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Abstract

Curiosity appears to motivate and guide effective learning in humans, which has

led to high hopes in the machine learning community for machine analogues of cu-

riosity. While a variety of machine curiosity algorithms have been introduced, they

are rarely compared with other existing curiosity algorithms. With a new family

of experimental domains—‘Curiosity Bandits’—I provide a means of observing cu-

riosity methods on an even playing field, manipulating the curiosity mechanism

while controlling for the learning algorithm and its environment. Observations us-

ing these domains, along with the study of human and animal curiosity, allowed me

to clarify five properties that would offer important benefits for machine learners

but have not yet been well-explored in machine intelligence—directedness towards

inostensible referents, cessation when satisfied, voluntary exposure, transience, and

coherent long-term learning. I further demonstrate how three of these properties

can be implemented together in a proof-of-concept reinforcement learning agent.

As a whole, this work presents a novel view into machine curiosity and how it

might be integrated into the behaviour of goal-seeking, decision-making machine

agents in complex environments.
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Z(i)
t the ‘surprise’ or ‘unexpected prediction error’ about general value function

prediction i at time t, as defined by White et al. (2014); see Equation 2.9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37, 38, See: UDE

[x, y) the half open interval between x and y 2 R, including x but not y, a contin-
uous subset of the real line, R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251,
252

[x, y] the closed interval between x and y 2 R; a continuous subset of the real line
R including both end points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv, 20, 44, 56, 75

⇧[x,y] a projection function that bounds the input to the range [x, y]:

⇧[x,y](z) ..=

8
<

:

x for z < x
z for z 2 [x, y]
y for x > y

(1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv, 74, 75

↵ a step size/learning rate . . . . xvi, xxiv, 57, 62, 63, 73, 76, 77, 81, 82, 84, 85, 89,
91, 103

R̄t the average of all the rewards up to time t, maintained using an unbiased
exponential average initialized to zero (Sutton and Barto, 2018, Eq. 2.9)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77, 78

� the smoothing parameter or averaging constant (White, 2015, p. 121) used in
an unbiased exponentially-weighted average . . . . . xvi, xvii, xxi, xxv, 83, 84,
87, 92, 93, 108, 109

xv



�t the prediction error (typically temporal-difference (TD) error) at time t . . . xix–
xxi, xxiv, 21, 22, 37, 57, 58, 60, 61, 73, 83–86, 89

⌘ a smoothing parameter used in the computation of Learning Progress as specified
by Oudeyer et al. (2007, p. 271). This smoothing is achieved by averaging
the error samples over ⌘ time steps . . . . . . xi, xvi, xix, 35, 60, 83, 92, 93, 99,
100, 107

� discount rate . . . . . . . . 20–22, 57, 62, 142, 143, 146, 162, 164, 166, 167, 189, 190,
249–253, 256, 258, 259, Glossary: discount rate

Ĉt,i a learner’s estimate of target signal Ct,i . . . . . . xvi, xx, xxv, 73, 74, 84, 85, 87

⌫̂t,i an estimate of the variance, var
h
Ĉt,i

i
(of the estimated target signal) ob-

tained using an exponentially-weighted average variant of Welford’s algo-
rithm: ⌫(y)

t,i
= (1� �)⌫(y)

t�1,i + �(Ct,i � Ĉt�1,i)(Ct,i � Ĉt,i) . . . . . . . . . . . . xxv, 84,
85

v̂⇡ estimated or learned value function, given the agent follows policy ⇡ . . . 21, 22

 the meta learning-rate for Autostep, which controls how quickly the step size,
↵, changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80, 81

E⇡ the expected value of a random variable given the agent follows policy ⇡ . . . 21,
22

E the expected value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73, 74, 249

R>0 the set of positive real numbers, {x 2 R | x > 0} . . . . . . . . . . . . . . . . . . . . . . . . 74

R the set of real numbers . . . . . . . . . . xiv–xvi, xxiv, 19, 21, 73, 74, 77, 80, 141, 249

N the normal (or Gaussian) distribution with mean (or center) µ and variance �2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74, See also: normal

Et the empowerment at time t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A(s) set of all possible actions available from state s 2 S . . . . . . . . . . . . xxiv, 19, 56

S set of all possible states . . . . . . . . . . . . . . . . . . . . . . . . . . xv, xvi, 19, 21, 56, 249, 250

µ the mean of a distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv, 74, 75, 79

⌫(y)
t,i

an estimate of the variance, var [Ct,i], of target signal Ct,i obtained using an
exponential average variant of Welford’s algorithm: ⌫(y)

t,i
= (1 � �)⌫(y)

t�1,i +

�(Ct,i � Ĉt�1,i)(Ct,i � Ĉt,i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi, xvii, 84, 87, 88
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⌫t,i the posterior variance estimate at time t for task i used in the computation of
Bayesian Surprise (see Table 3.3); defined by max(⌫(y)

t,i
/dt, 10�3) . . . . xx, 84,

88

⇡ a policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi, xviii, 20, 21, 77, 78

� the standard deviation or ‘spread’ of a distribution . . . . . . 74, 75, 78, 79, 87, 88

⌧ a time window parameter used in the computation of Learning Progress as spec-
ified by Oudeyer et al. (2007, p. 271). The computation of Learning Progress
compares the averaged (smoothed) error of two time windows ⌧ apart . . . xi,
xvii, xix, 35, 60, 83, 92, 93, 99, 100, 107

Pr the probability of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii, xxiv, 19, 78

var the variance, or sample variance, of a distribution, as denoted with each use
in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi, 37, 61, 84

MSE Mean Squared Error (MSE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73, 77

✓(t, i) a distribution associated with learning task i at time t . . . xiv, xvii, 35, 73,
74, 76, 78

" probability of taking a random action in an "-greedy policy . . . . . 29, 57, 58, 61,
62, 251–253, 256–259

⇠ a standard deviation parameter to control the rate of drift of the distribution,
✓(t, i) of task i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74, 75, 78, 79

a an action . . . . . . . . . . . . . . . . . . . . . . xvii, 19, 22, 29, 44, 56, 57, 62, 77, 78, 249, 250

c a constant, typically a parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29, 84, 248

dt a count of time that decays by a factor of 1 � � at each time step, defined by
dt = (1 � �)dt�1 + 1 and used to compute Bayesian Surprise as shown in
Table 3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii, 84, 87, 88

i index denoting one of a discrete set of learning tasks. . . . . xiv, xv, xvii, xix–xxi,
xxiv, xxv, 37, 72–76, 78, 79, 81, 83–89, 91, 103

ns,a a count of the number of time steps that have passed since the action a was
last taken from state s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

n a sequence-length parameter used in the computation of empowerment (Klyubin
et al., 2005, p. 130). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xvii



q⇡ action-value function, given the agent follows policy ⇡ . . . . . . . . . . 22, Glossary:
action-value

s a state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii, 19, 21, 22, 29, 56, 57, 62, 249, 250

t time step. . . . . xiv–xvii, xix–xxi, xxiv, xxv, 19, 20, 22, 37, 43, 56, 57, 61, 72–78,
83–89, 103, 141, 146, 174, 248, 249

v⇡ value function, given the agent follows policy ⇡ . . . . . . . . . . . . . . . . . . . . . . . . 21, 24

w a weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv, 73, 74, 76, 85, 86, 89, 91

..= is defined to be. . . . . . . . . . . . . . . . . . . . . . . . xiv, xv, xxiv, 20–22, 41, 73–75, 78, 89
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Glossary

Absolute Error an intrinsic reward proposed by Schmidhuber (1991b) formaliz-
ing a measure of violated expectations using prediction error, defined in this
work as:

|�t,i|

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi, 85, 89, 90

Absolute Value of Learning Progress an intrinsic reward approximating the
amount of recent change in a learner’s predictions defined in this work by:

�����
1

⌘ + 1

⌘X

j=0

�2
t�j�⌧ ,i

� 1

⌘ + 1

⌘X

j=0

�2
t�j,i

�����

. . . . . . . . xi, xii, 83, 88, 92–94, 99–101, 104–107, See also: Learning Progress

action-value the expected return when starting in a particular state, taking a
particular action, and following a given policy thereafter (Sutton and Barto,
1998, p. 68), also known as the Q-value . . . xv, xviii, xix, xxiii, 29, Symbols:
q⇡ & Q

ADADELTA a meta-learning algorithm, introduced by Zeiler (2012), for adapt-
ing the step-size parameter for gradient descent. . . . . . . . . . . . . . . . . . . . . . . . . 82

Adam a meta-learning algorithm, introduced by Kingma and Ba (2015), for
adapting the step-size parameter for stochastic optimization methods . . . 82,
110

Arcade Learning Environment a popular evaluation platform consisting of a
“software framework for interfacing with emulated Atari 2600 game environ-
ments” (p. 254) proposed by Bellemare et al. (2013) that allows for the eval-
uation of artificial intelligence agents on numerous Atari 2600 video games
(Machado et al., 2018) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 70, 244

xix



Autostep a meta-learning algorithm, introduced by Mahmood et al. (2012), for
adapting the step-size parameter of a least-mean-squares (LMS) learner over
time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi, xvi, 80–82, 92, 93, 95, 103–107, 110

Bayesian Surprise an intrinsic reward attributed to Itti and Baldi (2006) for-
malizing the idea of amount of learning; in this work, our learners are not
Bayesian, so we use an approximation of Bayesian Surprise defined by:

