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Abstract

Upper limb amputation is a debilitating condition that affects over 41,000 people in the United

States alone. Largely because of limitations in wrist prostheses, many people affected by upper

limb amputation are compelled to use compensatory movements to perform tasks of daily living,

which often result in overuse injuries in the back and shoulder. Some research has shown that

adaptable wrists that either passively or actively adapt their angle without direct user input can

reduce compensatory movements. The work presented in this thesis represents the first attempt

to design and evaluate an active self-adjusting prosthetic wrist that relies only on its internal state

to perform automatic levelling. The work follows the arc of the design process, first determin-

ing an appropriate user interface, then outlining the design of the prosthesis itself, and finally the

evaluation of the effect of the device on the users. The first study provides evidence that an ap-

propriate interface with a self-levelling wrist will keep the terminal device level any time the user

is not directly controlling the wrist position. With this information, the design of the prosthesis

and explanation of the automatically levelling system is outlined in detail. The system makes use

of a single inertial measurement unit mounted in the base of the terminal device to perform all

automatic levelling calculations. The second study, focusing on the effect of the device on users,

suggests that the automatically levelling wrist may provide reduced compensation in shoulder

flexion on a vertically-oriented task, but does not provide any compensatory benefit compared to

conventional sequential-switching on a horizontally-oriented task. Further, users indicated that

the automatically levelling system was less intuitive and less reliable to use compared to other

control mechanisms. This thesis represents three main contributions to the field of wrist prosthesis

research: an initial investigation of an appropriate control interface for automatic levelling, the de-

velopment of a hardware prototype for testing with able-bodied people, and evaluation of effect of

the system on users’ movement strategies and performance. By these contributions we show that

an automatically levelling wrist may provide benefits by reducing compensatory movements in

vertically-oriented tasks, but that the current implementation of automatic levelling suffers from
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limitations in terms of reliability and intuitiveness. Future research efforts should focus on increas-

ing reliability, and on the evaluation of compensatory movements with prosthesis-users.
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In order to strike a balance between accuracy and clarity, throughout this thesis I use the term “Automatically Level-

ling” (abbreviated as “Autolevelling” or “AL”) to refer to what is more properly called “maintaining terminal device

orientation relative to the ground reference frame, with respect to horizontal axis rotations only”. The term “Autolev-

elling” may seem to imply that the terminal device is maintaining some “level” with its axes relative to the ground.

The actual behaviour of the wrist is somewhat more complex than that, and is described in Section 4.1. For most in-

tents and purposes, the imagined behaviour conjured by the phrase ”Automatically Levelling” is sufficiently accurate

to reality.
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Chapter 1

Introduction

1.1 Problem

There were approximately 41,000 people affected by major upper limb loss in the United States

in 2005, and that number is expected to increase 131% by 2050 [1]. Improved wrist function, si-

multaneous two-joint movement, and less need for visual attention were among the top reported

research priorities of people affected by upper-limb amputation in 1996 [2]. This was true for both

transhumeral and transradial amputation alike, and across both body-powered and myoelectric

prosthesis users. More recent reviews also indicate a need for better wrist control [3]. A 2015 re-

view of the state of the art in wrist prostheses found that powered wrist movement is still rare in

commercial systems, and all of those that are powered have only one degree of freedom (DOF),

most often rotation [4]. Many researchers have shown that limitations in ease of wrist movement

force people to use compensatory movements [5]–[8], as seen in Fig. 1.1. Some researchers have

also shown that despite recent focus on multi-articulating hands, evidence suggests that wrist dex-

terity may be more important than finger dexterity to avoiding compensatory movements [9].

Populations with upper limb amputation report a higher prevalence of self-reported muscu-

loskeletal pain in the neck, upper back, shoulder, and remaining arm than the able-bodied pop-

ulation, and the use of prostheses does not change this prevalence [10]. Self-reported pain in the



Chapter 1. Introduction 2

non-amputated arm of people who suffered unilateral amputation was greater than arm pain re-

ported in the control group, indicating that overuse of the non-amputated arm may cause injuries

as well. In fact, rotator cuff syndrome on the non-amputated side was the most frequent case

diagnosis. Whether a person uses a prosthesis or not, the tendency is to compensate using the

non-amputated limb for whatever task is at hand. For bimanual tasks, or other situations which

require the use of the amputated limb (as in [5]–[8]), the lack of wrist function is compensated for

in trunk, shoulder, and elbow movements where possible. This indicates that current prostheses

do not reduce overuse injuries caused by compensatory movements for two reasons: first, the lack

of functionality encourages the overuse of the more functional non-amputated limb, and second

for tasks that require the use of the amputated limb the prosthesis does not adequately replace the

lost wrist function. We suggest that a prosthetic wrist that can automatically adjust its position to

maintain the hand’s orientation as the rest of the arm moves may reduce instances of injuries by

reducing the need for compensatory movements of this nature.

FIGURE 1.1: Lack of wrist dexterity forces users to compensate using shoulder, elbow,
and trunk movements in order to keep objects level during lifting.

1.2 Objectives

The objectives within the scope of this thesis are threefold:

1. to design and prototype an active automatically levelling wrist that is easily adaptable to

various tasks,



Chapter 1. Introduction 3

2. to determine the most effective way of integrating it into existing prosthesis control schemes,

and

3. to determine the effect of the wrist system on users’ interactions with the prosthesis, high-

lighting compensatory movements, task performance, and user satisfaction.

1.3 Study Strategy

In planning this thesis, I have attempted to adhere to the methods governing good, human-centred

design. A properly designed device fills a real need in its user’s life; to ensure this, the design

process hinges on rapid iterations, keeping the future user of the device in the loop providing

feedback where necessary. To that end, this thesis first identifies a need of prosthesis users, and

attempts to fill that need. Rather than designing the complete finished product at once, an initial

usability study was conducted to ensure that the user interface wouldn’t increase the complexity

of the prosthesis as a whole. Following that study, and after designing a control system based on

those results, I worked to evaluate the actual effect of the device on compensatory movements,

task performance, and user satisfaction.

1.4 Summary of Chapter Contents

Ch. 2: Gives the relevant background information essential to understanding the contents of the

following chapters. It includes reviews of the current state of the art in prosthetic wrist

control, compensatory movement caused by upper-limb amputation and their physiological

effects, and previous work on automatically levelling control schemes. This chapter also

propels the motivation of the rest of the thesis, providing arguments supporting the further

investigation of self-adjusting wrists.

Ch. 3: Outlines the initial usability study of the self-adjusting wrist. This study involves a 1-DOF

wrist on a desktop-mounted robot arm, six able-bodied participants, and joystick control.
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The chapter provides a full analysis of that study and its results, as well as the implications

of the results for moving forward with further investigations.

Ch. 4: Provides a detailed description of the technical development of an automatically-levelling

bypass prosthesis with 2 DOF at the wrist.

Ch. 5: Outlines a second experiment focused on evaluating the effect of the device on compensatory

movements. This study uses motion-capture with standardized evaluation tasks to evaluate

compensatory movements, task performance, and satisfaction of able-bodied participants

using the bypass prosthesis device described in Chapter 4.

Ch. 6: Summarizes the key findings of the thesis, and provides insights about next steps.
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Chapter 2

Background

2.1 Prosthetic Replacement of Upper Limbs

Most readers will be familiar with the idea of prosthetic limb replacement, as this concept has

been around for quite a while. In fact, a Roman general as far back as 218-210 B.C.E. had an iron

prosthetic hand fashioned for him so that he could carry his shield and return to battle [11]. This

section briefly describes the key differences between the two main types of upper-limb prostheses:

body-powered and electrically-powered.

2.1.1 Body-Powered Prostheses

Body-powered prostheses typically operate by the use of cables and harnesses which translate

shoulder and back movements of the user into hand or elbow motion. Usually, active shoulder

movement will open the terminal device, and relaxation allows the device to close by the passive

use of springs or elastic bands. This arrangement can be reversed to allow for active closing and

passive opening. Body-powered control of the elbow is typically activated by a mechanical switch,

which transfers the active shoulder motion to the elbow rather than the hand. This means it is

not possible to simultaneously control the various DOF on the prosthesis. When wrist control is

provided in a body-powered prosthesis, it is almost always wrist rotation, and usually passively
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operated by re-adjustment with the contralateral limb. While some body-powered wrist devices

exist, they are quite rare [4].

2.1.2 Electrically-Powered Prostheses

Electrically-powered prostheses, often referred to as “myoelectrically-powered prostheses” or “my-

oelectric prostheses” typically operate by making use of surface electromyography (EMG). This

technique involves applying electrodes non-invasively to the surface of the skin over the residual

muscle bellies. When the muscles are contracted, the electrodes detect the electric potential gener-

ated by the muscles. Appropriate amplification and filtration of these potentials provides a signal

proportional to the degree of contraction which can be used as an input signal to control the pros-

thesis. Often, two antagonistic muscle sites (for example the biceps and triceps) will be mapped

to a degree of freedom (for example, hand open/close). In this example, when the bicep is flexed

the hand opens, and when the tricep is flexed the hand closes. The velocity with which the hand

opens or closes is proportional to the strength of the muscle contraction. When the muscles are re-

laxed below a threshold, the prosthesis is typically programmed to hold its position. Conventional

methods for EMG control of prostheses are described in detail in [12].

A co-contraction (when both muscles are contracted simultaneously) is often programmatically

mapped to a “switching signal”, and is used by the prosthesis operator to change which degree of

freedom on the prosthesis they are controlling. Depending on the level of the person’s amputation,

there may be several DOFs that the person might wish to control. Typically, these will appear in

an ordered list, and the user will sequentially switch from one to the next until they reach their

desired DOF, in a method known as “sequential switching”. For people who have difficulty per-

forming a co-contraction, alternative switching methods are available, including bump switches

and linear variable differential transformers (LVDTs). Though sequential switching is the most

common control method in use today, it is not without its issues. For instance, by nature it disal-

lows simultaneous multi-DOF movement. Additionally, even just a few items in the switching list
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can quickly become unwieldy, leading to body compensation rather than switching. A number of

alternatives have been proposed to address its various shortcomings.

Adaptive switching makes for more effective use of the sequential switching method by dy-

namically reordering the switching list based on predictions of what the person will do next [13].

Further to this idea, autonomous switching aims to remove the need for manual switching by

allowing the machine to switch the joint being controlled for the user when appropriate [14].

Pattern recognition methods use trained classifications to decode patterns of muscle contrac-

tion into meaningful control signals [15]. Because they are not restricted to simple contraction

of antagonistic muscle groups, it is possible to train different patterns to correspond to different

degrees of freedom, thus enabling multi-DOF control without requiring switching [16]. For ad-

vanced prosthesis-users with sophisticated pattern recognition algorithms, this can even mean the

possibility for simultaneous multi-joint movement [17].

2.1.3 Simulated Prostheses

It is sometimes useful to simulate the use of a prosthesis with able-bodied people to facilitate rapid

testing and prototyping in advance of testing with people affected by amputation. A simulated

prosthesis, sometimes referred to as a “bypass prosthesis”, is worn over a person’s intact arm,

restricting and bypassing the function of their biological arm and hand to enable the function of

the prosthesis. A number of groups have used simulated prostheses to carry out their research,

but no consensus has been reached regarding appropriate design of these devices. Farrell et al.

[18] and Bouwsema et al. [19] both make use of a myoelectrically controlled simulated prosthesis

that extends distally to the forearm. This design allows good visibility of the terminal device, but

the extended length can be fatiguing, especially if the terminal device is heavy. Further, the added

limb-length can cause changes in people’s movement strategies. Kuus et al. [20] makes use of a

below-hand mounted prosthesis designed for use in sensory-feedback studies. The below-hand

design helps to mitigate some of the fatigue and movement related concerns, but the terminal

device can become occluded from the viewpoint of the user by their biological hand. Further,
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the possibility of collisions with the user’s biological hand restricts the range of motion of any

prosthetic wrist. Both Bouwsema’s and Kuus’ designs restrict the motion of the user’s biological

hand, which can help in creating and maintaining clear myoelectric signals in the forearm. A

custom simulated prosthesis is used in this work, with care taken to address each of these concerns

as much as is possible. The design is described in detail in Chapter 4.

2.2 State of the Art in Prosthetic Wrists

2.2.1 Biological Wrist Function

Because wrist prostheses are intended to replace the lost function of a biological wrist, it makes

some sense to provide a detailed explanation of the function of the wrist prior to delving into the

various prostheses that are available. The wrist can be thought of as providing three degrees of

freedom: flexion/extension, radial/ulnar deviation, and pronation/supination, as depicted in Fig.

2.1. To be precise, pronation/supination is truly provided by the forearm by the radius and ulna

crossing over one another, but for the purposes of prosthesis design this DOF is generally consid-

ered to be a part of wrist function. When considered in prosthesis design, pronation/supination is

often referred to simply as rotation.

