–6.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction.
MIT press Cambridge.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A., &
Precup, D. (2011). Horde: A scalable real-time architecture for learning
knowledge from unsupervised sensorimotor interaction. International
Foundation for Autonomous Agents and Multiagent Systems AAMAS,
761–768.

Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial
Intelligence, 112 (1), 181–211.

Sutton, R. S., & Tanner, B. (2004). Temporal-Difference Networks. Advances
in Neural Information Processing Systems.

Tanaka, S. C., Doya, K., Okada, G., Ueda, K., Okamoto, Y., & Yamawaki,
S. (2016). Prediction of immediate and future rewards differentially
recruits cortico-basal ganglia loops. Behavioral Economics of Preferences,
Choices, and Happiness, 593–616.

145

https://doi.org/10.1109/ICORR.2015.7281168
https://doi.org/10.1109/ICORR.2015.7281168
https://doi.org/10.1007/BF00115009

Thill, M. (2015). Temporal Difference Learning Methods With Automatic Step-
size Adaption for Strategic Board Games: Connect-4 and Dots-and-Boxes
(Master’s thesis). Cologne University of Applied Sciences.

Tieleman, T., & Hinton, G. (2012). Lecture 6.5-RMSProp, COURSERA: Neural
networks for machine learning. University of Toronto.

Travnik, J. B., & Pilarski, P. M. (2017). Representing high-dimensional data
to intelligent prostheses and other wearable assistive robots: A first
comparison of tile coding and selective Kanerva coding. IEEE Interna-
tional Conference on Rehabilitation Robotics, 2017, 1443–1450. https:
//doi.org/10.1109/ICORR.2017.8009451.

Veeriah, V., Hessel, M., Xu, Z., Rajendran, J., Lewis, R. L., Oh, J., van Hasselt,
H. P., Silver, D., & Singh, S. (2019). Discovery of useful questions as
auxiliary tasks. Advances in Neural Information Processing Systems, 32.

Veeriah, V., Zhang, S., & Sutton, R. S. (2017). Crossprop: Learning representa-
tions by stochastic meta-gradient descent in neural networks. Machine
Learning and Knowledge Discovery in Databases, 445–459.

White, A. (2015). Developing a Predictive Approach to Knowledge (PhD Thesis).
University of Alberta.

Wilson, R. C., & Niv, Y. (2012). Inferring relevance in a changing world.
Frontiers in Human Neuroscience, 5, 189.

Wolfe, B., James, M. R., & Singh, S. (2005). Learning predictive state represen-
tations in dynamical systems without reset. International Conference
on Machine Learning, 980–987.

Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model
for sensorimotor integration. Science, 269 (5232), 1880–1882.

Xu, K., Ba, J. L., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel,
R. S., & Bengio, Y. (2015). Show, attend and tell: Neural image caption
generation with visual attention. Journal of Machine Learning Research,
2048–2057.

Xu, Z., van Hasselt, H. P., & Silver, D. (2018). Meta-gradient reinforcement
learning. Advances in Neural Information Processing Systems, 31.

Young, K., Wang, B., & Taylor, M. E. (2019). Metatrace actor-critic: Online
step-size tuning by meta-gradient descent for reinforcement learning
control. International Joint Conference on Artificial Intelligence, 4185–
4191.

Zeiler, M. D. (2012). Adadelta: An adaptive learning rate method. arXiv:1212.5701.

146

https://doi.org/10.1109/ICORR.2017.8009451
https://doi.org/10.1109/ICORR.2017.8009451

	Introduction
	Statement of Purpose
	The what
	The how

	Contribution 1: How Should an Agent Learn? Adapting Step Sizes by Meta-gradient Descent
	Contribution 2: What's a good prediction? New Directions for Evaluating an Agent's Knowledge
	Contribution 3: What Should an Agent Know? Online Discovery of Useful Predictions
	Thesis Adjacent Contributions:
	Structure of the Thesis

	Background
	A Brief History of Predictive Knowledge
	Reinforcement Learning & Predictive Knowledge
	Conceptual progress in developing Predictive Knowledge
	Architectural developments in defining the structure of Predictive Knowledge agents
	Algorithmic developments for Predictive Knowledge agents
	Applications of Predictive Knowledge

	Modifying Learning by Adapting Step Sizes
	Stochastic Gradient Descent Optimisers
	Step-size Adaptation for Reinforcement Learning
	HL()
	AlphaBound
	The step-size adaptation method explored in this thesis: Incremental Delta-Bar-Delta

	Open Questions in Predictive Knowledge
	How does an agent learn to predict?
	How does an agent use predictions?
	How does an agent structure its predictions?
	How does an agent determine what to learn about?

	How should an agent learn? Adapting Step Sizes by Stochastic Meta-descent
	Gradient Methods for Meta-learning
	Stochastic Meta-descent for Learning Feature Relevance
	Incremental Delta-Bar-Delta
	TIDBD: TD Incremental Delta-Bar-Delta
	Derivation of semi-gradient method
	Derivation of ordinary-gradient method

	Does a Single, Shared Step Size by TIDBD Outperform Ordinary TD?
	Grid world

	Auto TIDBD: AutoStep for TD Learning
	AutoStep for TD

	How well Does AutoTIDBD Adapt a Single Step Size?
	How Robust is AutoTIDBD to Selection of Meta Step Size When Adapting Many Step-sizes?
	Robotic prediction task
	Sensitivity to meta step size in a prosthetic prediction problem and performance relative to existing methods
	Sensitivity to meta step size across prediction problems
	Can AutoTIDBD perform representation learning?

	Examining AutoTIDBD for Real-world Robotics
	Experimental setup
	Experiment: comparison of fixed step size TD and OG AutoTIDBD
	Experiment: parameter sensitivity for TD and OG AutoTIDBD
	Experiment: stuck sensors
	Experiment: broken sensors
	Discussion on real-world experiments

	Related Literature, Limitations, and Future Work
	Conclusion

	What's a Good Prediction? New Directions for Evaluating Agent Knowledge
	Introduction
	Understanding the World Through General Value Functions
	How GVFs are Specified and Learned
	The Challenge of Constructing Knowledge

	Experiment 1: How Poor Evaluation Impacts Predictive Features
	Evaluation by empirical return error
	A synthetic example
	Experimental summary

	Experiment 2: How Performance is Impacted by Poor Predictive Features
	Estimating error for off-policy learning
	Predictions estimated
	Experimental environment
	Results
	Experimental summary

	Proposal: Evaluation of Feature relevance
	Derivation of off-policy Semi-gradient AutoTIDBD

	Experiment 3: Analysing Feature Relevance
	Experimental setup
	Results: examining feature relevance
	Conclusion

	Relevance & Related Work
	Contributions of This Chapter

	What Should An Agent Know? Online Discovery of Useful Predictions
	Introduction
	Learning What to Predict by Meta-gradient descent
	Can an Agent Learn What to Predict?
	Learning to Specify GVFs in Monsoon World
	Meta-parameter specification
	What GVFs are specified by meta-gradient descent?

	Learning to Specify GVFs in Frost Hollow
	Limitations & Future Work
	Conclusion

	Future Horizons
	Adapting Step Sizes & Bias
	Evaluation
	Meta-descent
	Future Directions