1

2
log2

✓
⌫t,i
⌫t�1,i

◆
+

⌫t�1,i + (Ĉt�1,i � Ĉt,i)2

2⌫t,i
� 1

2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72, 84, 86–88, 90, 93, 99, 101, 105

channel capacity a measure of how much information from a transmitted signal
can possibly be received given a particular channel . . . . . . . . . . . . . . . . . . 42, 43

cumulant a signal that is added up in a general value function prediction, analo-
gous to the way the reward signal is added up for a value function prediction
(see Sutton and Barto, 2018, p. 459); also called a pseudo-reward (e.g., Sut-
ton et al., 2011, p. 761) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54,
68

Curiosity Bandit an instance of a family of experimental domains, introduced
by Ady and Pilarski (2016), for highlighting differences between methods
inspired by curiosity . . . . . . . . . . . . . x, xi, 11, 54–56, 62, 71, 72, 111, 113, 276

discount rate a parameter of a learning problem, also called a continuation prob-
ability, that determines the present value of future rewards, weighting “re-
wards in the near future more than those in the far future” (Sutton and
Barto, 2018, p. 55); roughly reflects the traditional ‘exponential discounting’
model of intertemporal choice from behavioural economics—our tendency to
care more about near-term gains and losses over those further into the future
(Berns et al., 2007, pp. 482–483) . . . . . . . . . . 20, 21, 142, 249, 252, Symbol: �

Dyna-Q a simple architecture which allows the integration of planning, acting,
and learning (Sutton and Barto, 1998, p. 230) . . . . . . . . . . . . . 28–30, 152, 153

Error Reduction an intrinsic reward inspired by Schmidhuber (1991a) meant to
measure the “(positive or negative) change of assumed reliability caused by
the [most recent] observation” (p. 1461), in this work defined as:

|�t�1,i|� |�t,i|

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84, 86, 90, 99, 101

xx



exploration–exploitation dilemma the challenge of determining how to choose
between an “exploitative” action with the best expected payoff and an “ex-
ploratory” action which learns more about the environment and might result
in finding an action with an even better payoff (Sutton and Barto, 2020, p. 3)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi, 23, 29

Expected Error an intrinsic reward designed to measure violated expectations,
but with less noise than Absolute Error or Squared Error, defined by:

����t,i
�
���

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83, 85, 93, 97, 104, 108, 109

exploration bonus a term added to the reward or value function computation
for the purpose of encouraging explorative behaviour; to the best of our
knowledge (see Section 2.3.1.1), the first exploration bonus was proposed by
Sutton (1990b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28–30, 39, 70, 110, 152

exponentially-weighted average an estimate of the average of a sequence of
samples where more recent samples are weighted more heavily, following
an exponential decay (Sutton and Barto, 2018, Eq. 2.9); the exponentially
weighted average, xt

�, of a sequence of real numbers, x0, x1, x2, . . . , is com-
puted as xt

�  (1��)xt�1
� +�xt, where � is a smoothing parameter . . . xv,

xvi, 37, 84, 85, 87, 108

extrinsic motivation being moved to do something because it leads to a sepa-
rable outcome (Ryan and Deci, 2000, pp. 54–55) . . . . . xxii, 25, 68, See also:
extrinsic reward

extrinsic reward a term used in contrast to intrinsic reward; used in the context
of psychology to refer to separable consequences of behaviour such as food or
money; in the computational literature, usually refers to the reward provided
by the environment or as part of the problem a learner is set to solve that
neither the computational learner nor the designer of its algorithm has any
control over . . . . . . . . . . . . . . . 25–27, 56–61, 68, See also: extrinsic motivation

gradient bandit algorithm a bandit algorithm described by Sutton and Barto
(2018, pp. 37–40) which learns action preferences and probabilistically chooses
actions based on a soft-max distribution (p. 42) . . . . . . . . . 76–78, 81, 91, 93,
97–100, 104, 107, 110

intrinsic motivation (IM) when used in the context of machine intelligence—
that is to say, computational intrinsic motivation—refers to a motivational

xxi



structure defined based on changes in internal computational structures, as
opposed to computational extrinsic motivation, which refers to a motiva-
tional structure defined as part of the external problem the learner is set to
solve; in the context of biological intelligence, refers to “general motivations
that push [some animals] to explore, manipulate or probe their environment,
fostering curiosity and engagement in playful and new activities” (Oudeyer
and Kaplan, 2007, p. 1). . . . . xxvi, 8, 9, 14, 16, 18, 25–28, 32–34, 40, 49, 52,
85, 210

intrinsic reward (IR) in psychology, this term has been used to refer to the
“internal condition” brought about by engagement in intrinsically motivated
activities (Deci, 1975, p. 118), whereas in machine intelligence, generally
refers to reward signals that can be computed from the sensorimotor context,
reflecting changes in the “knowledge and know-how” of the agent (Oudeyer
and Kaplan, 2007, p. 12), independent of any actual meaning a designer
might attribute to the sensor observations, allowing intrinsic rewards to be
agnostic to the environment; compare with Section 2.3.2. . . . . . . . . . . . . . . . xi,
xx, xxi, xxiv, xxv, xxvii, 17, 26, 27, 31, 33, 39, 40, 48, 49, 55, 57, 58, 60–62,
69–75, 77, 79, 81, 83, 85, 86, 88–112, 145–147, 149–152, 156, 159, 210, 211,
247, 250, 251, 258, See also: intrinsic motivation (IM)

introspective learner a learner that can autonomously increase its learning rate
when progress is possible, and decrease learning when progress is not—or
cannot—be made . . . . . . . . . . . . . . . . . . . . . . . . xii, 72, 79, 80, 82, 83, 89, 91–111

Learning Progress Oudeyer et al. (2007) defined Learning Progress as part of
their Intelligent Adaptive Curiosity (IAC) mechanism . . . . . xvi, xvii, 27, 35,
60, 65, 70, 274

Markov property an environment has the Markov property if the current state
and action provide no less information about the next state and reward than
do all preceding states and actions; formally:

Pr {St+1 = s, Rt+1 = r | St = st, At = at}
=Pr {St+1 = s, Rt+1 = r | S0 = s0, A0 = a0, ..., St = st, At = at}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 20, 22

mutual information a measure of the dependence between the two random vari-
ables; the reduction in uncertainty due to another random variable . . . . . 41,
42, 45, 86, Symbol: I(X;Y )

xxii



normal a normal (or Gaussian) distribution is a standard distribution that is
sometimes referenced by its “bell curve” shape; Wasserman (2005, p. 28)
offers a formal definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi, 74, Symbol: N

option a mathematical abstraction of short-term policies attributed to Sutton
et al. (1999) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68, 157

partial monitoring a family of learning problems that generalizes the multi-
armed bandit framework to include problems in which the loss may not be
“directly observed by the learner” (Lattimore and Szepesvári, 2019, p. 1)—in
contrast to typical bandits, in which the learner receives the loss of the chosen
action as feedback at each step (Lattimore and Szepesvári, 2020, Ch. 37)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

prediction learner an instance of a reinforcement learning algorithm that only
predicts aspects of its environment (e.g. estimates a general value function)
and does not select actions or optimize behaviour . . . . . . xxv, 56, 57, 62, 64,
71–77, 80, 82, 83, 86–89, 91–97, 101, 103, 108, 110, 111, 249, 250

Predictive Power a component of the information-theoretic approach to curiosity-
driven reinforcement learning designed by Still and Precup (2012). . . . . 114,
276

project a shorthand originally used by Simpson (1976) in reference to behaviour
that gives the impression of practice towards a particular desired outcome
behaviour (in the original case, used to describe “captive rhesus monkey
infants of six to 12 weeks [repeating] sequences of activity involving particular
leaps, particular climbs and particular routes,” p. 386) . . . . . . . . . 39, 40, 276

Q-learning an algorithm for learning action-values for an optimal policy using
a temporal-difference update rule; according to Sutton and Barto (2018,
p. 140), the algorithm was introduced by Watkins (1989) . . . . 22, 29, 57–59,
61, 62, 68, 71, 110, 251

Q-value synonym for action-value . . . . . . . . . . . . . . . . . . . . xix, 29, See: action-value

RMSProp (thought to be short for ‘root mean square propagation’) an optimiza-
tion method for the training of artificial neural networks (ANNs) involving
the adjustment of step sizes, commonly credited to Hinton et al. (2012) . . . 82

Sarsa an algorithm for predicting action-values (usually for the purpose of con-
trol) using a temporal-difference update rule; according to Sutton and Barto

xxiii



(2018, p. 139), the algorithm was introduced by Rummery and Niranjan
(1994) and dubbed ‘Sarsa’ by Sutton (1995) . . . . . . . . . . . . . . . . 22, 56, 62, 112

Simple Simulated Robot Experiment an experiment in which the open-ended
behaviour of a simple simulated robot (a box with two wheels, a sound emit-
ter, and a sensor allowing it to perceive its distance from a small toy) is
observed, originally showcased by Oudeyer et al. (2007, p. 273) . . . xi, xxiv,
35, 36, 274, 276

soft-max a soft-max distribution, also known as a Gibbs or Boltzmann distribu-
tion, defines probabilities for a discrete set of alternatives A parameterized
by a numerical preference function H : A! R such that a random variable A
with a soft-max distribution parameterized by H is defined by the following
probabilities:

Pr{A = a} ..=
eH(a)

P
b2A eH(b)

(2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv, xxi, 29

specific curiosity the cognitive, emotional, and embodied condition humans im-
ply by saying, “I am curious to know X.” . . . . . . . . . . . . . . . . . . . . . . . . 118, 121,
159