FIGURE 2.1: The degrees of freedom provided by the biological wrist.
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FIGURE 2.2: The three main functions of the wrist are: (1) holding the hand fixed rel-
ative to the forearm, (2) re-orienting the hand, and (3) holding the hand fixed relative
to the ground reference frame while the forearm moves. The images depicted here

provide examples of tasks wherein each particular function is used.

In a 1980 proposal to suggest the idea of an automatically levelling prosthetic wrist, Swain and

Nightingale broke down the main functions of the wrist into three categories [21], depicted in Fig.

2.2:

1. holding the hand fixed relative to the forearm reference frame,

2. reorienting the hand, and

3. holding the hand fixed relative to the ground reference frame (i.e., aligned according to the

direction of gravity).

The first function requires no DOF at the wrist, and therefore it is relatively easy to replace this

functionality with a prosthesis. The second and third functions may require any combination of

the three degrees of freedom. In case (2) the DOFs may be controlled sequentially by a prosthesis

to achieve the same result as that arrived at by a biological wrist. However, in case (3) these DOFs

must be controlled synergistically. Simultaneous multi-DOF control is difficult to achieve with a

prosthetic limb, and is the focus of much of the research described in Section 2.2.3.
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2.2.2 Commercially Available Prostheses

A comprehensive review of the state-of-the-art in wrist prostheses was conducted in 2015 [4],

which showed that very few electrically powered wrists are commercially available. All of those

that are available offer only a single powered degree of freedom, most commonly rotation. This

means that, in terms of replacing the functions of the wrist, we are able to replace function (1)

only, and are able to replace function (2) only in a very limited way, since it truly requires all three

degrees of freedom. There are no commercially available prostheses that attempt to fulfill function

(3).

2.2.3 Research Prostheses

Generally speaking, the state-of-the-art in research prostheses is ahead of that available commer-

cially to the public, in terms of both form and function. The Modular Prosthetic Limb (MPL)

from Johns Hopkins University boasts 3 DOF at the wrist; the RIC Arm (Rehabilitation Institute

of Chicago) features flexion/extension and rotation; and the DEKA Arm (developed by DARPA)

makes use of rotation and a combination of flexion/extension and radial/ulnar deviation [4]. Wrist

flexion units are being developed toward commercial availability [22], [23], but control of these ex-

tra degrees of freedom remains challenging [24]. Machine learning methods provide some promise

in this area, notably pattern recognition and adaptive switching, both described in Section 2.1.2.

The Bento Arm [25] is an open-source [26] robotic arm with 2 DOF at the wrist which was

used extensively throughout the studies in this thesis. The wrist is designed with servos in series,

with the rotation servo serving as the most proximal wrist joint. The distal wrist joint can serve as

either a flexion/extension unit or radial/ulnar deviation unit depending how the terminal device

is physically mounted to the wrist. The arm can be controlled with a variety of methods through

its open-source software [27], which makes it ideal for use in research applications. It was chosen

as the platform for research in this study because it is lightweight, easily modifiable, and provides

position feedback from each of the servos, making control modifications simple.
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2.3 Compensatory Movements Following Upper-Limb Amputation

2.3.1 The Source of Compensatory Movements

A study conducted by Adams et al. on the effect of reduced wrist movement in able-bodied peo-

ple provides insight on the importance of wrist function [5]. People performing tasks of daily

living with wrist motion restricted by a brace were found to have longer task completion times,

greater compensatory movements, and worse perception of their own performance, compared to

their own performance without the brace. The results were significant even if the wrist motion

was only partially restricted (30◦ degrees flexion and 30◦ extension). Mell et al. looked specifically

at compensatory movement of the humerus due to wrist restriction in tasks requiring a person to

reach around a barrier, such as picking items from a box [8]. This group also found that restricted

wrist motion caused compensation; the humeral elevation angle (corresponding to shoulder flex-

ion) increased significantly when wrist motion was restricted compared to the normal case.

The results of these studies seem to translate from the able-bodied population to the prosthesis-

user population as well. Metzger et al. conducted a study with prosthesis users that indicated a

significantly greater degree of trunk movement than an able-bodied population performing the

same tasks of daily living [6]. Importantly, the sub-group of prosthesis-users with transradial am-

putation still displayed these trunk compensatory movements despite the use of their intact elbow.

Further work investigating compensatory movements specifically for the case of transradial am-

putation indicates that the methods of compensation differ depending on the task [7]: for box

lifting and door opening trunk compensations are apparent, but for drinking from a cup compen-

sations occur mainly in the shoulder and elbow. It is also interesting to note that this study showed

that braced able-bodied persons showed similar compensations to the prosthesis-user population,

although to a lesser degree.

From these studies it becomes quite clear that the distal degrees of freedom are exceedingly

important to the reduction of compensatory movements, but it may not be immediately apparent
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whether that is to be solved by more dexterous hand prostheses or by more capable wrist prosthe-

ses. 2014 work by Montagnani et al. addresses this problem specifically by testing various bracing

configurations that allowed either hand or wrist function to be restricted [9]. The results from

this study indicate that a capable wrist even with a rudimentary hand prosthesis might be able to

adequately address compensatory movements in people with upper-limb amputation.

2.3.2 The Effect of Compensatory Movements

Populations with upper limb amputation report a higher prevalence of self-reported musculoskele-

tal pain in the neck, upper back, shoulder, and remaining arm than the able-bodied population,

and the use of prostheses does not change this prevalence [10]. The fact that these injuries occur in

the upper back and shoulder (where compensatory movements were found to occur) seems to sug-

gest that the compensatory movements cause these injuries. Further, the fact that the prevalence

of these injuries doesn’t change depending on whether a person does or does not use a prosthesis

suggests that current prostheses do not adequately address the compensations of these individu-

als.

2.3.3 Measuring Compensatory Movements

Many researchers use optical motion-capture techniques to quantitatively measure movement

strategies [28]. By capturing the three-dimensional positions of body-mounted markers using an

array of cameras, it is possible to track limb positions throughout time, and from that information

calculate joint angle kinematics. When comparing results across studies, it is of course of the ut-

most importance that the testing conditions are comparable. To that end, a team led by Jacqueline

S. Hebert has developed standardized tasks and testing conditions to form a baseline of compari-

son. Two of these tasks are used in this thesis, and are described later in this section.



Chapter 2. Background 13

Valevicius et al. performed these tests with a population of twenty non-disabled participants,

providing a normative data set for both hand movements [29] and trunk and shoulder move-

ments [30]. This study was conducted using a 12-camera Vicon Bonita setup. A comparative

study was conducted by Boser et al. to validate using a cluster-based marker model against the

more conventional anatomical model [31]. This study determined that a cluster-based marker

model is adequate to assess trends in movement patterns, but may not allow direct comparison to

anatomical models. To provide another baseline for assessment, these tests were also studied with

a prosthesis-user population; this assessment was done using the 12-camera Vicon setup [32]. For

this study, a range of prosthesis types were tested (transhumeral and transradial, body-powered

and myoelectric), but no participant made use of a transradial myoelectric prosthesis. The pasta-

task portion of the task was also evaluated with able-bodied persons using a simulated prosthesis

[33]; this study showed that simulated prosthesis users took more time to perform the task and

had more velocity peaks than were present in the normative trials.

Motion-Capture Task Descriptions

Only the brief description necessary for understanding the study and its results is given here; for

a complete and thorough description of the standardized tasks, please see the original work [29].

The study involved two tasks: the Cup Transfer task, and the Pasta-Box task. Each task involved

a series of prescribed movements interacting with common objects, ending with the return of the

objects to their starting positions. The trials began and ended with the participant placing their

hand on a home position and their eyes fixed on a marker in a neutral position. For both of these

tasks, mistrials caused by participant error (incorrect execution of the task, spills, dropped items)

are recorded and reported as a measure of task performance.
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FIGURE 2.3: A demonstration of the sequence of the cup transfer task. The partici-
pant moves through each position in order from 1 to 11, looking at the neutral marker

at positions 1, 6, and 11.
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FIGURE 2.4: A demonstration of the sequence of the pasta task. The participant
moves through each position in order from 1 to 10, looking at the neutral marker at

positions 1, 4, 7, and 10.
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The Cup Transfer Task involved two cups full of beads on the right-hand side of a table with

a short barrier down the middle. The participant was intended to first grasp the near cup from

the top, and transfer it to the other side of the table over the barrier. Next the participant grasped

the further cup from the side and also transferred it over the barrier. Following this, the cups were

returned to their starting positions in the same manner but in the opposite order: far cup first, and

near cup last. This task involved movements predominately in a horizontal plane, and caused the

participant to cross their midline with their active hand. The bead-filled cups, made of compliant

paper, posed a challenge to avoid spills by either tipping the cup too much or squeezing too hard.

A demonstration of the task is shown in Fig. 2.3.

The Pasta-Box task involved transferring a box of pasta from a low side table to a series of

higher shelves, and finally returning the pasta box to the side table. This task involved more

vertical movement than the Cup Transfer task. The task is represented visually in Fig 2.4.

2.4 Previous Work on Automatic Levelling and Related Control Schemes

Autonomous levelling systems have been widely explored in other robotic applications such as

camera stabilization [34]. Recently, levelling has made its way into rehabilitative and medical

technologies such as the Liftware Level: a handle that keeps an attachment such as a spoon sta-

ble for people suffering from hand and arm tremors [35]. A wrist control system for prostheses

that would work on similar principles was suggested in 1980 [21], and again in 1995 [36], but the

technology had not been researched until recently.

In 2013, Ohnishi et al. developed a wrist and hand system that dynamically adjusted hand

orientation through a specific pick-lift-place task using lookup tables, multimodal sensors, and

state machine logic [37]. A wrist capable of reading radio frequency identification (RFID) tags to

re-orient the hand to match a platform’s orientation (either vertical, horizontal, or at a random

angle) was also explored by Shibuya et al. in 2017 [38]. They showed some initial evidence of

reduced compensation, but task time tended to increase because of the need to interact with RFID
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tags in the environment. The reliance on lookup tables and RFID tags also substantially limits the

applicability of the system for real-world daily use, where motions become less predictable and

RFID tags may not always be available.

Passive means of adapting the wrist position during use have also been explored. A passive,

friction-based compliant wrist was developed by the team of Rosa Jacobs, P.T. in 1993, which had

positive reviews from its users. The compliant wrist enabled the interaction with objects such

as bike handlebars, piano keys, baseball bats, and other sporting equipment with a “more fluid

response” [39]. The limitations of the device or any quantitative evaluation of the device’s perfor-

mance are unfortunately not included in the paper, and it remains unclear why the device has not

seen widespread use in the subsequent years.

Christian Cipriani’s group developed a wrist with switchable stiffness that could be compliant

or stiff depending on the needs of the task [40]. They tested its effects using components of the

Southampton Hand Assessment Procedure (SHAP), and found that using a compliant wrist dur-

ing reaching and grasping and a stiff wrist otherwise reduced compensatory movements in the

shoulder and back [41]. They measured compensatory movements using linear potentiometers

and conducted their study with 10 able-bodied participants using a below-hand mounted bypass

prosthesis.

While flexible wrists seem to be beneficial in a laboratory setting, the reviews from actual pros-

thesis users seem to be more equivocal. Deijs et al. conducted a study with eight persons with tran-

sradial amputation using myoelectric prostheses, looking specifically at task performance, shoul-

der joint-angle compensations, and user satisfaction. They tested two wrists with both static and

flexible configurations, and were unable to find statistically significant differences in people’s per-

formance, compensation, or satisfaction between the static and flexible conditions [42]. However,

“participants’ satisfaction tended to be in favour of flexible wrists”.
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2.5 Proposal: Self-Levelling Functionality in Prosthetic Wrists

From this background, it becomes quite clear that wrist function is essential to the reduction of

compensatory movements, and subsequently to the reduction of overuse injury. Further, multiple

studies of prosthesis-users’ reported research priorities highlight wrist function as highly ranked

[2], [3], suggesting that a highly functional wrist is long overdue. Advanced research prostheses

are able to accurately provide all three degrees of freedom of the wrist, but the control interface

remains challenging. A wrist that is able to perform all of its functions at the appropriate times

with minimal or no conscious guidance from the user would be the ideal prosthesis.

Designers of above-the-knee leg prostheses have used the predictability of gait patterns to de-

velop microprocessors for artificial knees that adapt stiffness parameters to provide optimal per-

formance at each stage of walking [43]. Typical upper limb tasks seldom involve such predictable

movements, making control design difficult—but the third function of the wrist may be suitably

predictable. A scheme that maps multiple wrist DOF in a useful way to a single degree of control

could improve function. Therefore, we propose a self-adjusting wrist control system that would allow

automatic repositioning of the wrist in response to arm position to keep the terminal device fixed relative to

the ground reference frame. Essentially, we propose an automatically levelling wrist.
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Chapter 3

Initial Usability Study: 1 DOF, Desk

Mounted

3.1 Study Rationale and Purpose

When designing something that is going to be intimately tied with the human body, it is exceed-

ingly important that the designer place a heavy emphasis on human-centred design. Many design-

ers advise iterating quickly and often, with usability studies all along the way to ensure that the

end product is one that is a joy to use [44]. This study represents an effort to ensure that the control

interface of our automatically levelling wrist is considered acceptable by its users. This consider-

ation is important not only for user satisfaction, but also to avoid confounding the usability of an

automatically levelling wrist with the usability of its control interface.

What follows is an adapted version of a study that was originally published in the proceedings

of the 7th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics

(BioRob), August 26-29, 2018. [45]



Chapter 3. Initial Usability Study: 1 DOF, Desk Mounted 20

FIGURE 3.1: The three main functions of the wrist, depicted on the Bento Arm in
a manner similar to that used in this study. (1) Holding the hand fixed relative to
the forearm, (2) Re-orienting the hand, and (3) Holding the hand fixed relative to the

ground reference frame while the forearm moves.

3.2 Methods

3.2.1 Control Modes

This study compares five methods of interfacing with the self-adjusting wrist. The objective is to

determine which method or which characteristics of each method might make the most intuitive

interface. The conclusions from this study will be applied to a more rigorous future study com-

paring the self-adjusting wrist to conventional myoelectric wrist control. The five modes were

denoted A through E, and were composed of the three possible types of wrist function: (1) fixed

to forearm, (2) direct control, or (3) fixed to ground reference frame, each of which are depicted in

Fig. 2.2, and specifically illustrated for this study’s setup in Fig. 3.1.

Each of the control modes switches between two of the above mentioned functions: fixing the

terminal device relative to the ground-frame (3), and either function (1) or (2). Depending on the

mode, switching is accomplished by either a held button press (the secondary function performed
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only while a button is pressed), a momentary button press (toggling between the primary and

secondary functions), or by input from a secondary control channel (overriding the primary func-

tion with the secondary). A visual categorization of how each control mode functions is given in

Fig. 3.2, and examples of the resulting motion are shown in the video accompanying the original

publication [45]. The control modes are as follows:

A. Momentary button press toggles between fixed to forearm frame (1) and ground reference

frame (3)

B. Momentary button press toggles between direct wrist control (2) and ground reference frame

(3)

C. Held button press switches from ground reference frame (3) to fixed to forearm frame (1)

D. Held button press switches from fixed to forearm frame (1) to ground reference frame (3)

E. Secondary input channel overrides ground reference frame (3) with direct wrist control (2)

X. Control Condition: Conventional control scheme. Momentary button press switches between

fixed to forearm frame (1) and direct wrist control (2).

FIGURE 3.2: Each mode can be categorized by the two functions it switches be-
tween (either fixed to ground-reference-frame and direct control, or fixed to ground-
reference-frame and fixed to forearm-reference-frame) and the method of switching
(alternate channel, momentary button-press, or held button-press). The subscripts
(g) and (f) indicate the default function of the mode when the button is not held,
i.e. ground-fixed reference frame or forearm-fixed reference frame, respectively. The

accompanying video [45] further clarifies these modes.
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FIGURE 3.3: Diagram of the control mapping used for the experiment. Figure
adapted from [46]

An Xbox 360 video-game controller was used to control the arm instead of myoelectric con-

trol in order to achieve cleaner, clearer control signals, thereby reducing inadvertent movements

which would make the system more difficult to learn. The control mapping is depicted in Fig.

3.3. The “A” button was used for momentary button-presses, held button-presses were accom-

plished by pressing the joystick button, and the secondary joystick served as the secondary input

channel. Rather than using sequential joint control as is typical in myoelectric systems, each joint

was mapped to a separate input except wrist control, to facilitate faster learning of the system in

general. The right joystick x-axis (side-to-side) controlled shoulder rotation, while the y-axis (up-

and-down) controlled elbow movement. The right trigger closed the hand; the left trigger opened

the hand. For extension to an electromyography (EMG) system, co-contractions would serve as

momentary button-presses, and secondary inputs would require an extra set of EMG channels.

The held button-press of modes C and D does not directly translate to EMG control, since a held

co-contraction is infeasible. EMG systems can however be paired with other switching systems

such as latching buttons or body-powered LVDTs which may be used to provide a sustained sig-

nal, so modes C and D were included for completeness.
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3.2.2 Hardware

A self-adjusting wrist must be able to perform well in tasks that require hand reorientation as well

as in tasks that require dynamic levelling. Standard evaluations such as the box-and-blocks task

or Southampton Hand Assessment Procedure do not directly evaluate a user’s ability to maintain

terminal device orientation relative to the ground reference frame, so a custom evaluation was

devised that involved two separate tasks:

1. moving a cup filled to the brim with beads from a low platform to a high platform (requiring

use of some adaptive levelling scheme to avoid spilling beads), and

2. moving a cup filled to the brim with beads to a sink, and emptying the cup (requiring reori-

entation of the hand to pour).

To perform the tasks, each participant controlled a desk-mounted Bento Arm, developed at

the University of Alberta [25]. The Bento Arm was chosen as the research platform because it is

analogous to commercially available prostheses, while being inexpensive and simple to modify

for experimentation. The arm has five degrees of freedom: rotation of the shoulder, elbow flex-

ion/extension, wrist rotation, wrist flexion/extension, and hand open/close. The desk-mounted

configuration was chosen to avoid design complications involved in making the device wearable.

This configuration also limits the movement of the arm, ensuring that only one DOF at the wrist

was necessary for levelling. To simplify the implementation of a self-adjusting wrist for this initial

usability study, wrist rotation was restricted.

The arm was controlled using the open-source brachI/Oplexus control software [27], modified

so that the amount of wrist deviation was programmed to be kinematically linked to the amount

of elbow flexion/extension when performing fixed-to-ground-frame functionality. The equation

governing this relationship is

θ1 = 180◦ + θ3 − θ2 (1)

The symbols θ1, θ2, and θ3 are defined as in Fig. 3.4:
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FIGURE 3.4: Schematic diagram of Bento Arm indicating joint angle definitions used
in (1).

θ1: Wrist angle. Clockwise from terminal device to forearm

θ2: Elbow angle. Clockwise from forearm to ground-frame horizontal axis

θ3: Terminal device offset angle. Clockwise from terminal device to ground-frame horizontal axis

The angle definitions correspond with the digital encoder positions built into the servos.

A custom cart was built to satisfy the required environment for the tasks, pictured in Fig. 3.5.

The height difference between the two columns is sufficient to cause beads to spill from a carried

cup if the wrist position is not adjusted to maintain a level terminal device. The central sink is

too high to allow pouring beads using only elbow motion; a combination of reorientation of the

terminal device and elbow position is necessary to completely empty the cup.

FIGURE 3.5: Bento Arm and a custom cart built to facilitate the tasks, with low and
high platforms (highlighted here in yellow) and a central sink. The participant would

stand behind the arm, and control it using the video game controller.
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3.2.3 Experiment Design

The experiment was approved by the Research Ethics Board of the University of Alberta. It was

performed with six able-bodied participants, who gave informed written consent prior to partici-

pating.

Each participant was first introduced to the general Bento Arm control scheme, and given ap-

proximately five minutes to familiarize themselves with the arm and the controls. During this

training period no wrist control was given; the terminal device remained fixed to the forearm

frame. Participants were then instructed on the format of the trials: each trial consisted of two

tasks, each performed once, beginning with the transfer task followed by the pouring task. For

each mode the experimenter explained the controls, and then the participant was allowed approx-

imately one minute to gain familiarity. A block of ten trials was recorded for each control mode

before introducing the next. The order that the control modes were presented to the participants

was randomized. Due to scheduling constraints, the control condition was presented to each par-

ticipant on a separate day approximately one month after the initial set of trials.

Time of trial completion, number of spills, and number of control switches were measured, and

a survey was completed by each participant. Timing began at the first movement of the Bento Arm,

and finished after release of the cup upon returning it to the initial platform at the end of the trial.

Spills were tracked manually by experimenter observation during the trials, and checked again

afterward using recorded video data. A spill was defined as any number of beads falling from

the cup unintentionally. The number of beads per spill was not counted, and varied widely. The

number of times the “A” button and joystick button were pressed was tracked using the control

software.

The survey included four relative comparison questions, a preference ranking, and a section

for specific comments. The comparison scores were given throughout the study after each control

mode, and participants were allowed to adjust the scores they gave to each mode as the study pro-

gressed. The relative comparison questions addressed intuitiveness (“How easy was each control
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mode to learn?”), effectiveness at the transfer task (“How well did each control mode perform the

cup transfer task?”), effectiveness at the pouring task (“How well did each control mode perform

the cup pouring task?”), and reliability (“How often did you find the arm moved in a different way

than you wanted or expected?”). These comparisons were given scores between 0 and 5, where

0 indicated difficult, very poor, or hardly ever, and 5 indicated easy, exceptionally well, or very

often. At the end of the study, participants gave a unique rank to the control modes in order of

preference from 1 (most preferred) to 5 (least preferred). Participants then commented on what

features of their most and least preferred choices made them the best or worst. Since the control

condition was tested on a separate day, it was not included in the qualitative survey to avoid biases

due to memory effects.

Mean differences in performance were assessed using a repeated-measures analysis of variance

(ANOVA). The F-test of significance was used to assess the effects of the different independent

variables. If significance was found, pairwise comparisons (paired-sample t-tests) were made to

assess where the differences lie. A Bonferonni correction for multiple comparisons would have

been very conservative, so Least Significant Difference was used to highlight differences for this

pilot study. Normality was assessed using the Kolmogorov-Smirnov Test and sphericity was as-

sessed through a Mauchly’s Test of Sphericity. In cases where the assumption of sphericity was

unmet, a Greenhouse-Geisser Correction was applied and reported. This sequence of analyses

was followed in all the repeated-measures ANOVA conducted on the datasets in this study. All

results were found to follow assumptions of normality with the exception of mode C spill data,

and modes A and C control switch data. These deviations from normality were minor, so the data

was included in the ANOVA regardless.

3.3 Results

Fig. 3.6 shows the average performance of the participants using each control mode, including

time of task completion, number of spills per trial, and number of control switches per trial. This
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aggregate data obfuscates a few interesting features visible in each participant’s detailed data, most

notably: learning curves throughout each control mode and the study in general, mis-pressed but-

tons, and the order the control modes were presented. Fig. 3.7 shows this detail for one participant

(P3), representative of the group. Note the erroneous use of the joystick button in modes A, B and

Control. Such mis-presses are not included in the control switches plot of Fig. 3.6. Also note the

general learning curve of the participant throughout the progression of the study. Detailed results

for all participants are provided in Appendix A.

Significant differences were found in all measures: F(5,25) = 5.557, p = 0.001 for time of trial

completion; F(5,25) = 18.201, p <0.001 for spills per trial; F(5,25) = 30.055, p = 0.001 (Greenhouse-

Geisser correction applied) for control switches per trial. Pairwise comparisons indicated a number

of significant differences, summarized in Table 3.1.

FIGURE 3.6: Average trial performance across all participants, showing time of trial
completion, number of spills and number of control switches. Lower bars indicate
better performance in all measures. Error bars indicate one SD. Mode E required no
switching, and therefore shows zero with no variance in the control switches plot,

and no significance is indicated between it and the other modes.
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FIGURE 3.7: Detailed performance of Participant 3, representative of the group,
showing time of trial completion, number of spills, and number of button presses.
Control modes are shown in the order they were presented to the participant. Note
the overall learning curve and mis-presses of joystick button in control modes A, B
and Control, which are not represented in the aggregate data. Other participants’

results are provided in Appendix A

TABLE 3.1: p-values for comparisons across control modes in quantitative results

Comparison Time Spills Switches
A vs B 0.055 0.491 0.005*
A vs C 0.163 0.887 0.396
A vs D 0.075 0.026* 0.013*
A vs E 0.140 0.152 -
A vs X 0.055 0.002* 0.036*
B vs C 0.075 0.297 0.206
B vs D 0.025* 0.016* 0.001*
B vs E 0.654 0.514 -
B vs X 0.021* 0.001 0.008*
C vs D 0.793 0.012* 0.001*
C vs E 0.062 0.025* -
C vs X 0.093 0.002* 0.006*
D vs E 0.034 0.011* -
D vs X 0.521 0.259 0.005*
E vs X 0.030* 0.001* -
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Analysis of Fig. 3.6 along with Table 3.1 shows some interesting trends:

• Control modes A and B (the two modes that require a momentary button press to switch

functions) perform similarly in all measures. B (direct control) tends to perform better than

A where they do differ.