Squared Error an intrinsic reward used by Gordon and Ahissar (2011), formal-
izing a measure of violated expectations using prediction error, defined in
this work as:

�2
t,i

. . . . . . . . . . . . . . . . . . . . . xxi, 84, 85, 95, 99, 101, 106, See also: Absolute Error

Step-size Change an intrinsic reward based on the amount of change in the
step-size parameter, defined by:

|↵t�1,i � ↵t,i|

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84, 103

tracking a form of memory adaptation that occurs by allowing new, current infor-
mation to replace information that was previously in memory (Koop, 2008,
p. 15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59, 75
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Uncertainty Change an intrinsic reward designed to reflect the degree to which
the prediction learner is settling on a stable prediction, in this work mea-
sured as how much the Variance of Prediction estimate has changed since
the preceding time step, defined by:

|⌫̂t�1,i � ⌫̂t,i|

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84, 88, 89, 91, 93, 101, 106

Uncertainty Reduction an intrinsic reward designed to encourage the learner
to settle on a stable prediction by decreasing the variance in their predictions,
in this work defined by:

⌫̂t�1,i � ⌫̂t,i

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85, 89, 97

Variance of Prediction an intrinsic reward measuring the amount of recent vari-
ability in the prediction learner’s estimate, in this work defined incrementally
by:

⌫̂t,i  (1� �)⌫̂t�1,i + �

✓
Ĉt,i � Ĉt�1,i

�
◆✓

Ĉt,i � Ĉt,i

�
◆
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Chapter 1

Introduction

1.1 Curiosity in a Computer
1

From reducing human wait-time on our computers to controlling prosthetic limbs,

intelligent systems are rapidly improving to the point that they can significantly

improve our quality of life. Historically, human designers have designated the exact

procedures followed by their systems, but the designer cannot always be expected

to determine the best way for the system to operate in every environment that it

could encounter. In truth, the system itself is in the ideal position to determine

how to act. If we have a system deciding its own actions, we want it to make its

decisions based on sufficient and appropriate—perhaps even thorough—knowledge

of the environment. The term curiosity refers to a desire to learn or to know more.

We value curious behaviour because it leads to becoming more knowledgeable. To

empower learning systems to adaptively and effectively become more knowledge-

able, we could aim to implement computational curiosity in intelligent systems.

While computing scientists hope to offer the benefits of curiosity machine intelli-

gence, we do not yet understand the mechanisms behind human curiosity (Kidd

and Hayden, 2015, p. 449)—much like many other aspects of human intelligence.

As a result, the idea of designing machine curiosity is an interesting and open
1Some of this text has been adapted from Ady et al. (2022a, p. 2) and is under review with

the Journal of Artificial Intelligence Research.
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challenge.

Computational curiosity, or machine curiosity—the two terms will be used in-

terchangeably throughout this dissertation—has been used to refer to mechanisms

to give computational systems a desire to learn or know more. However, compu-

tational curiosity can also be thought of as building computational models of the

abstract concept we call curiosity. One way we might better understand curiosity

is to better understand the ways we are inclined to model it.

Humans have thought about their own curiosity for thousands of years, dating

back at least to Aristotle in 350 BCE (Loewenstein, 1994, p. 76, in reference to

Metaphysics, Bk. 1, Ch. 2). The study of human curiosity remains an active area

of research with many diverse interpretations; recent psychological, neuroscientific

and philosophical accounts by Kidd and Hayden (2015) and Zurn (2015, pp. 1–28)

review some of this diversity of thought. Over the last three decades, curiosity has

also caught the attention of researchers seeking to create increasingly intelligent

non-biological learners. Select ideas from the study of human curiosity have in-

spired fantastic breakthroughs in machine intelligence, from a robot dog shifting its

own learning focus across progressively complex situations (Oudeyer et al., 2007)

to a simulated player achieving higher-than-ever-before scores in Montezuma’s Re-

venge, one of the so-called “hard exploration” games in the Arcade Learning Envi-

ronment suite (Bellemare et al., 2016, pp. 4, 7; Dvorsky, 2016; Burda et al., 2019b,

pp. 1, 4; Cobbe et al., 2018). Work on machine curiosity is expected to continue

to play an influential role in machine intelligence research.

This thesis is about machine learning algorithms designed with the purpose of

exhibiting properties of curiosity. There are two main lines of reasoning for why

we, as a scholarly community, might want to undertake such an endeavour.

The first is because we expect curiosity will be valuable for machines, just as it

is thought to be valuable for humans. There have been calls to foster curiosity in

far-reaching domains such as education (Engel, 2011, pp. 625, 628, 643; Schmitt

and Lahroodi, 2008, p. 125) and business (Gino, 2018, p. 48). Of course, the valuing
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of curiosity is not uncomplicated, nor is it universal. There exists a long history of

curiosity being alternately—even sometimes simultaneously—praised and blamed

(Benedict, 2001, p. 23), seen as vice or virtue (Loewenstein, 1994, p. 76). The func-

tion of curiosity is popularly hypothesized to relate to motivation and facilitation

of learning (Kidd and Hayden, 2015, p. 450). Moreover, the benefits in humans

seem to be even broader, as Gino’s (2018) research suggests that curiosity makes

for better team members: it improves decision-making—reducing susceptibility to

confirmation bias—and also increases innovation, engagement, collaboration, and

ability to adapt while reducing group conflict (pp. 48–49). With the growing con-

versation around incorporating artificial intelligence (AI) tools as team members

in the workforce (Chen et al., 2022, p. 2, Duin and Pedersen, 2021) or companions

in homes (Ramadan et al., 2021), the design of AI that reflects these beneficial

aspects of curiosity is incredibly relevant and timely.

The second reason we might want to design machine learning algorithms re-

flecting curiosity is to improve our understanding of curiosity as a whole. There is

hope that we can do so through the process of developing machine models. There

is a natural relationship between machine curiosity and the curiosity-focused fields

in other disciplines, as all of these fields share an interest in explaining different as-

pects of the same phenomenon (Darden and Maull, 1977, pp. 48–49). A variety of

views about the strength of the relationship (if any) between artificial intelligence

and psychology have been put forward (with some gathered by Newell, 1970), but

one view is that some of the work generated in the field of artificial intelligence is

“simply part of theoretical psychology” (Moore and Newell, 1974, p. 1), especially

when its designers seek to remain close to their concepts of inspiration within psy-

chology. Indeed, the process of developing models or simulations of curiosity can

highlight many questions about biological curiosity that have been, thus far, left

unanswered (Hunt, 1971, p. 93; Lieto and Radicioni, 2016, pp. 1, 2), and should

motivate new experiments and lines of research in other fields that have the appro-

priate tools and techniques to answer those questions (Darden and Maull, 1977,
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p. 50).

With the value expected from computational curiosity, both in intelligent sys-

tems and in understanding our own curiosity, it is unsurprising that our community

has proposed a variety of methods for implementing computational curiosity. It

is natural that many methods for machine curiosity employ existing frameworks

for motivating systems, because curiosity is often conceptualized as motivation to

learn (e.g., Szumowska and Kruglanski, 2020, p. 36). In particular, reinforcement

learning (RL), an application of learning by trial and error to predict and con-

trol, is commonly employed for computational curiosity. RL has a well-developed

literature (Sutton and Barto, 2018; Dayan and Niv, 2008; Kaelbling et al., 1996)

and is very effective for implementing machine behaviour to maximize an objective

value, making it an ideal choice for “motivating” a system (Barto, 2013, pp. 17–

18, 19). Readers familiar with RL might question the This dissertation focuses on

RL methods for producing computational curiosity, both because of the prevalence

of such methods thus far and for deeper reasons explored later, in Section 2.3.

1.2 What do we mean by curiosity?

For the purpose of this thesis, I am embracing curiosity in its vernacular form, as

a word that is used day-to-day in communication between people of varied back-

grounds. Now, this choice is not without controversy. Fiske (2020) has warned

that “it is pernicious to use one language’s dictionary as the source of psychological

constructs” (p. 95). Fiske tells the story of how his interest was piqued by expe-

riences of shedding tears during movie scenes depicting human kindness, despite

feeling happy (p. 95). At the time, he and colleagues felt such emotions were best

described as being moved (p. 95). He and his multilingual collaborators, however,

soon realized that the terms that most commonly denoted the emotion in different

languages failed to “map onto each other one-to-one” (p. 96). Starting from this

experience, he came to argue that researchers “need to coin new technical names
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for scientifically derived [psychological] constructs” (p. 95) and his team came to

coin the technical term kama muta, the emotion evoked by sudden intensification

of communal sharing (p. 96). Fiske’s arguments apply equally to the word curios-

ity. Such concerns are recognized by curiosity researchers like, Kidd and Hayden

(2015) who similarly note that, in psychology and neuroscience, the lack “of a

widely agreed upon delineation of what is and what is not curiosity” limits our

understanding (p. 449).

Yet, this lack of agreement need not be a limitation within the realm of AI. In

fact, it is in some ways a strength. If our field is inspired by a wide range of dif-

ferent ideas about curiosity, we could achieve a great mosaic of useful mechanisms

helping us achieve a variety of our potential goals in building intelligent systems.

Murayama et al. (2019) have made a similar point that, despite the likely impos-

sibility of a “correct” definition of curiosity, its study can still lead to “significant

theoretical and practical implications” (p. 877).