• Mode E (no switching, direct control) showed the fastest trial times and the fewest number

of spills. By the nature of the mode, E necessarily has the fewest number of switches.

• The control condition (no self-adjusting wrist) induced the greatest number of switches and

the greatest number of spills and the longest trial times.

• Of the self-adjusting modes, the highest number of spills occurs in mode D (fixed wrist by

default, held button press for ground-frame self-adjustment).

• Though modes C and D are similar (both require held button presses), C (ground reference

frame by default) performs significantly better than D for spills and control switches.

• Toggling modes (A and B) perform as well as or better than held button press modes (C and

D) in all measures.

The survey results are summarized in Fig. 3.8. For these charts, the scores given by the partici-

pants for reliability and preference were inverted to facilitate ease of comparison across measures

(i.e. 5 always indicates better performance, 0 indicates worse). Note that the preference rankings

exist on a scale from 1 to 5. A Kruskal-Wallis test revealed a significant effect of mode on effec-

tiveness in the transfer task (H(4) = 11.746, p = 0.019), intuitiveness (H(4) = 13.352, p = 0.010), and

user preference rank (H(4) = 13.372, p = 0.010). A paired t-test post-hoc analysis with Bonferroni

correction showed where the significant differences lie, as outlined in Table 3.2.

User comments from the survey are all given in a randomized order in Table 3.3 and Table 3.4.

These statements were made in response to the question “What about your #1 choice made it your

favourite?” and “What about your #5 choice made it your least favourite?”, respectively.
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FIGURE 3.8: Scores and ranks for each control mode, averaged across participants.
Error bars indicate one SD. For all scores, 5 indicates best performance, 0 indicates
worst performance (Scores for reliability and preference were inverted for easy visual
comparison with other scores). Note that preference was ranked on a scale from 1 to
5. Statistical differences were calculated using post-hoc analysis of the Kruskal-Wallis

test with α = 0.05, with the Bonferroni correction for multiple tests.

TABLE 3.2: Corrected p-values for comparisons across control modes in qualitative
results

Comparison Effectiveness
(Transfer)

Intuitiveness Preference

A vs B 1.000 1.000 1.000
A vs C 1.000 1.000 1.000
A vs D 1.000 1.000 1.000
A vs E 0.490 0.479 0.448
B vs C 1.000 1.000 1.000
B vs D 1.000 1.000 1.000
B vs E 1.000 0.850 0.709
C vs D 1.000 1.000 1.000
C vs E 0.033* 0.021* 0.050*
D vs E 0.035* 0.013* 0.006*
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TABLE 3.3: User responses to the question “What about your #1 choice made it your
favourite?”

Most Preferred Control Modes
E I could make dynamic movements.
E Easiest to learn. Didn’t get confused, steps easy to plan.
E Being able to control both without switching and having separate controls.
B Very fluid with having auto level by default, and having the ability for precision when

needed.
C Tactile way of telling me which mode I’m in.
E Had all control. No extra thinking about switching.

TABLE 3.4: User responses to the question “What about your #5 choice made it your
least favourite?”

Least Preferred Control Modes
D Clunky to have fixed by default given having auto level simplifies majority of task, very

awkward to push in joystick while moving in two directions (up/down and left/right).
A Too easy to forget which mode I’m in.
B Took a lot of effort to learn. Often mis-pressed. Mapping between stick and buttons.
D Memorization. Not adaptable to other tasks or distraction.
D Pouring is difficult, non-intuitive, hard to hold button at same time as moving.
C Holding the button while performing the action is non-intuitive.

Mode E scores and ranks the highest for each qualitative measure. Modes A and B never show

significant difference from mode E. Among self-adjusting modes there is no significant difference,

but trends indicate modes A and B score somewhat higher than modes C and D.

In the user responses regarding their most preferred mode, common themes involved users

having more control, enjoying the lack of switching, being able to make fluid, dynamic move-

ments. One user, who favoured mode C, enjoyed having the held button press as a tactile indi-

cator of which function the mode was controlling. Regarding their least preferred mode, three of

six participants cited disliking holding the button down. Another common theme was that these

modes were non-intuitive or hard to learn. One user, who disliked mode A, cited not being able to

tell which function was being controlled as the cause for distaste.
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3.4 Discussion

In this study we aim to determine an appropriate method of interfacing with a prosthetic arm that

employs a self-adjusting wrist. A further goal of the study is to provide initial evidence regarding

self-adjusting wrist performance compared to conventional control to motivate further investiga-

tions. Comparison of both quantitative and qualitative measures will elucidate what sort of control

interface may be most effective to move forward with for future development.

3.4.1 Quantitative Measures

These observations suggest that, for these participants in this test setup, any of the self-adjusting

modes perform as well as or better than the conventional control scheme. This preliminary com-

parison provides evidence that further investigation comparing a self-adjusting wrist to conven-

tional control will be a worthwhile endeavour. Of the self-adjusting modes, mode E performs the

best overall. Modes A and B perform the next best, with a slight edge in favour of mode B; modes

C and D perform the least well. The quantitative performance trends suggest that, among the self-

adjusting modes, performance improves with ease of switching: mode E required no switching, modes

A and B required a momentary button press, and modes C and D required a held button press.

This observation aligns well with prior findings in adaptive and autonomous switching [13], [14].

3.4.2 Qualitative Measures

These qualitative measures strongly favour mode E over the other schemes, and in general show

a preference for more readily available control (i.e. favouring no switching to switching, and mo-

mentary button presses to held buttons).

3.4.3 Study Limitations

Employing a desk-mounted arm with 1 DOF at the wrist limits generalization of these results to

a wearable system, which will need at least 2 DOF at the wrist. Use of the video-game controller
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for this study rather than EMG creates some complications for application of these results to an

EMG system. Notably mode E, which required use of two separate joystick inputs, will require

more EMG input channels than may be available in a typical myoelectric control setup. A control

method similar to mode E may become feasible with a pattern-recognition setup. Modes C and D

would require the introduction of an alternate switching signal to facilitate held button-presses.

While restricting rotation greatly simplifies the implementation of the self-adjusting wrist, it

does limit the movement of the wrist to 1 DOF, and forces the participant to use a somewhat

unnatural strategy to pour the beads from the cup using ulnar deviation (the more natural strategy

being to use wrist rotation). This limitation however, is common to all control modes and so will

not bias the results in favour of any particular mode, though it may limit generalization of the

results to tasks involving rotation.

Since the control condition was tested a month after the initial experiment, care must be taken

in drawing conclusions comparing the control condition to the other modes. This study provides

evidence that a future study comparing conventional control to a self-adjusting wrist should pro-

duce interesting results, but makes no specific claims at this time.

3.4.4 Recommendations and Future Work

For application of these results to a wearable system with EMG control, two constraints must be

held in mind:

1. a wearable system will have more range of movement than the desktop-mounted system,

and so will require at least two DOF to successfully implement a self-adjusting wrist, and

2. use of an EMG system, in order to not occupy otherwise useful muscle sites, will likely be

restricted to two channels of input only.

Constraint (1) will make direct control of the wrist more difficult, likely involving sequential con-

trol of each individual degree of freedom, making modes B and E less feasible. Constraint (2) will

prohibit the use of mode E entirely. We therefore recommend use of modes B or A for the implementation
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of a self-adjusting wrist into a wearable, EMG controlled prosthetic system. Due to the limitations of the

present study, re-visitation of a usability study to evaluate possible control schemes in the wear-

able system is also recommended, particularly comparing direct control and fixed wrist functions

as the secondary function. Further, we recommend including some means of giving feedback to

the user (e.g. LED indicator) regarding what function the controller is currently performing (i.e.

fixed-wrist or self-adjusting wrist).

Future work will involve the development of a wearable 2-DOF self-adjusting wrist for use

with able-bodied participants via a bypass prosthesis simulator. Since elbow angle will no longer

be a reliable indicator of hand position relative to ground, an inertial measurement unit must be

implemented in the terminal device, and PID control will be used to maintain the hand’s orien-

tation. A rigorous study to compare the self-adjusting wrist to conventional control will be per-

formed using motion-capture technology to evaluate effects of the control system on users’ com-

pensatory movements. More broadly, this work could be extended to allow fixing the terminal

device to reference frames other than the forearm or ground reference frames, given appropriate

sensors either on the arm or in the environment, as demonstrated by Shibuya et al. [38]. By selec-

tively attaching to the reference frames of target objects, slanted surfaces, or other useful frames,

a self-adjusting wrist could provide even greater benefits for task performance and reduction of

compensatory movements. To generalize the system to environments not prepared with appro-

priate RFID tags, the control system would likely require implementation of machine learning

approaches to determine which reference frame might be most appropriate for a particular con-

text. Machine learning could also be used to allow the system to determine an appropriate time to

switch between self-adjusting and other functionality (i.e. direct control or fixed-to-forearm). Such

adaptive and autonomous switching schemes have been explored for application to conventional

myoelectric control [13], [14], and could be applied to a self-adjusting scheme as well.
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3.5 Conclusion

We contribute the first control interface evaluation for an automatically and continually adjusting

wrist that aligns to a frame of reference other than that of the forearm. This work provides evi-

dence that a self-adjusting wrist control system capable of maintaining the terminal device orienta-

tion relative to the ground reference frame may perform better than conventional control methods.

It further shows that the control interface may have significant implications on the system’s suc-

cess. Future investigation with self-adjusting wrists should include a rigorous comparison of self-

adjusting wrist control to conventional control, with measures that show effects on compensatory

movements. Our results suggest that a control scheme that employs a momentary switch to toggle

wrist function between a fixed-to-ground reference frame and either a fixed-to-forearm reference

frame or direct wrist control would be a good first candidate for this future study. Extension of

this self-adjusting concept to reference frames other than the ground reference frame may also be

useful and warrants future investigation. This study represents a step toward prostheses capable

of intelligently adapting themselves to their environment in a natural, intuitive way in order to

provide a user with a safer and more easily usable robotic arm.
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Chapter 4

System Design

A wrist capable of maintaining terminal device orientation relative to the ground during practical

tasks requires two degrees of freedom: rotation and flexion. In this chapter, I describe the technical

details of the automatically levelling wrist. The first section illustrates the autolevelling method as

could be applied to any prosthetic system; the second section characterizes the particular imple-

mentation with the Bento Arm [25] mounted as a bypass prosthesis on able-bodied persons.

4.1 Automatic Levelling Method

FIGURE 4.1: Definition of the axes of the Bento Arm terminal device. The axes are
defined such that they coincide with the axes of the IMU in the base of the gripper.
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A number of definitions are required at the outset to ensure proper understanding of this descrip-

tion of the autolevelling method.

Axes - The axes of the terminal device are defined so that when held horizontally, the y-axis

points downward, the x-axis points to the right, and the z-axis extends toward the body in line with

the forearm, as shown in Fig. 4.1. This definition is based on the way that the inertial measurement

unit (IMU) is mounted in the base of the hand. Further, it allows rotation and flexion to be defined

based on a single axis each: flexion around the x-axis, and rotation about the z-axis.

Gravity Vector (GV) - The vector returned by the IMU in terms of (x,y,z) components, that

always points toward the centre of the earth. The vector is returned in units of m/s2.

Automatic Levelling - The term “automatic levelling” (often abbreviated throughout as “au-

tolevelling”) implies the ability to keep an object stable relative to the ground reference frame, as

would be necessary to manipulate an open cup full of liquid to avoid spilling. Automatic Levelling

can be thought of as two distinct sub-functions: rotation levelling and flexion levelling.

Rotation Levelling - The function of rotation levelling is to ensure that the x-axis of the terminal

device remains parallel to the floor (i.e. the x-y plane of the ground-reference frame).

Flexion Levelling - Flexion levelling is not a true levelling function in the sense that would

make the z-axis parallel to the ground; rather, it determines the angle between the z-axis and the

ground and maintains that value. This is so that true levelling of the held object may be accom-

plished regardless of the angle it is originally grasped, as shown in Fig. 4.2. The term “flexion

levelling” will be used to refer to the process of keeping this angle constant.
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FIGURE 4.2: The flexion levelling method maintains the angle between the terminal
device and the ground that existed when flexion levelling was enabled, in order to

maintain the level of a held object no matter the initial grasp angle.

4.1.1 Theoretical Automatic Levelling

To accomplish automatic levelling, only two DOF are required at the wrist, to manage rotations

of the terminal device about the x and z axes. Rotations about the y axis are inconsequential to

levelling; spills won’t occur if a cup turns only about its vertical axis. For most tasks of daily

living, especially those commonly evaluated as outcome metrics, the ground-frame is the most

useful plane to consider for an automatically levelling scheme, and is the reference frame explored

here.

4.1.2 Practical Automatic Levelling

Angle-Finding Method

The IMU returns the gravity vector in terms of m/s2 in each of the x, y, and z directions. For

example, if the terminal device is held perfectly horizontal, the returned vector would read (x,y,z):

(0,9.8,0). The IMU filters out the gravitational acceleration from movement accelerations of the

IMU using the Adafruit Unified Sensor System driver, so the magnitude of the gravity vector will
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always be approximately 9.8 m/s2. In practice, it was found that the average magnitude of the

gravity vector was 9.8004 m/s2 with a standard deviation of 0.0033 m/s2.

FIGURE 4.3: The angles φ and θ are defined as shown in this diagram, and can be
calculated using the projections of the gravity vector GV on the x-y and y-z planes,

respectively.

The current rotation of the terminal device can be determined by finding the angle between

GVprojxy and the negative y-axis. The formula governing this definition, and used to determine

rotation angles is:

φ =



arctan( gx
gy
) gy < 0, gx ≤ 0

arctan( gx
gy
) + 360 gy < 0, gx > 0

90 gy = 0, gx < 0

270 gy = 0, gx > 0

arctan( gx
gy
) + 180 gy > 0

(4.1)
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Similarly, the current amount of wrist flexion can be found using the projection of GV on the z-y

plane. The equation for flexion angle theta is:

θ =



arctan( gy
gz
) + 90 gz < 0,

0 gy = 0, gy < 0

180 gy = 0, gy > 0

arctan( gy
gz
) + 270 gy > 0

(4.2)

The angles φ and θ are defined in Fig. 4.3. φ is measured from the positive y-axis counter-

clockwise around the positive z-axis; θ is measured from the positive z-axis, clockwise around the

positive x-axis. Angles are defined in this way so that the angle definition will reach the 0◦/360◦

flipping point when the terminal device is completely upside down—a configuration that should

only occur rarely if ever during normal use of the prosthesis.

PID Control

Proportional-Integral-Derivative (PID) control was chosen for this application since it is a well

understood and commonly used feedback control method, which is easy to implement [47]. A

cursory explanation of PID theory is given here to allow a basic understanding for those unfamiliar

with the method, and as a quick refresher for those who have already studied it.

PID control is a simple feedback loop that continuously measures the difference between a mea-

sured value and its desired setpoint. This difference is called the error e(t), and is fed back through

the loop to apply a correction using the proportional (P), integral (I), and derivative (D) terms. The

PID loops for both the flexion levelling and rotation levelling are depicted in the flowcharts of Fig.

4.4. The output correction of the system is governed by Eq. 4.3.

u(t) = Kpe(t) + Ki

∫ t

0
e(t′)dt′ + Kd

de(t)
dt

(4.3)
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FIGURE 4.4: The PID loops of the rotation and flexion levelling systems are identical
to the basic PID loop, with the exception of the addition of the ramping function f (θ)

in the rotation levelling PID loop.
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The proportional term applies a correction that is proportional to the error; the larger the differ-

ence between the measured value and the desired setpoint, the greater the correction will be. The

integral term looks at the error over time, and applies a correction to eliminate accumulating error

over time. In this way, it brings the steady-state error to zero. The derivative term is an estimate of

the future error based on the current rate of change. It applies a correction to reduce future errors.

A PID controller must be tuned to provide appropriate behaviour for the situation. Increasing

Kp provides benefits in terms of response time, but has the downside of introducing overshoots

and oscillation. A P controller, without I or D terms, will also have a non-zero steady-state er-

ror. Introducing and increasing Ki reduces steady-state error, but can also cause overshoot and

oscillation. Increasing Kd reduces oscillation and overshoot, but also reduces response time.

Other Controllers

It would be possible to use control algorithms other than PID to automatically level a prosthetic

wrist, some of which are listed below. These were mainly rejected for this first-pass proof-of-

concept due to the additional complexity in implementation, with limited benefit for our particular

study. However, these methods may be able to provide more robust and smooth control, and

should be considered for future developments:

• Adaptive Control is similar to PID control, but allows for automatic control of the parameters

as the dynamics of the process change [48]. This may be useful for a wrist in a clinical or

take-home setting, where the arm will be required to interact with many different kinds of

objects, after undergoing much wear and use, and in different environmental conditions.

These adaptations are less necessary in a controlled laboratory setting.

• Model Predictive Control requires an explicit model of the process being controlled, but al-

lows prediction of the process output in the future [49]. Reliable predictions can provide ro-

bustness to the controller, ensuring the output of the system is stable. However, the strength
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of the predictions for a Model Predictive Control system is in long-term, slow systems such

as chemical processes. For an automatically levelling wrist fast, dynamic control is necessary.

• Intelligent Control approaches such as fuzzy logic, artificial neural networks, and reinforce-

ment learning allow good performance under significant uncertainty in the system, and can

perform well under a variety of conditions [50]. This ability to provide control in a wide

array of situations is ideal for control of prostheses since use cases are rarely well-defined.

However, these control systems are not ideal for a proof-of-concept study as intended here

because of their complexity in implementation.

4.1.3 PID in the Autolevelling System

Both rotation levelling and flexion levelling are controlled by PID loops, each separate with their

own parameters (see Fig. 4.4). For each PID loop, the measured value is the angle of interest

(theta or phi), and the setpoint is the desired angle. Theta and phi are measured in degrees, and

calculated as defined in 4.1.2. For this application, a manual tuning method was used. The rotation

PID parameters were determined first while holding the flexion servo fixed. Once these parameters

were tuned, the flexion PID parameters were tuned while rotation levelling was enabled. For

both PID loops the parameters were tuned on a trial-and-error basis to achieve reasonable speed

with little overshoot and oscillation. These parameters have not been optimized, but perform well

enough to provide reasonable function. For rotation, the (kp, ki, kd) values were (0.32, 0.06 µs−1,

8.79 ms); for flexion they were (0.29, 0.42 µs−1, 8.00 ms).
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Mitigating Rotation Error at Vertical Positions

FIGURE 4.5: When the flexion angle θ deviates from 180◦, the z axis of the IMU and
hand no longer lines up with the rotation servo’s axis. The rotation servo can still
influence the x and y components of the gravity vector up until θ = 90◦ or θ = 270◦,

but not as directly.

Because the IMU is mounted distal to the flexion servo, and the flexion servo is distal to the rotation

servo, flexion movements bring the z-axis of the IMU out of coincidence with the rotation axis of

the rotation servo, as shown in Fig. 4.5. This problem is most evident at full flexion, when the axes

are at 90 degrees to each other. The rotation levelling still works to some degree up to this point

since rotations do still affect the x and y components of the gravity vector as intended, though

to a lesser degree as flexion angle increases. This can lead to unintended movements since the

PID is tuned for a more central position. To mitigate this problem, the rotation PID constants are

multiplied by the ramping function in Eq. 4.4.

f (θ) =
90− |180− θ|

90
(4.4)

The rotation PID equation then becomes that of 4.5.

u(t) = f (θ)(Kpe(t) + Ki

∫ t

0
e(t′)dt′ + Kd

de(t)
dt

) (4.5)
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In the horizontal position, the PID constants are the same as originally tuned; at the vertical po-

sition the constants are zero. Past vertical, the constants are also zero. The flexion PID remains

unaltered, as in Eq. 4.3. A more sophisticated method for decoupling the PID loops should be

implemented in a future design to improve the robustness of the algorithm. The solution imple-

mented here is a quick, practical fix, and works well enough to avoid most unintended movements

in practice.

Integration to Sequential Switching

The previous work (Chapter 3) suggested that the most intuitive means of enabling automatic

levelling would be through the use of a momentary switch, such as a co-contracting EMG signal.

Implementation of autolevelling to existing sequential systems is then a natural objective, since

these use momentary switching signals and are common in commercial systems. To reduce the

number of switches necessary for control, rotation levelling is always enabled. Flexion levelling is

enabled whenever the user is not directly controlling the flexion angle. In this way, the autolev-

elling wrist functions with exactly the same number of items in the switching list as conventional

systems, and does not add any control complexity.

Since in the transradial case there is only wrist and hand function to control, the sequen-

tial switching method essentially devolves to toggling between hand and wrist flexion functions.

When controlling the hand, the wrist automatically levels. A flowchart depicting the sequential

switching is given in Fig. 4.6.
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FIGURE 4.6: A switching signal toggles between hand and wrist flexion control.
When using hand control, the wrist flexion autolevels.

The user has access to the wrist angle θ by means of either direct control (via myoelectric con-

trol) or fixed wrist (altering the angle using the biological elbow and shoulder while in wrist con-

trol mode). This amounts to essentially the combination of modes A and B in the previous study,

which performed equally well. The user may choose to use direct control or fixed wrist depending

on their preference or the demands of the situation.

4.2 Autolevelling Implementation with Wearable Bypass Prosthesis

Recruiting able-bodied participants prior to trials with participants affected by amputation is desir-

able to achieve high statistical power in a time-efficient way. To test with able-bodied participants,

the autolevelling wrist must be attached to the user’s body in a manner analogous to the way it

would be mounted to the residual portion of an amputated arm. In addition, the user’s biological

hand and wrist motion must be restricted where possible.

4.2.1 Hardware

The bypass prosthesis itself consists of two main components: a wrist splint, and the Bento Arm,

as shown in Fig. 4.7. The wrist splint covers only the distal portion of the user’s forearm, leaving

the large muscle bellies of the proximal portion free for use with EMG. The Bento Arm is fixed to

the wrist splint by means of a 3-D printed bracket that conforms to and supplements the function
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of the metal braces within the fabric of the splint. The bracket is shaped like a shovel handle,

and a cylinder provides a gripping location for the user’s hand. The user’s fingers and thumb are

free; the thumb can be used to control a joystick mounted in the grip cylinder. Mounted to the

rotation servo of the arm are two LED indicators, blue and green, used for control feedback to the

user indicating what function they are currently controlling. The bypass prosthesis makes use of

the distal portion of the Bento Arm, including the wrist rotation and flexion servos as well as the

chopsticks gripper. The servos are mounted such that flexion occurs more distally than rotation.

FIGURE 4.7: The bypass prosthesis consists of the distal portion of the Bento Arm
attached to a wrist splint.
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Prosthesis Location

The Bento Arm is located in line with the forearm, distal to the user’s biological hand. It is impor-

tant that the arm be distal to the user’s biological arm to ensure that the wrist does not contact the

user’s arm. This helps to ensure user safety, and is also necessary for autolevelling function at the

full extent of the reach.

Joint Limits

To prevent entanglement of the wires, and to prevent the TD from colliding with itself, software

limits are placed on the position of each joint. The maximum angles are set such that the prosthesis

is able to maintain a terminal device orientation of θ = 270◦ and φ = 180◦ (neutral position) even at

the extreme ranges of motion (maximum pronation/supination, maximum arm raise and drop).

The servos stop upon reaching these limits. Outside the joint limits, the integral portion of the

PID is not incremented to avoid windup. These joint limits match the maximum natural range of

motion of a user’s arm with the bypass prosthesis, allowing autolevelling at full pronation and

supination, as well as at full reach in vertical and downward positions.

Control and Usability

The bypass prosthesis can be controlled by either a thumb joystick [51] built into the cylinder grip

or by myoelectric control. EMG singals from a Myo Armband (Thalmic Labs) were converted to

mean absolute values with a window size of 40 steps (approximately 200 ms), in accordance with

standard myoelectric control paradigms [12].

The prosthesis was designed such that it should be comfortable to use by both the 1st percentile

adult female and the 99th percentile adult male [52], to allow a large, unbiased sample group.

These sizing provisions included the length of the wiring from the belt to the arm and from the

bicep to the prosthesis, the allowable circumference of all strapping, the size of the handle grip,

and an interchangeable joystick length.
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FIGURE 4.8: Schematic showing the wiring for the entire system, broken down into
the three system components: the hip enclosure which serves as power switch; the
bicep hub which houses the Arduino Uno and U2D2; and the bypass prosthesis itself

instrumented with sensors, controls, and feedback LEDs.
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Data Specifications

IMU - The IMU used in this setup is the BNO055 from Adafruit [53]. This 32 bit sensor outputs the

gravity vector at a rate of 100 Hz with a rated sensitivity of 0.0098 m/s2 per LSB.

Arduino - An Arduino (Uno, Rev3) prints IMU and joystick data to serial at a baud rate of 9600.

The brachI/Oplexus software running the Bento Arm reads in this data once per cycle; the typical

cycle time during operation is between 2 and 4 ms.

PID - The PID loop measures the error and updates the servo control position once per cycle (again

between 2 and 4 ms).

Myo Armband - The EMG data is sampled from the Myo Armband at a rate of 200 Hz.