Indeed, that curiosity researchers across disciplines are “beguiled by our lan-

guage” (Fiske, 2020, p. 98) may be an energizing factor behind our research. The

growing research interest in curiosity may rely on curiosity as an “everyday con-

cept” (Schmitt and Lahroodi, 2008, p. 126), one we experience in our life and bring

into our communication with others. The hypothesis that curiosity plays a criti-

cal role in scientific discovery is widespread (Inan, 2012, p. 3; Djerassi, 2011; Zuss,

2011, pp. 64–65). We should take this hypothesis in conjunction with Inan’s (2012)

contentions that, not only are we curious exclusively “about things that we are in-

terested to know,” but “the limits of what we can be curious about are set by the

limits of what we can attempt to refer to within our idiolect” (p. 183). Together,

these ideas suggest that it is valuable for researchers who study curiosity-related

concepts to stay connected to the everyday concept of curiosity. After all, it is

the vernacular concept that sparked our initial curiosity, not any technical term

coined for the purpose of precision. Getting rid of the word curosity is not the

way to achieve precision. Indeed, even Kidd and Hayden (2015), despite their
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characterization that lacking “a single widely accepted definition” has “hindered”

development, consider the present “diversity of definitions” to be healthy (p. 449).

However, we still need to work towards being precise in communication while

embracing curiosity as inspiration. Without this precision, we are likely to struggle

to effectively achieve generativity. The term generativity, as attributed to Shulman

(1999), refers to the ability to build on knowledge that has come before us. Careful

language around what aspects of curiosity we are capturing faithfully (or not) will

allow future authors to appropriately connect their ideas to our own. We must

achieve a balance between diversity and precision, or else even AI, which does not

always need to be perfectly locked to its inspirational psychological construct, will

suffer negative consequences in terms of “integration of studies ... and communi-

cation of scientific ideas” (p. 97), two core areas of concern for Fiske (2020). So let

us make our connections to the everyday concept that inspires our curiosity, but

be precise enough that we will be able to weave the threads of our work together

with the knowledge that has come before to prepare for new threads of the future.

1.3 Research Aims

The overarching aim of the project described in this document was to bring us

closer to providing the benefits of human-like curiosity to machine learning systems.

When I say ‘the benefits of human-like curiosity,’ I think of the reasons I delight

in children’s many questions—given I am not among those stuck answering them

all day—and uphold the importance of curiosity-driven science. I believe that

curiosity in humans has value. I also believe that some learning systems could

benefit from aspects of curiosity. The core argument I make in this document is

that we must experiment and think beyond the most commonly used

frameworks being used for machine curiosity if we want to secure the

benefits of human-like curiosity for our machine learners.
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Unifying the View I began this line of research in 2016. At the time, there

was already a burgeoning literature of novel methods for machine learning systems

inspired by curiosity. Some of this historical background, including summaries of

influential ideas and publications, will be covered in Chapter 2. As these new

methods emerged, so too did new testing domains to help capture the most valu-

able and noteworthy aspects of their behaviour. Indeed, some of the work in this

dissertation follows that tradition (as we will see in Chapter 5). In this way, a

landscape of computational curiosity methods was beginning to emerge, with each

new method showing promise in producing some desirable behaviour in machine

learners. Each method by itself formed a strong starting point for further research,

but to understand how the landscape was developing, I felt that it was necessary

to acknowledge the structure of the field and how existing methods might be com-

pared.

To see the benefits we believe curiosity promises, we must design methods that

adopt advances in understanding from other disciplines; we must build upon a uni-

fied understanding of existing methods. Through the design of and experimenta-

tion with understandable domains, I aimed to contribute some of the relationships

among methods that are needed to unify our understanding of existing curiosity

methods. Chapter 3 describes my contributions towards this aim.

My Novel Approach for Machine Curiosity In the process of designing

comparative experiments, I sought the roots of existing methods—the ideas that

originally inspired their designs. These ideas flowed from disciplines that study

humans, like psychology and behavioural economics. Indeed, I found that the

human-centred disciplines have carefully built up theories of curiosity. While as-

pects of these theories inspired many machine curiosity methods, other aspects of

the theories seemed to have been neglected.

The process of working to unify our view of existing machine curiosity methods

gave me the opportunity to see these methods in relation to one another. This
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particular perspective led me to a realization: Despite critical differences in be-

haviour and primary task performance (Chapter 3), one of the core frameworks for

machine curiosity methods makes the methods in this cohort more similar to than

different from one another. This core framework is called intrinsically-motivated

reinforcement learning (IMRL), which will be described in more detail in Section

2.3. In particular, I believe the structure of IMRL limits our ability to realize

some of the core beneficial properties of human curiosity in our computational

systems—properties that I was discovering through my multidisciplinary survey of

curiosity.

This viewpoint motivated the second core research aim: to develop an argu-

ment for some of the key properties of human curiosity that could most benefit

machine learning systems. I aimed to integrate ideas from multiple disciplines

that include the study of curiosity, as the complexity of curiosity invites multi-

disciplinary methodologies (Repko and Szostak, 2020, p. 8). Chapters 4 and 5

describe my contributions towards this aim.

The Present and the Future of Machine Curiosity In the intervening years

since I began this work, how has the field changed? There has been a surge of

interest within the core reinforcement learning community for using and developing

forms of computational intrinsic motivation (IM), with one likely cause being the

role of curiosity-inspired approaches in the achievement of impressive, and in some

cases, state-of-the-art performance on challenge problems recognized by the wider

reinforcement learning community, like the achievements of Bellemare et al. (2016)

and Pathak et al. (2017). IMRL has shown itself to be a useful framework for

increasing the exploratory power of existing reinforcement learning methods.

Concurrently, interest has risen in understanding the complex landscape of dif-

ferent approaches to computational IM, e.g., Biehl et al. (2018, p. 1) and Matusch

et al. (2020, pp. 1, 2). There is huge potential for future work to be done in this

area, as we would benefit from a diversity of comparative views of different related

8



methods to match the diversity of ways humans understand curiosity.

While the research field studying computational IM and machine curiosity has

grown, computational intrinsic reward remains the most prevalent approach for

developing curiosity-inspired algorithms. My contribution of five key properties

of specific curiosity offers a distinct direction for imagining new forms of machine

curiosity. This distinct direction is not based in the IMRL framework—and yet, in

the original meaning of intrinsic motivation in psychology, specific curiosity as it

is understood through the lens of these properties is a kind of intrinsic motivation.

At the time I am writing this work, there is not an strongly established com-

munity2 for computational curiosity or machine curiosity—in keeping, a favoured

name for this kind of research has yet to be solidified. However, a growing inter-

disciplinary community around curiosity welcomes viewpoints from the computer

scientists who draw inspiration from curiosity in their systems and their science.

1.4 Contributions
3

At a high level, this dissertation describes two important contributions.

The first key contribution is a set of experimental comparisons of multiple

intrinsic-reward algorithms—the first of its kind. When new machine curiosity

or computational intrinsic motivation algorithms are introduced, they are rarely

compared with other existing curiosity algorithms. By manipulating the curiosity

mechanism while controlling for the learning algorithm and its environment, I was

able to observe and describe key differences between machine curiosity algorithms
2Computational creativity provides an example of a cohesive community that has grown

around a concept from psychology being ported into artificial intelligence (cf. Guckelsberger,
2020, p. 13). There may be a future in which machine curiosity develops its own cohesive com-
munity in much the same way. For now, the study of machine curiosity appears to function as an
emerging interdiscipline (Repko and Szostak, 2020, p. 6) crossing back and forth between com-
puter science—particularly machine learning and artificial intelligence—and curiosity studies,
which might itself be considered an emerging interdiscipline.

3Some of this text has been adapted from Ady et al. (2022a, p. 2) and is under review with
the Journal of Artificial Intelligence Research.
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that are built upon the idea of an intrinsic reward (Ady and Pilarski, 2016, 2017a,

cf. Ady, 2017c). What followed from this work was the first comprehensive em-

pirical comparison of different intrinsic reward mechanisms (Linke et al., 2020).

While the landscape of different computational intrinsic motivation methods still

requires substantial investigation to develop a coherent understanding of its hills

and valleys, this work provided a novel experimental framework. It remains one

of the only published experiments drawing on early psychological theories of cu-

riosity to better understand existing machine curiosity algorithms. This first key

contribution an be summarized as follows:

• A new family of experimental domains, Curiosity Bandits, which allow com-

parison across different approaches to computational curiosity or computa-

tional intrinsic motivation.

• A comprehensive empirical comparison of different intrinsic reward mecha-

nisms that, for the first time, puts them in context with each other.

These detailed studies highlighted serious limitations of the primary class of

’machine curiosity’ methods today: In particular, these methods lack critical prop-

erties of human curiosity as it has been studied in behavioural economics, psy-

chology, philosophy, and neuroscience. This work, therefore, presents a landmark

synthesis and translation of specific curiosity to the domain of machine learning

and reinforcement learning and provides a novel view into how specific curiosity

operates and in the future might be integrated into the behaviour of goal-seeking,

decision-making computational agents in complex environments. The second key

contribution of this thesis is an argument for which specific properties of curios-

ity will most benefit machines (Ady et al., 2022a). Beyond translating important

recent contributions from the study of human curiosity to machine intelligence,

this work clarifies and consolidates a unique theoretical understanding of human

curiosity. In particular, it represents, to the best of my knowledge, the most robust
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and detailed characterization of specific machine curiosity to date. This second key

contribution can be summarized as follows:

• The definition of five key properties of specific curiosity: 1) directedness

towards inostensible referents, 2) cessation when satisfied, 3) voluntary ex-

posure, 4) transience, and 5) coherent long-term learning.