4.2.2 Wiring

The complete wiring schematic is shown in Figure 4.8, with a detailed breakdown of the three

main system components.

Hip Enclosure - The hip enclosure serves as the main power switch for the prosthesis. It is

mounted on the hip rather than the bicep for two reasons: the excessive weight of the power cable

would quickly introduce fatigue if mounted on the arm, and the hip-mounted switch is more ac-

cessible to the user in case emergency shut-off is required. When switched off, power and ground

lines are disconnected from both the U2D2 (Robotis, 902-0132-000) and the servos, meaning that

the servos lose power and the U2D2 can no longer communicate with the computer. A diode is

included between the ground line and U2D2 signal line to prevent voltage spikes from damaging

the U2D2.

Bicep Hub - The Arduino and U2D2 are mounted on the user’s bicep to reduce the length of wires

from the bypass prosthesis while minimizing the weight on distal portions of the arm. The Ar-

duino connects to and coordinates the signals from the IMU and the thumb joystick, and to the

feedback LEDs. A button mounted on the bicep enclosure can be used to flip which LED is illu-

minated in order to synchronize the lighting sequence with the actual joint being controlled in the
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sequential switching list of brachI/Oplexus. Power, ground, and signal wires from the hip enclo-

sure pass directly on to the servos after routing through the bicep enclosure for cable management

purposes.

Bypass Prosthesis - The Dynamixel servos are daisy-chained together in the same fashion as the

typical Bento Arm setup. Ground connections for all components are soldered together as distally

as possible to reduce the overall wire-weight necessary in the system. Power wires for the joystick

and IMU are similarly soldered together.

The proximal mounting of the hip enclosure and bicep hub eliminates approximately 300 g

from the bypass prosthesis.

4.2.3 Device Limitations

PID - The PID controller used in this bypass prosthesis works well enough to provide reasonable

function, but is by no means the optimal controller. The PID gains have not been optimized, and

have only been tuned for the level case. The ramping function 4.4 represents a patch fix on a more

fundamental problem: the rotation servo’s influence on the z-axis rotation depends on the flexion

angle θ. More sophisticated techniques may be able to address this problem more satisfactorily,

including addition of a secondary IMU mounted on the forearm to provide a comparative reference

frame. Future studies may wish to re-evaluate the method of autolevelling; this study simply aims

to provide evidence of its utility.

Wrist Rotations - The bypass does not restrict wrist rotations, since wrist rotation in a biologi-

cal arm is accomplished by the crossing-over of the radius and ulna of the forearm. This means that

users can rotate their wrist while using this device without affecting the object orientation since the

rotation servo is autolevelling. This will have implications in the interpretation of motion-capture

data.

Device Length Since the arm must be mounted distally to the user’s hand, the overall arm

length is approximately 26 cm longer than the person’s natural arm. The user’s movements must
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compensate for the extra length. Having the device weight more distally also induces higher

torques at the person’s shoulder, inducing fatigue sooner than a shorter arm would do.

Handedness - Currently, the device is only designed for use with right-handed persons. Mod-

ification for left-handed use would require a different wrist splint, and re-printing of a mirrored

bracket, but the rest of the assembly would be identical.

4.3 Conclusion

In summary of the above work, a functioning simulated prosthesis capable of autolevelling was

constructed from an existing myoelectric arm, wrist splint, and absolute orientation sensor. Con-

trol of the device is accomplished with simple PID control which is a method that is thoroughly

understood and widely used in control engineering. Further, a single absolute orientation sensor

is the only additional sensor required for the device; these sensors are also relatively inexpensive

and ubiquitous. The simplicity of the design ensures that integrating such a control scheme into a

commercial prosthesis design should be relatively easy and cost effective.
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Chapter 5

The Effect of an Automatically Levelling

Prosthesis

5.1 Study Rationale and Purpose

As stated in Chapter 2, a main motivation for the development of an automatically levelling wrist

is the idea that it may help to reduce compensatory movements. The purpose of this study is to

further evaluate the effect of the automatically levelling wrist developed in Chapter 4 on a person’s

movements and control strategies, while performing tasks of daily living. This experiment was in-

tended to elucidate differences between the use of a fixed wrist, a sequential switching method,

and the auto-levelling method proposed. Further, comparisons between each of these and the nor-

mative and affected populations are also made. Three areas of evaluation are explored: kinematic

analysis, performance metrics, and qualitative perception of performance.

What follows is an adapted version of a study that will has been submitted to the 16th IEEE

RAS/EMBS International Conference on Rehabilitation Robotics (ICORR 2019), June 24–28, 2019

[54].
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FIGURE 5.1: The simulated prosthesis included all joints of the Bento Arm distal
to the elbow, and was attached to a wrist splint by a 3D printed handle. A Myo
Armband allowed myoelectric control, and a button at the thumb allowed switching.

Computation and power were provided externally.

5.2 Methods

5.2.1 Simulated Prosthesis

In this work, we made use of a simulated prosthesis with able-bodied subjects. The simulated

prosthesis designed for use in this study consisted of a modified Bento Arm [25] attached to a

wrist splint with 3D printed handle as depicted in Fig. 5.1. The arm was modified to include

only wrist rotation, wrist flexion, and the terminal device, which was further altered to include

a BNO055 (Adafruit Ind., New York City, NY) inertial measurement unit (IMU) in its base. Alto-

gether the device weighed 550 g. The open-source files for the simulated prosthesis can be found

online [27]. The prosthesis extended distally from the user’s intact hand, resulting in an increased

effective limb length of 26 cm, which was necessary to ensure unimpeded prosthesis wrist motion.

The wrist splint restricted biological wrist flexion/extension and radial/ulnar (R/U) deviation of

the participant, but allowed wrist rotation. The prosthesis was controlled using a Myo Armband

(Thalmic Labs, Kitchener, ON) on the user’s forearm. EMG signals from contraction of the user’s

forearm muscles corresponding to wrist flexion/extension were mapped to open/close of the hand
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or radial/ulnar deviation of the wrist (up/down in this configuration) depending which joint was

being controlled. EMG singals were converted to mean absolute values with a window size of 40

steps (approximately 200 ms), in accordance with standard myoelectric control paradigms [12]. A

button activated by the user’s thumb was used to give the switching signal. A button was used

rather than myoelectric co-contraction to achieve cleaner, clearer control signals, thereby reducing

inadvertent switches which would make the system more difficult to learn. Electrical power and

computation of the control software were provided externally; cables were managed to be as un-

obtrusive as possible in terms of weight and restricted motion. The prosthesis functioned in three

distinct modes: Fixed Wrist (FW), Sequential Switching (SS), and Automatically Levelling (AL). In

FW mode, the prosthesis allowed hand control only; both wrist rotation and R/U deviation were

fixed in a neutral position. For the sequential switching mode, the user could switch between di-

rectly controlling the terminal device or R/U deviation of the wrist; wrist rotation was fixed in a

neutral position. The automatically levelling mode also allowed the user to switch between wrist

R/U deviation and hand control, but the wrist also worked autonomously to maintain the hand

orientation in the method described in the next section.

5.2.2 Automatic Levelling Method

The integrated IMU in the base of the terminal device enabled the AL functionality. It provided

a “Gravity Vector” (GV), which consisted of the x, y, and z components of the acceleration due

to gravity experienced by the IMU, filtered away from other accelerations. The gravity vector

and relevant angles are depicted in Fig. 5.2. “Automatic Levelling” consisted of two separate

sub-functions: “Flexion Levelling” and “Rotation Levelling”. Flexion Levelling aimed to keep the

angle θ constant (set to whatever angle it was when Flexion Levelling was engaged), and was

active whenever AL was engaged and the user was not controlling the wrist. Rotation levelling

aimed to keep the angle φ at a constant 180◦, and was active whenever AL was engaged. Both

Flexion Levelling and Rotation Levelling operated on separate PID loops, each of which updated

at a minimum rate of approximately 200 Hz. The PID loops were tuned by hand to give reasonable
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settling times; rotation settled to within +/- 5◦ error from an 80◦ disturbance within about 600 ms;

flexion settled to within +/- 5◦ error from a 50◦ disturbance within about 580 ms. For rotation, the

(kp, ki, kd) values were (0.32, 0.06, 8.79); for flexion they were (0.29, 0.42, 8.00).

FIGURE 5.2: The IMU provided the Gravity Vector (GV), from which the angles φ
and θ were calculated, using the projections of GV on the x-y and z-y planes. Flexion

Levelling kept the angle θ constant; Rotation levelling kept the angle φ = 180◦.

5.2.3 Experiment Design

Twelve able-bodied people participated in the study, each providing written informed consent

prior to participating. The demographics of the population studied are given in Table 5.1. All

participants were right-handed, with normal or corrected-to-normal vision, and performed the

task using their right hand.

TABLE 5.1: Population demographics of all participants in the study

Age (yrs) Weight (kg) Height (cm) Sex

Average 25.3 73.2 170.7 3F, 9M

Standard Dev. 7.5 7.4 10.0
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Our outcome measures were based on the study conduced by Valevicius et al. [29], which

involved two tasks: the Cup Transfer task, and the Pasta-Box task. The Cup Transfer Task involved

moving two cups full of beads across the mid-line, using the prosthesis in first a top-grasp and then

a side-grasp, and returning the cups to the starting position using the same method. The Pasta-

Box task involved transferring a box of pasta from a low side table to a series of higher shelves,

and finally returning the pasta box to the side table. Both of these tasks used a Vicon Bonita 12-

camera motion-capture setup to record upper body joint angular kinematics in 20 non-disabled

participants. Ten data sets from prosthesis users using a range of prosthesis types (transradial and

transumeral, body-powered and myoelectric) were also recorded and are used a comparators in

this study. For a full description of the experiment setup and task descriptions, refer to Valevicius

et al. [29]. For this experiment, the setup was modified from this original work in two ways:

1. The side table was moved 26 cm to the right and 26 cm back, to accommodate for the addi-

tional length of the simulated prosthesis. Participants were instructed to stand at a comfort-

able distance to the task table while performing the task with the simulated prosthesis.

2. The cups used were made of stiff plastic rather than compliant paper, since the emphasis in

this study was on wrist control conditions rather than force modulation control.

Marker positioning was consistent with the cluster-based marker model used in Boser et al. [31];

markers for the right hand and forearm were mounted on the simulated prosthesis in analogous

locations.

Participants were first familiarized with the prosthesis by allowing approximately five minutes

of unstructured play, wherein they could stack cups, balls, and various other small objects. For

the first few minutes of this time, or until the participant felt comfortable with the system, the

prosthesis was operated in the SS mode. For the last few minutes of the training session, the

participant was familiarized with the AL mode. Only once the participant agreed that they felt

sufficiently capable did the experiment trials begin.



Chapter 5. The Effect of an Automatically Levelling Prosthesis 58

Each participant performed three blocks of trials (one block each for FW, SS, and AL) for each

task. The order that the interventions were tested by the participant was randomized, but each of

the six possible orders was tested twice over the twelve-participant population. Everyone began

with the Cup Transfer task, and after completing all Cup Transfer trials took a ten-minute break

before conducting the Pasta-Box trials. For each task type, the experimenter explained and demon-

strated the format of the task, and the participant performed one or more practice trials until they

felt comfortable with the task. A practice trial was also allowed at the beginning of each block of

trials to familiarize the user with that particular control mode. A block consisted of enough trials

to represent ten usable trials, with a maximum of fifteen attempts. All participants had at least

nine usable trials for each block. Reasons for mistrials were recorded, and only mistrials caused by

participant error (incorrect task execution, spilled or dropped items) are reported.

Data collected included x, y, z marker position, EMG signals, IMU gravity vector components

(x,y,z), switching signals, and position, velocity, and load data from the prosthesis servomotors.

Motion-capture data (8-camera OptiTrack) were collected at a rate of 120 Hz, while all other data

were collected at approximately 200 Hz. No time-series analyses were conducted in this work, so

the data rate disparity is inconsequential. Participants also filled out a qualitative survey at the

end of the session. The survey prompted participants to score each of the control modes in four

categories (intuitiveness, effectiveness at the Cup Transfer task, effectiveness at the Pasta-Box task,

and reliability) using a visual analogue scale (VAS) from 0 to 5. Intuitiveness was probed by asking

“How easy was each control mode to learn?”; effectiveness was determined by the question “How

well did each control mode perform the cup transfer task?”, or “pasta task” as appropriate; and re-

liability was discerned through asking “How often did you find the arm moved in a different way

than you wanted or expected?”. The participants also indicated an ordinal rank of their preference

to use each control mode for each task.
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5.2.4 Data Analysis

Mean maximum angles for trunk flexion/extension, trunk ipsi/contra-lateral bend, trunk axial

rotation, shoulder flexion/extension, shoulder internal/external rotation, and shoulder ad/ab-

duction were explored in this study. Shoulder and trunk angle metrics were drawn from the

motion-capture data. The pelvis, thorax, and right-upper-arm motion tracking data was manu-

ally cleaned to ensure trunk and shoulder angle metrics would not be affected by occluded or

mislabelled markers. Hand data, while not included in this analysis, was also cleaned since hand

velocity was used as an indicator for trial beginnings and endings. The maximum angle for each

degree of freedom was averaged across trials for each participant. Performance metrics included

the time of task completion, the number of switching signals given by the participant, and the

number of participant-caused mistrials. Mean differences for all continuous data (mean maximum

angles, time of trial completion, switch counts, mistrial counts, and VAS scores) were calculated

using paired two-sample t-tests with α = 0.05. A Bonferroni correction was made for three com-

parisons, making α = 0.0167. For the ordinal preference ranking, a Mann-Whitney U-test was

conducted, with α = 0.05.

5.3 Results

The mean maximum angle for each trunk and shoulder movement is plotted on a per-participant

basis for the Cup Transfer task in Figs. 5.3 and 5.4, and for the Pasta-Box task in Figs. 5.5 and

5.6. The total range of motion can be inferred by considering both pairs of angles for a degree of

freedom (i.e. max flexion + max extension = range of motion). The data for the normative (N)

and prosthesis-user (P) populations of studies [29], [32] are plotted as well. While not directly

comparable to our results with a simulated prosthesis, the data from these studies are provided

alongside our results to indicate that the tests show differences between normative and prosthesis-

user populations, and that our results are within reasonable expectations. The points for individual

participants are connected by lines to show trends across the interventions tested in this study.



Chapter 5. The Effect of an Automatically Levelling Prosthesis 60

FIGURE 5.3: CUP TRANSFER TASK, TRUNK KINEMATICS: Mean maximum an-
gles (deg) for each participant, for fixed-wrist (FW), sequential-switching (SS), and
automatically levelling (AL) conditions. Normative (N) and prosthetic (P) data was
collected separately [29], [32]. Significance was determined based on the average of

the group using pairwise two-sample t-tests, α = 0.0167 for Bonferroni correction.
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FIGURE 5.4: CUP TRANSFER TASK, SHOULDER KINEMATICS: Mean maximum
angles (deg) for each participant, for fixed-wrist (FW), sequential-switching (SS), and
automatically levelling (AL) conditions. Normative (N) and prosthetic (P) data was
collected separately [29], [32]. Significance was determined based on the average of

the group using pairwise two-sample t-tests, α = 0.0167 for Bonferroni correction.
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FIGURE 5.5: PASTA-BOX TASK, TRUNK KINEMATICS: Mean maximum angles
(deg) for each participant, for fixed-wrist (FW), sequential-switching (SS), and au-
tomatically levelling (AL) conditions. Normative (N) and prosthetic (P) data was
collected separately [29], [32]. Significance was determined based on the average of

the group using pairwise two-sample t-tests, α = 0.0167 for Bonferroni correction.



Chapter 5. The Effect of an Automatically Levelling Prosthesis 63

FIGURE 5.6: PASTA-BOX TASK, SHOULDER KINEMATICS: Mean maximum an-
gles (deg) for each participant, for fixed-wrist (FW), sequential-switching (SS), and
automatically levelling (AL) conditions. Normative (N) and prosthetic (P) data was
collected separately [29], [32]. Significance was determined based on the average of

the group using pairwise two-sample t-tests, α = 0.0167 for Bonferroni correction.



Chapter 5. The Effect of an Automatically Levelling Prosthesis 64

FIGURE 5.7: Performance metrics for each of the control conditions. Columns repre-
sent the average across all participants. Error bars indicate one standard deviation.
Significance determined using paired two-sample t-tests with α = 0.0167 for Bonfer-

roni correction. FW = fixed wrist; SS = sequential switching; AL = autolevelling.

The various performance metrics are plotted in Fig. 5.7, including average trial time, number

of control switches, and number of participant-caused mistrials. Time of trial start was defined as

the first time the hand velocity rose above 5% of its peak velocity, and time of trial end was defined

as the last time the hand velocity fell below 5% of peak velocity, based on the marker position data.

The results of the qualitative survey presented at the end of the session are summarized in Fig. 5.8.

For all measures in Fig. 5.8, higher scores indicate better performance. Error bars in all figures

represent ± one standard deviation. The results of the statistical analyses for all comparisons are

provided in Table 5.4. Tables 5.2 and 5.3 provide the user responses to questions about what made

them choose their particular rankings. One participant neglected to complete this portion of the

survey, so only eleven responses recorded. The order the responses are presented is randomized

but consistent across the tables to facilitate comparisons within an individual participant’s prefer-

ences.



Chapter 5. The Effect of an Automatically Levelling Prosthesis 65

TABLE 5.2: User responses to the question “What about your #1 choice made it your
favourite?”.

Favourite
(Cups)

Favourite
(Pasta)

Comment

AL FW
Cups: AL greatly reduced worry of spilling. Made angle of grip
on cup less important. Pasta: FW worked sufficiently.

AL FW
AL does a lot for user and prevents spilling. Especially of the
cups.

SS AL

Cups: AL made it difficult to rotate wrist, SS was good for that
and minute adjustments. Pasta: SS was too much back and forth
to change wrist angle

FW AL

Cups: It always moved in a way that I would expect so I could
control not spilling easier. Pasta: It would automatically adjust
so I wouldn’t have to bend my knees to put the pasta on the side
table

SS AL
In the cups experiment, sequential switching made it easier to
grab the cup from the top.

FW FW Easiest to use; behaved as expected.

SS AL
AL kept the pasta even over long moves. SS helped to change
direction best

AL AL
Less thinking. Could think one step ahead without having to fo-
cus too hard about the task at hand.

SS FW
Cups: Felt like had more control over moving cup from over head
or side. Pasta: Since I didn’t need to adjust wrist it was the fastest

FW AL
It was straightforward to operate, minimal chance of mix-ups and
had the least failures

SS FW
Cups: SS easy to control and less strain on shoulder. Pasta: FW
much faster and more efficient. (At least it felt like it)
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TABLE 5.3: User responses to the question “What about your #3 choice made it your
least favourite?”.

Disliked
(Cups)

Disliked
(Pasta)

Comment

FW SS

Cups: FW made the decision of how to grab abundantly impor-
tant/uncomfortable. Pasta: AL and SS made no contributable
difference; angle of grab less important.

FW SS FW is very helpful but also the least versatile.

FW FW
Cups/Pasta: too much bodily movement involved, difficult to
pick things up at times.

AL SS

Cups: It would level itself in a way that felt unexpected. Pasta:
I felt like while switching with the pasta in hand, I would risk
dropping the pasta.

AL SS

In the cups experiment, the autolevelling wasn’t needed, as we
weren’t grabbing from different heights, and it mostly got in the
way.

SS SS Mentally taxing, difficult to position consistently.

FW FW
Often didn’t perform accurately. No ability to perform fine move-
ments.

FW FW

Cups: I’m too short, had to use tip toes and awkward shoulder
position. Pasta: wrist option useless. Had to set down specific
way to ensure level and won’t fall.

AL SS

Cups: Toughest experience moving wrist (also bias since learning
round). I think after learning fixed wrist wouldn’t be not practical
so I would rather auto level if I needed limbs. Pasta: didn’t need
to adjust wrist so not needed.

SS SS It required more focus to remember modes.

AL AL
Cups/Pasta: I think it would take me more time to adapt to the
autolevelling–I had a hard time predicting how it would move.
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TABLE 5.4: p-values for all comparisons. Paired two-sample t-tests were conducted
on all continuous data, with Bonferroni correction for three comparisons leading to α
= 0.0167. For ordinal data (rankings), Mann-Whitney U-tests were conducted with α

= 0.05.

Metric FW vs AL FW vs SS AL vs SS
Cups Trunk Flex. 0.0022* 0.0022* 0.3347
Cups Trunk Ext. 0.0312 0.0832 0.1562
Cups Trunk Cont. Bend 0.0005* «0.0167* 0.0567
Cups Trunk Ipsi. Bend 0.1249 0.0394 0.1526
Cups Trunk Cont. Rotn 0.0674 0.4872 0.0631
Cups Trunk Ipsi. Rotn 0.0658 0.0696 0.3275
Cups Shldr Flex. «0.0167* 0.0001* 0.2432
Cups Shldr Ext. 0.2721 0.3843 0.1499
Cups Shldr Add. 0.2947 0.0611 0.3244
Cups Shldr Abd. «0.0167* «0.0167* 0.0842
Cups Shldr Int. Rotn 0.0008* 0.0004* 0.0851
Cups Shldr Ext. Rotn 0.0259 0.0122* 0.2618
Cups Trial Time 0.0006* 0.0120* 0.0711
Cups No. of Switches «0.0167* «0.0167* 0.0993
Cups No. of Mistrials 0.0058* 0.0058* 0.2583
Pasta Trunk Flex. 0.2383 0.3968 0.3253
Pasta Trunk Ext. 0.3203 0.3387 0.3846
Pasta Trunk Cont. Bend 0.0247 0.4324 0.0359
Pasta Trunk Ipsi. Bend 0.1319 0.2024 0.3586
Pasta Trunk Cont. Rotn 0.0856 0.2986 0.0663
Pasta Trunk Ipsi. Rotn 0.3279 0.1887 0.2165
Pasta Shldr Flex. 0.0049* 0.2898 0.0009*
Pasta Shldr Ext. 0.4587 0.1603 0.1071
Pasta Shldr Add. 0.3353 0.3097 0.4440
Pasta Shldr Abd. 0.0032* 0.1781 0.0185
Pasta Shldr Int. Rotn 0.0002* 0.0069* 0.0073*
Pasta Shldr Ext. Rotn 0.0011* 0.0047 0.3358
Pasta Trial Time 0.0593 0.2696 0.2888
Pasta No. of Switches 0.0533 0.0934 0.1537
Pasta No. of Mistrials 0.0024* 0.0060* 0.3190
Intuitiveness 0.0084* 0.0005* 0.1490
Effectiveness (Cups) 0.3977 0.0494 0.1698
Effectiveness (Pasta) 0.0640 0.4215 0.0521
Reliability 0.0043* 0.0360 0.0173
Rank (Cups) 0.8181 0.2501 0.3421
Rank (Pasta) 0.5353 0.0385* 0.0035*
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FIGURE 5.8: Qualitative user feedback about various performance aspects of the
prosthesis control modes. Columns represent the average across all participants.
Error bars indicate one standard deviation. For all measures, a higher score indi-
cates better performance. Significance determined using paired two-sample t-tests (α
= 0.0167 for Bonferroni) for the continuous scores, and a Mann-Whitney U-test for
the ordinal rankings (α = 0.05). FW = fixed wrist; SS = sequential switching; AL =

autolevelling.

5.4 Discussion

5.4.1 Kinematic Analysis

Cup Transfer Task

The kinematic results from the AL and SS conditions never significantly differed from one another

in this task. In the instances where FW differs from AL and SS (trunk flexion, trunk contralateral

bend, shoulder flexion, shoulder abduction, and shoulder internal and external rotation), FW al-

ways displays a greater mean peak angle. This is indicative of compensatory movements involved

in performing the top-grasp of the cup. The normative population makes use of flexion and ulnar

deviation of the wrist to perform the top-grasp [29]; without R/U deviation, the participant had

to raise their elbow in order to bring the prosthesis down vertically on the cup and ensure the ter-

minal device did not interfere with the barriers of the cart. This compensation was exacerbated by

the length of the simulated prosthesis; since the height of the table was not altered from the origi-

nal study, participants needed to raise their arm 26 cm higher than they otherwise would have in

order to perform the top-grasp of the cup. For the Cup Transfer task, there is evidence supporting
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the use of a directly controllable wrist allowing R/U deviation, but no evidence to support the use

of a continuously adapting wrist as opposed to a conventional sequential switching system.

Pasta-Box Task

For the Pasta-Box task, the only significant differences between the tested control modes existed

in shoulder flexion and abduction, and internal/external rotation. In shoulder flexion, the average

maximum flexion angle for the AL condition was less than that of both the FW and SS conditions,

and for abduction it was less than the FW condition. Less shoulder flexion and abduction in the

AL case indicates that the participants didn’t need to raise their arm as high in order to place the

pasta box onto the shelf, suggesting less compensatory movement. The fact that the maximum

flexion angle for all control modes was lower than that for the normative data set was likely due

to the increased length of the simulated prosthesis, which enabled the participants to place the

box on the shelf without raising their arm as much as they otherwise would have. That the mean

maximum flexion angle was significantly different between the AL and SS cases suggests that this

difference stems from the adaptive wrist angle. The FW condition induced more internal rotation

and less external rotation than AL and SS most probably because users were unable to set the

wrist ulnar/radial deviation angle to a suitable position (which was possible in the AL/SS cases).