• A proof-of-concept reinforcement learning agent, demonstrating how the

properties manifest in the behaviour of this agent in a simple non-episodic

grid-world environment that includes curiosity-inducing locations and in-

duced targets of curiosity.

Readers of this work may also be interested in some of the additional research

that I completed alongside the contributions included in this dissertation, as it

informed the ideas and approaches I used with the work described herein, adjacent

to the main storyline of this work. These contributions can be found in Appendix

A.

1.5 Structure of the Thesis

This dissertation comprises six chapters. This chapter has provided an overview

of the project described in this thesis. Chapter 2 both introduces some of the

history of the study of machine curiosity and serves as a reference that explains

some of the core concepts relied upon in following chapters. Chapter 3 describes

the development of a novel family of experimental domains designed specifically

to compare computationally intrinsically motivated learners—Curiosity Bandits—

and the first comprehensive empirical comparison of different intrinsic rewards,

which was designed using members of that family. By illustrating patterns in the

behaviour across different approaches to computational IM, the studies detailed

in Chapter 3 highlight key limitations of identifying curiosity with intrinsic moti-

vation. In particular, these computational intrinsic reward methods fail to model
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critical properties of human curiosity. Chapter 4 details five key properties of

specific curiosity and includes an argument for their value in the design of future

computational learners. To demonstrate the feasibility of these properties in a

computational system, Chapter 5 presents an initial proof-of-concept algorithm

that achieves three of the five key properties presented in the preceding chap-

ter. Further, Chapter 5 includes an ablation study demonstrating that the three

properties work together to result in behaviour characteristic of specific curiosity.

I conclude the story in Chapter 6, summarizing my research contributions and

presenting ideas for potential future work.

The format of this dissertation largely conforms to a paper-based structure,

in which the central chapters of the thesis (here, Chapters 3–5) are independent

papers in publication format. These central chapters are bookended by introduc-

tory and background material on the front (Chapters 1 and 2) and a conclusion

on the back (Chapter 6). I have made certain adjustments to the original texts.

Specifically, Chapter 3 collects together Ady and Pilarski (2016), Ady and Pilarski

(2017a), Ady and Pilarski (2017b), and Linke et al. (2020), as these four publi-

cations provide complementary perspectives on the proposal and development of

Curiosity Bandits. The original text of these publications has been modified to

improve clarity and eliminate redundancies. By contrast, Chapters 4 and 5 are

presented here as separate chapters, despite their original presentation as a single

document (Ady et al., 2022a). These editorial decisions have been made carefully

to improve the reading experience.

1.6 Researcher Identity Statement

I am a curiosity researcher. I suspect curiosity is universally shared across the

human species. However, research in affect science suggests that every emo-

tional facet of human psychology is to a large extent actively constructed by the

mind—neurally, psychologically, and very importantly, socially. Curiosity is no ex-
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ception. Your experiences of curiosity are shaped by your past, your relationships,

and your culture.

My experiences of curiosity are similarly shaped by my culture. I completed

this research where I grew up: Edmonton, on Treaty 6 territory and in Métis

Region 4. I live and perform my research in a context that was designed through

violence and the systematic erasure of Indigenous ways of knowing. My research

has been shaped by this violence, as the stories of curiosity that are most salient

and easily accessed continue to be those that privilege Western ways of knowing.

As I work to develop a precise understanding of curiosity, I am challenged to

uncover how the culture I live and work in has hidden away non-Western viewpoints

on curiosity, skewing the systems that I design. In machine learning, we must

continually confront the biases introduced by history. It rings true to me that

while I have worked to encompass a diverse set of ideas, I have not escaped the

culture I live in and it also rings true to me that the systems I am designing are

likely raced, gendered, classed, and otherwise biased.

As you read this document, I invite you to reflect on how my position has

influenced this research and how your own endeavours are shaped by the histories

of the land on which you pursue them.
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Chapter 2

Background

This chapter will be devoted to presenting the relevant background regarding the

study of curiosity and intrinsic motivation in psychology and the use of reinforce-

ment learning techniques as approaches to both computational curiosity and com-

putational intrinsic motivation. First, we will briefly overview how the study of

curiosity first developed in the field of psychology, as this development largely pre-

ceded and strongly influenced researchers in computational curiosity. This section

on the field of psychology will be followed by an outline of the framework under-

lying the approaches to computational curiosity on which I have chosen to focus:

reinforcement learning. Once the necessary vocabulary is in place, we will look at

an important superclass of curiosity: intrinsic motivation.

2.1 Origins of Curiosity in Psychology

Both intuition about curiosity and curiosity research done in psychology have in-

fluenced the way computational curiosity has been approached. These influences

will be explored further in Section 2.3, in which we will attend to the details of

several examples of machine curiosity approaches. Wu and Miao, in their 2013 sur-

vey on curiosity, provide an eloquent explanation of the benefit of the background

in psychology on any exploration of computational curiosity:
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In order to provide a more complete model of human cognition . . . we

believe that it is beneficial to go back to the research in psychology to

understand how human curiosity can be aroused. (Wu and Miao, 2013,

p. 18:2)

A historical view of curiosity shows that the initial recorded discussions on

the topic were largely focused on whether or not the concept should be upheld

as a virtue (Loewenstein, 1994, p. 76). While the ancient Greeks championed the

quality of curiosity, the concept fell into disfavour in the Middle Ages following St.

Augustine’s criticism of curiosity as a weakness of vanity and whimsy (Reio et al.,

2006, p. 119). The recognition of the role of curiosity in Galileo’s astronomical

discoveries brought the notion back into a positive light in the seventeenth century

(Loewenstein, 1994, p. 76).

George Loewenstein, in his 1994 review of the psychology of curiosity, explains

that a first wave of study in psychology of curiosity grew through the 1950s into the

1960s (p. 75–76). He observed that these studies were predominantly concerned

with: first, the cause of curiosity; second, why humans seek both situations which

result in curiosity and to resolve those situations (reducing our curiosity in them);

and finally, what conditions can be observed in the environment before and after

one experiences curiosity. Loewenstein (1994) further offers that a second wave of

research ran through the later half of the 1970s into the 1980s; this time, the focus

was on measuring curiosity. Bridging both waves of research was the work of Daniel

E. Berlyne, who would eventually be an important influence on the researchers who

would later suggest methods for machine curiosity.

2.1.1 Berlyne & Csikszentmihalyi

Daniel E. Berlyne first published on on curiosity-related motivation in humans in

the late 1940s (Konečni, 1978). He developed his ideas and directed the field of

psychological research on curiosity until his death in 1976 (Appley, 1978). Accord-

ing to a biography by Konečni (1978, p. 135), Berlyne’s arguably most influential
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publication was Conflict, Arousal, and Curiosity (1960). Berlyne’s influence has

extended to work in curiosity and intrinsic motivation in machine intelligence,

where his work is widely referenced, including in a number of the papers we will

discuss throughout this chapter (e.g., Barto, 2013; Schmidhuber, 2010; Oudeyer

et al., 2007).

In the late 1950s, relatively early in his career, Berlyne rekindled an idea which

had been introduced several decades prior: the Wundt curve (Kubovy, 1999, p. 139;

Berlyne, 1960, pp. 200–201 in reference to Wundt, 1874). An image of the Wundt

curve is recreated in Figure 2.1. This idea would prove to have an important role

in the future treatment of computational curiosity. Berlyne (1960) hypothesized

that “human beings and higher animals will normally strive to maintain an inter-

mediate amount of arousal potential” and that this goal is an important part of

the mechanism behind curiosity (p. 200).
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Figure 2.1: Wundt curve recreated following Berlyne (1970, p. 284).

According to Oudeyer et al. (2007), another psychologist, Mihalyi Csikszentmi-

halyi, similarly theorized that “the internal reward is maximal when the challenge

is not too easy but also not too difficult” (p. 266). Csikszentmihalyi would later

prove to be influential in the development of computational curiosity. In particular,

Csikszentmihalyi (1991) developed the highly popularized concept of flow, which
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denoted the state realized by humans when their experience is most enjoyable—so

called because several of the subjects of his study felt that “it was like being car-

ried away by a current, everything moving smoothly without effort” (1993, p. xiii).

Csikszentmihalyi (1993) suggested that achieving flow is intrinsically rewarding for

humans (p. xiii). He further theorized about the requirements for flow to occur:

the key requirement is that the experience is highly challenging to the point where

“personal skills are used to the utmost” (p. xiii). Most often, this occurs when the

subject has few distractions and has goals and feedback which are clear and well-

defined (Csikszentmihalyi, 1993, p. xiv). Because the balance required to achieve

flow shifts as personal skills develop, and personal skills necessarily develop when

flow is achieved, flow is generally achieved in previously unexperienced states. An

agent optimally seeking flow must be exploratory.

In developing his theory, Csikszentmihalyi (1993, p. 190) expressed a belief that

the intrinsic reward of flow developed through evolution:

Apparently humans who experience a positive state of consciousness

when they use their skills to the utmost in meeting an environmental

challenge improve their chances of survival. The connection between

flow and enjoyment may have been at first a fortunate genetic accident,

but once it occurred, it made those who experienced it much more

likely to be curious, to explore, to take on new tasks and develop new

skills. And this creative approach, motivated by the enjoyment of facing

challenges, might have conferred so many advantages that with time it

spread to the majority of the human population.