AL induced less internal rotation than SS, indicating that while setting an initial deviation angle

helped, adaptation of that angle throughout the task may have had some benefit as well.

Overall, it appears that for the Pasta-Box task that there was little difference between all condi-

tions in terms of movement strategies at the trunk and shoulder level. Differences in internal and

external rotation support the advance setting of an appropriate deviation angle, and the reduced

shoulder flexion suggests that an adaptive wrist angle may reduce some compensatory movements

for vertically-oriented tasks.
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5.4.2 Performance Metrics

Each of the measures presented in Fig. 5.7 represents an indication of the performance of the

prosthesis with a particular control mode. Of course, these are only a few of the many possible

ways of examining prosthesis performance, and each has its limitations in what it is able to show.

From the trial time plots, we can see that there was no difference between the modes in completion

of the Pasta-Box task, and a slight trend in favour of FW and against AL for the Cup Transfer task.

In terms of switching, the FW control condition by nature of its definition had the least number

of switches. Those control modes that do involve switching seemed to perform equally well on

the Cup Transfer task, but AL trended toward outperforming SS on the Pasta-Box task. Only

one participant used the direct wrist control afforded by SS during the movement portions of

the Pasta-Box task, requiring many switching signals. All other participants used it in the same

manner as the FW, which gave rise to the large variance seen here. The number of participant-

caused mistrials was much less for the FW condition than for the other two conditions. This may

suggest that cognitive effort normally spent on the task must be put into wrist control, or that

erroneous wrist movements may have caused errors. All of these measures suggest that the most

rudimentary control system is the simplest to use. Both control schemes that allowed direct wrist

control required more conscious thought, though AL did require less switching than SS on the

Pasta-Box task while still allowing a change in R/U deviation angle.

5.4.3 Qualitative Measures

Equally important to how well a person uses a prosthesis is how a person feels about using their

prosthesis. To this end, the qualitative survey was given to discern people’s intuitions about the

device (see Fig. 5.8). From these results we see that people felt that all control conditions were

equally effective at the tasks, but differences existed in terms of perceived intuitiveness and relia-

bility. The FW control scheme was felt to be the most intuitive, and involved the least complexity

of control, compared to AL and SS. AL and SS performed equally well in this category. The FW
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control scheme was scored as significantly more reliable than AL. The control mode preferred

by the participants differed depending on the task at hand. Though not significant, for the Cup

Transfer task SS tended to be preferred, likely because AL was too unreliable and FW forced com-

pensation to perform the top grasp. For the Pasta-Box task however, SS was least preferred, likely

because of the perception that having direct wrist control was “useless”, as one participant put it,

for this particular task. This sentiment seems to generalize to the other participants as well, since

all but one used the SS control in the same manner as FW. This has important implications, since it

demonstrates that people will tend to use compensatory movements for simple tasks even when

wrist control is available, if control of the wrist requires a switching signal.

Altogether, these results indicate that people feel that the FW control condition was the simplest

to use and the most reliable, but lack of R/U deviation made it less preferred for the Cup Transfer

task. People felt that the AL scheme was at times unreliable, and was the most difficult to learn, but

in the structure of the Pasta-Box task it proved helpful. SS was viewed as the most reliable scheme

that allowed R/U deviation for the Cup-Transfer task, but as an unnecessarily complicated control

scheme when it came to the Pasta-Box task.

5.4.4 Study Limitations

A significant limitation of this study was the use of a simulated prosthesis with able-bodied people:

particularly, one that positioned the prosthesis distally to the user’s hand, increasing the overall

limb length by 26 cm. While this was necessary to allow unimpeded prosthesis wrist motion, the

extra length introduced additional body compensations in the Cup Transfer task, and may have

made some compensations unnecessary even for the FW condition in the Pasta-Box task since it ex-

tended the participant’s reach. Another limitation was the short duration in which the participants

interacted with the system. The intuitiveness scores, time of trials, and other performance metrics

indicate that AL may take more time to learn to use than the FW system. It is possible that with

further learning performance may change. Additionally, the imprecise method of error mitigation

discussed in Section 4.1.3 may have been a source of some of the AL unreliability. The PID loop in
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this tested system, while capable of keeping the hand reasonably level, did still have perceptible

lag and overshoot. A more sophisticated control system, perhaps by means of cascading PIDs or

neural network tuning might be able to bring the reliability of the system up to a more reason-

able level, which should be done prior to further study. The design of the PID control algorithm

should be modified to properly correct for coupling effects, and greater effort be made to optimize

the tuning parameters. Future studies should involve participants who are actually affected by

upper-limb amputation to reduce ambiguities introduced by the simulated prosthesis, and allow

sufficient training time to ensure learning effects are reduced. Finally, the use of a button rather

than myoelectric co-contractions for the switching signal limits generalization of these results to

a fully myoelectric system. It is possible that future machine learning techniques may be able to

predict a prosthesis-user’s next move and automatically switch to the appropriate control scheme

[14], but meanwhile, perhaps the most expedient thing to do is allow a longer training period.

While the performance of the AL system is promising, there are still some limitations including

lack of reliability and ease of use. For a person to accept a prosthesis that is making some decisions

and movements on its own, the prosthesis must be especially robust and predictable.

5.5 Conclusion

In this study, we aimed to evaluate the effect an automatically levelling wrist system might have

on a person’s interaction with their prosthesis, measuring that effect in a number of different ways.

In terms of the movement strategies used by the participants, it seemed that for the Cup Transfer

task AL and SS perform equally well, while the FW condition involved more compensation. For

the Pasta-Box task, FW and SS were used in a similar manner, but differences in shoulder flexion

indicate AL may have contributed to the reduction of compensatory movements. The performance

metrics indicated that the FW system was simplest to use and easiest to learn. AL and SS were ap-

proximately equally difficult to use, with a trend in trial length and intuitiveness scores indicating

AL may take more time to learn. Participants preferred to use the sequential-switching method on
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the Cup Transfer task, as it was less awkward than FW, and more reliable than AL. For the Pasta-

Box task, participants equally preferred AL and FW. The kinematic analysis especially indicates

that the use of an automatically levelling wrist may not provide much benefit for tasks involving a

predominately horizontal plane. The true usefulness of an automatically levelling wrist in reduc-

ing compensatory movements exists in tasks involving large vertical motions, such as in placing

or reaching for objects on high shelves. In order to provide people with artificial limbs that give

meaningful benefit to their lives, care must be taken to ensure that the prostheses are easy to use

and don’t force compensatory movements; an automatically levelling wrist, if designed robustly

and intuitively, may provide one part of the control scheme for such a limb.
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Chapter 6

Conclusion

6.1 Summary

Current attempts to fill the gap left by a missing upper limb fall short in many ways. The loss of

distal degrees of freedom such as the wrist and hand leads to compensatory movement in the more

proximal degrees of freedom: the trunk and shoulder. These compensatory movements, if left

unchecked, can result in overuse injuries in the upper back and shoulder which can be debilitating

to individuals who have undergone amputation. Wrist prostheses in particular, which may have

the best chance of reducing compensatory movements, are generally inadequate. Commercially

available prostheses rarely have a powered wrist, and even in those instances where it exists the

wrist will only have one degree of freedom (most often rotation). Control of these wrist systems

is difficult, and often requires switching sequentially from control of one joint to the next. Some

advanced pattern recognition algorithms are beginning to allow limited simultaneous multi-DOF

movement, but this still requires heavy concentration on the part of the user. In order to bridge

this gap, and allow simultaneous multi-DOF movement without user input in situations where

doing so would be appropriate, the concept of a self-adjusting wrist is conceived. Researchers

have explored this idea in a number of forms, using either passive wrists that self-adjusted based

on built-in compliance, or active wrists that automatically adjusted based on look-up tables or

environmental RFID tags.
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In this work, we follow a rigorous design methodology centered on human usability. The

first study presented focused on the control interface of the automatically levelling system, and

determined the most intuitive means of switching in and out of autolevelling. The result from that

work suggested using a switching signal as a toggle between automatically levelling and direct

control of the wrist, which was the control scheme used in continuing development.

An automatically levelling wrist was subsequently designed for use as a simulated prosthe-

sis on able-bodied people. This system made use of an IMU mounted in the base of the terminal

device, which provided the gravitational accelerations necessary to determine and maintain the

terminal device orientation. The use of a single, inexpensive sensor and rudimentary PID con-

trol algorithms ensures that a similar wrist levelling algorithm could be easily implemented in a

commercial system with minimal added cost.

Our second study aimed to elucidate the effect of the automatically levelling system on various

metrics. Joint-angle kinematic analysis using motion-capture suggested that the automatically lev-

elling system did not provide any significant benefit compared to a sequential-switching method

on tasks occurring mainly in a horizontal plane, but did reduce shoulder flexion significantly for

tasks with a large vertical component. Performance metrics determined that a rudimentary fixed-

wrist system may be the simplest to use and easiest to learn, while the autolevelling system was

the most complex and took longer to learn. User feedback indicated that people felt the automat-

ically levelling system was more unreliable and less intuitive than the fixed-wrist and sequential-

switching conditions.

6.2 Unification of Results

Some interesting inferences can be drawn when considering the two studies together. For the study

conducted in Chapter 3, which made use of the desk-mounted arm, the AL system significantly

outperformed the conventional sequential-switching control scheme on all performance metrics

(time, switches, number of spills). However, in the study of Chapter 5, which made use of a
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wearable arm, trends indicated that the sequential-switching control scheme performed better on

time and mistrial metrics. This is possibly because with a wearable system, the user has greater

control of the end-effector by use of their biological limb (indeed, in the desk-mounted system, all

control must pass through the digital interface). This biological control allows natural, intuitive

compensation which can make trial completion faster and more accurate. Considering this effect

in terms of use-cases for the autolevelling system, it may be true that AL will be more useful for

persons with a lesser degree of biological function. That is, persons with transradial amputation

may be able to compensate effectively to accomplish levelling on their own, but an AL system may

be more beneficial for persons with higher level amputation such as transhumeral amputation or

shoulder disarticulation. Further study directly addressing this hypothesis is necessary before any

claims can be made.

6.3 Outcomes

This work represents the first attempt to design and evaluate an active automatically levelling

prosthetic wrist that relies only on its internal state to perform the levelling. Removing reliance

on look-up tables and environmental RFID tags greatly enhances the versatility of the system, and

represents a more clinically-translatable control-scheme.

The results from our first study provide an indication of how best to integrate an automati-

cally levelling system into the existing sequential-switching framework; that method is to use the

switching signal exactly as would normally be the case, and to autolevel any time the wrist is not

being directly controlled. The results from the subsequent study suggests that while an automat-

ically levelling wrist may provide important physiological benefits on tasks requiring a vertical

component, there is still work to be done in making the system reliable and intuitive.
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6.4 Future Directions

The continuation of this line of study should involve testing the system with participants affected

by upper-limb amputation, with varying levels of amputation, again looking at a wide range of

metrics including compensatory movements, task performance, and user satisfaction. Conducting

this study will eliminate any confounding factors introduced by using able-bodied participants

with a distally-mounted simulated prosthesis, and thus make the effect of the system on compen-

satory movements much more clear. Prior to conducting this follow-up study however, efforts

should be made to improve the autolevelling algorithm to increase reliability. This could possibly

be attempted by means of cascading PID loops, or by training the PID parameters on a neural

network.

6.5 Final Thoughts

With the advent of any new technology, it is exceedingly important that the designers consider

whether what they are creating actually serves the needs of the users. In the case of prostheses,

this consideration is even more important, as the proposed device is intended to become an in-

tegral part of the person’s body. Throughout this work I have intended to provide not only the

description of a novel device, but also to evaluate in a comprehensive way the interactions its

users have with it. Only through careful adherence to human-centered design principles can we

provide people with prostheses that bring meaningful function to their lives.
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Appendix A

Detailed Participant Performance Charts

Since the aggregate data presented in Chapter 3 hides some interesting features of the participant

performance, all individual performance charts are provided here. The key features available in

these charts that are not available in the aggregate data are the order of intervention presenta-

tion, instances of erroneous button-presses, and learning curve trends. Considering these charts

provides an insight to each user’s experience of the test.
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FIGURE A.1: Task performance across the entire testing session for Participant 1.

FIGURE A.2: Task performance across the entire testing session for Participant 2.

FIGURE A.3: Task performance across the entire testing session for Participant 3.
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FIGURE A.4: Task performance across the entire testing session for Participant 4.

FIGURE A.5: Task performance across the entire testing session for Participant 5.

FIGURE A.6: Task performance across the entire testing session for Participant 6.
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