In particular, Csikszentmihalyi (1993) suggested that the enjoyment of flow in hu-

mans is a component of an overall evolutionary preference for complexity (p. 175).

Csikszentmihalyi (1993) designated the complexity of a system as its level of differ-

entiation and integration, which in turn refer to “the degree to which [the] system

... is composed of parts that differ in structure or function from one another” and

“the extent to which the different parts communicate and enhance one another’s
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goals” (p. 156). Flow motivates the development of more complex skills over our

lifetimes, just as we might desire from curiosity.

Berlyne also associated curiosity with complexity, but by a different defini-

tion. In his case, he eventually began to pair the arousal potential of stimuli with

information-theoretic measures of their complexity (Kubovy, 1999, p. 140). At the

time, information theory was a relatively recent development by Claude Shannon

(1948). Interestingly, Berlyne’s emphasis on intermediate levels of arousal and

on the information-theoretic measurement of stimuli have set two different path-

ways of research for computational curiosity. We will explore each of these paths

in Sections 2.3.3 and 2.3.4, respectively. However, I want to first touch on the

concept of intrinsic motivation, because it provides context into its subconcept,

curiosity. For adequate detail, we must first develop the foundational vocabulary

for reinforcement learning.

2.2 Reinforcement Learning Framework

Reinforcement learning (RL) is an approach to learning by which machines and an-

imals learn about their world through trial and error, changing their expectations

about the world to match their experiences. Machine intelligence researchers rec-

ognize RL as a very effective means for implementing a “motivation” for a machine

to maximize an objective value and so have posited that RL might be the ideal

choice for implementation of an agent motivated by a form of machine curiosity

(Barto, 2013, pp. 20, 40). Because I too am interested in exploring the potential

of RL for machine curiosity, this document is centred around RL approaches to

machine curiosity, yet informed by knowledge of curiosity from other disciplines.

This section provides the notation and preliminary ideas from the RL framework

that will be used throughout this document.

A standard formal model used in RL, depicted in Figure 2.2, is that interaction

with the world can be modelled as a Markov decision process (MDP) (Sutton and
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Figure 2.2: Interaction between the agent and its environment, formalized as a
decision process. Adapted from Sutton and Barto (2018, p. 48).

Barto, 2018, p. 2). Within this formalization, we think of time occurring in discrete

time steps. At each time step t, the agent is in a current state St 2 S, where S

is the set of all possible states. Intuitively, the state describes the circumstances

that the agent is in and the context that the agent can use to make decisions. The

agent must select an action At 2 A(St), where A(St) is the set of actions available

to the agent from state St. The agent receives a real-valued reward Rt+1 2 R and

enters a new state St+1 2 S. Many theoretical results in reinforcement learning

rely on the Markov property, which holds when the reward and new state depend

on St and At, but St and At provide no less information about the future than do

all preceding states and actions (Sutton and Barto, 2018, p. 49). Formally, this

notion can be written:

Pr {St+1 = s, Rt+1 = r | St = st, At = at}

=Pr {St+1 = s, Rt+1 = r | S0 = s0, A0 = a0, ..., St = st, At = at}
(2.1)

The Markov property, which applies to MDPs, is typically assumed as part of

the formal framework for reinforcement learning (Sutton and Barto, 2020, p. 13),

particularly because it helps make developing theory more tractable (Sutton and

Barto, 1998, Ch. 3.5). However, the Markov property is not always a realistic

assumption. Particularly when working with robots and other complex systems, it
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can be difficult to engineer a Markov state from the sensor and motor configurations

that we can obtain from the environment. Without assuming the Markov property,

we can still describe environments using the same interactive framework depicted

in Figure 2.2, herein referred to as simply decision processes, recognizing that much

of the theory developed for reinforcement learning cannot be assumed to hold.

The problem defined by a decision process is: How should the agent decide

which action to take in each state to accumulate the most reward over time? The

goal is to determine how an agent should behave, which we define as a policy, ⇡,

which maps each state to the probabilities of taking each action available from

that state. However, we need to qualify what it means to accumulate the most

reward over time. Should receiving $100 in a thousand years be the same as

receiving $100 today? Sometimes we want our agents to value different situations

differently. There are multiple ways of formulating the objective function, that

is, the way our agents value the accumulation of reward. Two classical settings

include the episodic setting and the discounted setting.

In the episodic setting, the return at time t is defined as

Gt
..=

T�tX

k=1

Rt+k (2.2)

where T is a final time step. The episodic setting is commonly used in games,

where there is a clear, repeating end point: you must get the most points before

the end of the game. As many machine curiosity approaches were designed in the

context of developmental robotics, it is common for there to be no clear end point

(no obvious final time step T ), and so a continuing setting is typically considered

more appropriate, and the discounted setting is one option. In the discounted

setting, we include a discount rate, � 2 [0, 1], to weight rewards in the near future

more than those in the far future, and define the return at time t as

Gt
..=

1X

k=0

�kRt+k+1 (2.3)

The practical effect of the discount rate is that, for � < 1, we can be safely
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assured that Gt is finite, despite being the sum of an infinite number of terms

(Sutton and Barto, 2018, p. 55). In terms of modeling biological learners, the

formulation of return in the discounted setting (Equation 2.3) roughly reflects

the traditional—though flawed1—‘exponential discounting’ model of intertemporal

choice from behavioural economics—our tendency to care more about near-term

gains and losses over those further into the future (Berns et al., 2007, pp. 482–483).

In either setting, our objective, originally stated informally as “how to accu-

mulate the most reward over time” becomes “how to maximize return, Gt.” A

reinforcement learning agent, towards that goal, typically maintains a ‘learned’

value function v̂⇡ : S ! R estimating the true value function v⇡ : S ! R, defined

by

v⇡(s) ..= E⇡ [Gt | St = s] , (2.4)

where E⇡[·] denotes the expected values of a random variable, given the agent

follows policy ⇡.

One of the most standard ways of learning a value function is temporal-differ-

ence (TD) learning, which has also been found to well-model some animal learning

(Niv, 2009). At each time step in TD learning, the learner makes a new estimate

for the estimated value v̂⇡(St) that ropes in its newest sample of reward, Rt+1 and

uses its estimate of the future return v̂⇡(St+1), given its new state. Simply using

that new estimate, Rt+1 + v̂⇡(St+1), would not take into account any prior infor-

mation held in the original estimate v̂⇡(St), so the agent typically only changes the

value maintained in memory by a “step” towards the new estimate. The difference

between the new and old estimates is called the TD error, defined as

�t ..= Rt+1 + �v̂⇡(St+1)� v̂⇡(St) (2.5)

in the episodic and discounted settings.
1Behaviour of animals, including humans, is better modelled by a hyperbolic discounting

curve than an exponential discounting curve (Berns et al., 2007, p. 483). However, recent work
like that of Kurth-Nelson and Redish (2009, p. 1) has suggested that the hyperbolic discounting
curve also reflects the behaviour of an agent making decisions using a combination of multiple
value functions with different exponential discount rates.
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Instead of (or in addition to) maintaining estimated values for each state, a

learner could maintain estimates of action-value functions, which are closely related

to standard value functions. Value functions average over the potential actions the

learner could take from a state, while the outputs of action-value functions depend

on which action the learner is takes from a given state. Analogous to Equation

2.4, an action-value function q⇡ is defined by

q⇡(s, a) ..= E⇡ [Gt | St = s, At = a] , (2.6)

Similar to a value function, an estimated action-value function, Q, can be learned

by variations of TD learning. One option is Sarsa, for which the TD error is defined

by

�t ..= Rt+1 + �Q(St+1, At+1)�Q(St, At). (2.7)

Another is Q-learning, for which the TD error is defined by

�t ..= Rt+1 + �max
a

Q(St+1, a)�Q(St, At). (2.8)

While Sarsa learns action-values for the policy the learner is following (i.e., it is

on-policy), Q-learning approximates the optimal action-value function (Sutton and

Barto, 2018, p. 131).

When we do not have the Markov property, it can be useful to work with a

model where we can obtain an observation, O(St), relating the information avail-

able at time t about the state St. We can then use some kind of function ap-

proximation for our estimated value function v̂⇡. The formal model of decision

processes, whether Markov or not, allows for the design of clear experiments which

are easy for a human to observe and understand—at least in comparison to exper-

iments involving the complexities of numerous sensors or rich visual observations.

In Chapter 3, I will provide further discussion of the versatility of this set-up in

the context of improving our understanding of behaviour produced through com-

putational curiosity methods.
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2.2.1 Exploration

When aiming to maximize return, there is always a difficult challenge: determin-

ing how to choose between an “exploitative” action with the best expected payoff

and an “exploratory” action which learns more about the environment and might

result in finding an action with an even better payoff (Sutton and Barto, 2020,

p. 3). This challenge is known as the exploration–exploitation dilemma. Numer-

ous exploration techniques specific to different potential situations (e.g., different

value estimates, uncertainties, and numbers of remaining steps) exist (Sutton and

Barto, 2020, p. 26), but the specifics of a given situation in reinforcement learning

are often so complicated or little-known that reinforcement learning algorithms

are implemented without attempting to balance exploration and exploitation in a

sophisticated way—they are implemented only with a concern for “balancing them

at all” (Sutton and Barto, 2020, p. 27).

Curiosity has been imagined by authors like Still and Precup (2012) as a way

to address the exploration–exploitation dilemma (p. 142), and yet many curiosity-

inspired methods still need a traditional exploration mechanism alongside their

mechanisms proposed as analogues of curiosity (e.g., Oudeyer et al., 2007, pp. 271–

272; Pathak et al., 2017, p. 2780, with reference to Mnih et al., 2016, p. 1931;

Burda et al., 2019b, p. 13, with reference to Schulman et al., 2017, p. 5). Such

traditional exploration techniques usually involve injecting randomness into the

policy in some way (called undirected exploration techniques by Thrun, 1992).

The distinction between curiosity and exploration, at least within reinforcement

learning, is crucial for understanding the landscape of curiosity-inspired methods

we see today.

2.2.2 Beyond the Maximization of Return

While this section only provides the preliminaries needed for understanding this

document, the reinforcement learning framework is very flexible and goes beyond

maximization of return, extending to offer many possibilities for prediction and
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control (Sutton and Barto, 2020, p. 460). However, the maximization of return is

a component of the majority of existing approaches to machine curiosity using rein-

forcement learning. It has been suggested (for example, by Stojanov and Kulakov,

2006) that the prevalent use of the RL paradigm to implement computational cu-

riosity has led to an understanding which is “rather one dimensional and rather

reductionist in spirit” (p. 46). However, through a review of the development of

RL methods for computational curiosity, I intend to demonstrate that the under-

standing is already multi-dimensional by exhibiting a sample of such dimensions

which can be developed in the RL framework. This level of complexity is by no

means fully explored.

One framework by which reinforcement learning demonstrates its flexibility is

that of general value functions (GVFs), which generalize the standard value func-

tion, v⇡, defined in Equation 2.4. Where value functions describe the accumulation

of reward over time, a general value function (GVF) describes the accumulation of

a chosen scalar signal over time—the construction can be equally well applied to

any scalar signal obtained at each time step. GVFs have been used to answer many

goal-oriented questions in parallel, as can be found in the 2011 paper by Sutton

et al. describing the Horde architecture. Modayil et al. (2014) further provide a

detailed account of using GVFs for predictive representations of knowledge. Since

their introduction, initial work using GVFs has shown that real-time prediction

learning is a practical way to support intuitive joint control in complex robotics

systems like those found in prosthetic systems (Pilarski et al., 2013a,b). In con-

nection to the focus of this thesis, we will see in Section 2.3.3.2 a way in which

GVFs have been leveraged to develop behaviour inspired by curiosity.
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2.3 Reinforcement Learning Approaches to

Machine Curiosity

Over the past decade, machine curiosity research has boomed, and many of these

research ideas have been developed within the RL framework. RL seems like

a strong contender in the pursuit of computational curiosity, particularly since

curiosity seems to motivate many human decisions, and RL is sometimes thought

of as offering a computational analogue for motivation. Inspired by curiosity,

researchers have developed different methods to modify the reward delivered to a

learner or to modify other parts of an RL algorithm. Many of their methods have

shown promise in real-world or simulated domains, as noted in Section 1.1.

In particular, much of the recent work on machine curiosity has been developed

as a branch of research on intrinsically-motivated reinforcement learning (IMRL).

It is no surprise that computational curiosity, as a field of research, is intertwined

with the study of computational intrinsic motivation. The concept of intrinsic

motivation was originally studied in psychology, where the term encompasses the

“why” behind engagement in activities “for which there is no apparent reward”

(Deci, 1975, pp. 3, 23). Curiosity, in humans, is often considered to be a kind

of intrinsic motivation (Ryan and Deci, 2000, p. 56). Study of the mechanisms

involved in intrinsic motivation began in the 1950s in animal psychology (Deci and

Ryan, 1985, p. 13). The term ‘intrinsic motivation’ tends to be used in opposition

to extrinsic motivation, which refers to motivation to engage in activities resulting

in separable consequences like food or money, where those separable consequences

are also known as extrinsic rewards. Research in psychology has suggested intrin-

sic motivation plays an important role in the development of general intelligence

(Singh et al., 2010, p. 70).

In some computational work, researchers like Guckelsberger (2020) have at-

tempted close integration of psychological theories of intrinsic motivation, but the

term ‘computational intrinsic motivation’ is often used in a more simplistic way,
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to reference methods centred on computational intrinsic reward. In his 2013 re-

view, Barto essentialized computational intrinsic reward, writing that “all of the

approaches to using RL to obtain analogs of intrinsic motivation ... [become] sim-

ply a matter of defining specific mechanisms for generating reward signals” (p. 19,

referencing an idea proposed by Schmidhuber, 1991b, p. 226). Returning to the

idea of reinforcement learning as an analogue of motivation, we can think of de-

signing a reward function as allowing us to design different motivations for our

systems. With a new reward function designed, existing RL algorithms can be

used to efficiently learn which actions maximize future reward.

In a sense, many attempts to implement computational curiosity in an intrinsically-

motivated reinforcement learning framework motivate us to agree to a measurement

of curiosity. The most obvious way to use reinforcement learning to motivate an

agent to behave with the highest level of curiosity is to give a value to the curiosity

exhibited by the agent by its actions. Of course, what it means for curiosity to

be exhibited by an agent is non-obvious and may be difficult to define. However,

once a measure of curiosity has been decided by the designer, it can be used as a

reward in the reinforcement learning framework, so a curious agent would aim to

maximize the accumulation of this reward over time.

In the translation of ‘intrinsic motivation’ from psychology to a computational

reinforcement learning setting, ‘intrinsic reward’ has morphed to specifically re-

fer to rewards computed from the agent’s sensorimotor context without regard to

any concrete meaning of the sensorimotor context (Oudeyer and Kaplan, 2007,

p. 12). The phrase sensorimotor context, stemming from the combination of sen-

sor and motor, references the combination of what an agent can perceive using

its sensors and invoke through motor commands. Use of the phrase usually not

only considers those observations at the current time step, but some history of

sensor and motor observations. Computational extrinsic rewards, in contrast to

intrinsic rewards, tend to be designed to relate closely to the concrete meaning of

the sensorimotor context, with rewards for success in a task decided by the hu-
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man designer. For example, extrinsic rewards might be provided for achievements

like winning a game of Go, moving closer to a target, or connecting to a battery

charger. Different examples of rewards that, instead, disregard the meaning of

the sensorimotor context—that is, intrinsic rewards—will be explored throughout

this document. Oudeyer and Kaplan (2007) have described this understanding of

intrinsic rewards (IRs) by pointing to how IRs are based on changes in the “knowl-

edge and know-how” of the agent due to changes in the sensorimotor observations

made by the agent, independent of the meaning of those observations (p. 12). The

phrase “knowledge and know-how” of an agent is vague—likely purposefully so!—

but it allows us to consider constructs, computed from observations, that shift up

a level of abstraction from the concrete world of the learner, like a reward based

on the error in a prediction of that signal could.

The mechanisms that have been defined for curiosity vary widely, making use of

a number of different internal constructions, with many utilizing prediction error or

ideas from information theory, often in the interests of forming computational ana-

logues of other constructs imagined to related to curiosity, like confidence (Schmid-

huber, 1991a), counting (Bellemare et al., 2016), compression progress (Houthooft

et al., 2016), learning progress (Oudeyer et al., 2007), surprise (White et al., 2014;

Schembri et al., 2007a), novelty response (Singh et al., 2004), and information gain

(Schaul et al., 2011; Still and Precup, 2012).

In this section, we will highlight one possible way of classifying the majority

of existing approaches, providing detail on a couple of approaches from each class.

Though there are many different ways of classifying approaches to computational

curiosity,2 I have chosen an objective function-centric classification because the

topic of this chapter (and the next) is the behaviour produced by different objective

functions. In particular, I have divided the approaches into those based on error

and those based on measures of information, in the information-theoretic sense
2Oudeyer and Kaplan (2007) and Aubret et al. (2023), for example, have applied different

classification approaches methods to intrinsic motivation, and in many cases, such classification
approaches are applicable to forms of computational curiosity.
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developed by Shannon (1948).

2.3.1 Early and Influential Ideas for Machine Curiosity

To set the stage, we will begin with three of the most influential works in com-

putational curiosity and intrinsic motivation: Sutton’s exploration bonus (1990b)

and Schmidhuber’s ‘curious neural controllers’ (1991b) and ‘curious model-building

control systems’ (1991a). In 1991, Schmidhuber proposed a design for a learning

system that he termed ‘curious’ (p. 222–223). His proposal that curiosity might

be a useful attribute in learning systems (p. 224) appears to have set in motion

the boom in study of computational curiosity that we are experiencing today. His

goal was to build a learning system that could rapidly build a model of a sig-

nal from the world. At the time, there were few proposals for approaching this

problem. In his demonstration of curious model-building control systems, Schmid-

huber (1991a) compared his proposed algorithm with two baselines: one was giving

a learner a phase of completely random behaviour, while another was called Dyna-

Q+ (p. 1458). The design of Dyna-Q+, introduced only a year earlier by Sutton

(1990b), included the exploration bonus, the structure of which has proved influ-

ential in the use of intrinsic motivation in recent years. In the next part of this

chapter, we will summarize these influential works in more detail.

The publications described in this section were among the first to develop

ideas for computational curiosity. They pushed the development of the field of

computational intrinsic motivation and have provided a starting point for many

approaches to take inspiration from and diverge from.

2.3.1.1 Sutton’s Exploration Bonus

In the preceding section, I alluded to how some curiosity-inspired methods have

drawn a connection between curiosity and novelty. The original exploration bonus

provides an important example of behaviour motivated by a measure of novelty.

The core idea behind the exploration bonus is that, we can implement an agent
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that prefers a type of novelty by adding value to states that have not been visited

recently or as often; you might say the agent prefers a change in their surroundings

over the tedium of a state they have seen recently. The exploration bonus was

introduced by Sutton (1990b) as part of the Dyna-Q+ architecture (p. 221).

Dyna-Q, with its derivatives, is a simple architecture which allows the integra-

tion of planning, acting, and learning (Sutton and Barto, 1998, p. 230). The ‘Q’ in

Dyna-Q stems from Q-values, another word for action-values (Eq. 2.6), which, as

described in Section 2.2, is used to describe the expected return when starting in a

particular state, taking a particular action, and following a given policy thereafter

(Sutton and Barto, 1998, p. 68). Dyna-Q develops its policy using Q-learning.

As a reminder to the reader, the basic idea behind Q-learning is that the agent

maintains an estimate of the optimal action-value (Q-value) function so that it can

adapt its policy based on these values.

The ‘+’ augmenting Dyna-Q to make ‘Dyna-Q+’ refers to the use of an ex-

ploration bonus. In Dyna-Q+, the exploration bonus is added to the Q-value of

a state-action pair to encourage exploration. The value of the bonus for a given

state-action pair, (s, a), is computed from a count, ns,a, of the number of time

steps that have passed since the action a was last taken from that state s. This

count is maintained for every state-action pair in the agent’s world. This allows

the computation of a measure of the uncertainty, pns,a, about the Q-value for

that pair. The final bonus added to the Q-value update is a proportional value,

c ·pns,a, where c is a small positive parameter (Sutton, 1990b, p. 221). The more

time that has passed since that particular state-action pair last occurred in real

experience, the larger the bonus.

The exploration bonus was introduced as part of a longstanding concern for the

exploration–exploitation dilemma, along with other exploration heuristics like the

upper confidence bound (UCB) algorithm, optimistic initialization, soft-max/Boltz-

mann exploration, and "-greedy exploration. For a review of exploration for learn-

ing control as it was understood in the early 1990s, the reader is referred to Thrun’s
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chapter on the topic (1992).

In Sutton’s initial experiments, the exploration bonuses in the Dyna-Q+ sys-

tem tended to improve performance in environments where we might expect a

curious learner to perform well: that is, in initial learning and in non-stationary

environments. It also, however, led to performance decline where we might expect:

in small stationary environments, where exploration ceases to be valuable once the

entire state space has been explored (Sutton, 1990b, p. 222).

In the wider context of curiosity-inspired methods, it is valuable to note that

Dyna-Q+ built a model and planned its behaviour using that model. Model-

building and planning have rarely been highlighted as key aspects of more recent

curiosity-inspired algorithms. In the case of Dyna-Q+, planning was done with

the model returning not the estimated true reward, but the estimated true reward

augmented with an exploration bonus. We will see the concept of modifying a

value function via use of a model for the sake of curiosity once again in Chapter 5.

2.3.1.2 Schmidhuber’s Curious Model-Building Control System

Sutton’s (1990b) introduction of the exploration bonus appears to have increased

interest in improving exploration methods. Jürgen Schmidhuber (1991a) referred

to the Dyna architecture (Sutton, 1990a) as using an “ad-hoc method” for estab-

lishment of a world model, and stressed that it failed to address the real-world

challenges of “uncertain environments” (Schmidhuber, 1991a, p. 1458). He em-

phasized that the Dyna approach and other existing work in exploration for agent

control had so far neglected to fully take advantage of two potential increases

in learning efficiency (Schmidhuber, 1991a, p. 1458). These potential increases

could be afforded by avoiding parts of the environment which are already well-

understood and by avoiding those parts which have little potential for improving

future understanding (Schmidhuber, 1991a, p. 1458). These ideas, first explored in

Schmidhuber’s 1991 work on curious model-building control systems Schmidhuber

(1991a), brought the first experimental trials of reinforcement learning methods
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devised to produce curious behaviour to the forefront (Baldassarre and Mirolli,

2013, p. 6).

Schmidhuber’s goal for his agent in this work was model-building. His defini-

tion of this model was simply to require that it must provide a prediction of the

“reaction” of the agent’s environment at each time step (p. 1459). If we look at

this idea of “reaction” within the RL framework described in Section 2.2, it could

be any signal available to the agent. In the basic MDP set-up, we could make this

“reaction” refer to reward or state, or in a more complex system with GVFs we

may want “reaction” to refer to the “pseudo-rewards” associated with some GVFs.

By requiring his agent to maintain such a model as part of its learning compu-

tations, Schmidhuber (1991a) allowed the agent to provide a distinction between

parts of the world which are already well-understood and parts which are poorly

understood. His aim was to leverage this distinction to provide his hypothesized

increase in efficiency.

Schmidhuber’s approach to curiosity in his 1991 work relied on the parallel

concept of confidence. Confidence measured the reliability of the model maintained

by the agent. The agent can be confident that parts of the world which are reliably

modelled are well-understood but should not be confident in parts of the world

which are unreliably modelled. He suggests four different approaches to computing

the confidence in his model, all of which involve degree of prediction failure or

expected error.

The implementation uses changes in error as intrinsic reward:

The ‘curiosity goal’ of the control system (it might have additional ‘pre-

wired’ goals) is to maximize the expectation of the cumulative sum of

future positive or negative changes in prediction reliability (Schmidhu-

ber, 1991a, p. 1461).

Schmidhuber (1991a) used the model’s ability to quickly learn to predict the

deterministic reactions of its environment as a measure of success. In particu-

lar, he found experimentally that the sum of the squared differences between the
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model’s predictions of the deterministic reactions in the environment and the true

reactions decreased much more quickly in an agent motivated by his curiosity goal

(Schmidhuber, 1991a, p. 1462).

Researchers have since contended that “this kind of signal cannot cope with

unpredictable situations: if it is not possible to anticipate what will be the future

state, or the predictor has limited computational capabilities, the prediction errors

will not disappear thus providing reward signals to the system that will so get

stuck” (Santucci et al., 2012, p. 2). Despite this realization, related motivational

functions have shown some success. For example, Ngo et al. (2013) made use of the

simple idea of producing goals based on how reliably their system could predict the

reaction of the environment to guide the behaviour of a robotic arm (Baldassarre

et al., 2014, p. 3).

A further limitation of this method may be that a simple model for prediction

of the “reaction” of a state does not necessarily define “understanding” state from

the point of view of an agent which may have other goals beyond model-building.

Schmidhuber’s method encourages the agent to pursue the task of model-building

when that task is expected to be fruitful; possibly other tasks should also be

pursued when fruitful.

2.3.2 Evolutionary Approaches

Several computational researchers have been inspired by the idea that intrinsic mo-

tivation may have developed in response to evolutionary pressures (for example,

Schembri et al., 2007b; Klyubin et al., 2005). In some cases, the resulting compu-

tational approaches to intrinsic motivation do not fall clearly within the realm of

reward signals reflecting changes in the “knowledge and know-how” of the agent,

independent of any actual meaning a designer might attribute to the sensor obser-

vations, as Oudeyer and Kaplan (2007, p. 12) describe intrinsic motivation. In this

document, I focus on approaches to computational intrinsic motivation that do fit

Oudeyer and Kaplan’s description, so I will only briefly summarize evolutionary
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approaches to intrinsic motivation. Evolutionary approaches to intrinsic reward,

in particular, instead focus on how reward signals that motivate agents to explore

might have developed through an evolutionary process as improvements to agent

fitness over multiple generations.

The “Evolutionary Perspective” developed by Singh et al. (2010) provides a

representative discussion. The authors developed an evolutionary framework for

intrinsic reward with a particular focus on factors distinguishing intrinsic moti-

vation from extrinsic motivation (p. 70). Singh et al. used evolutionary search

methods to choose the reward signal function as a whole (p. 73). They performed

their experiments in environments with small numbers of simple fitness-increasing

events, which they compare to biological reproductive or feeding events (p. 75).

Of particular interest is their use of environments in which the fitness-increasing

events change location, applying a kind of evolutionary pressure. The results pre-

sented by Singh et al. (2010) suggest that, with this kind of unpredictability in play,

evolution selects for agents with reward signals encouraging exploratory behaviour

(pp. 77, 79).

To Singh et al. (2010), what psychology normally recognizes as a distinction

between extrinsic and intrinsic motivations may actually be a reflection of our

poor understanding of the causal structure of our world. Their results support an

evolutionary view of natural reward systems where all reward signals could be the

result of a planning agent with imperfect knowledge of the world being best suited

for evolutionary fitness by valuing exploratory choices. Evolutionary development

of intrinsic motivation is a strong hypothesis for the development of curiosity in

humans and animals.

Computational evolutionary approaches show promise for developing useful in-

trinsic reward systems for well-specified environments. Despite this promise, I

would argue that human-developed intrinsic motivation systems have a different

value, especially for developing our understanding of the connections between in-

trinsic motivation systems and behaviour; this is desirable not only for producing
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robots and other computational agents that can interact safely with humans, but

also potentially for application to our understanding of human and animal intrinsic

motivation.

It may be that intrinsic motivation and curiosity in humans have arisen from

overarching reward functions evolving over time. Even if this is the case, we can

still ask: Out of what information might these specific rewards be computed? In

the next sections, we will look at some potential answers to this question.

2.3.3 Measures Based on Error

The first class of computational curiosity approaches I would like to introduce

is the class of error-based approaches. Many error-based approaches moti-

vate curiosity by focusing the agent on the unexpected. Looking to humans as

a favourite example of a curious agent, discovering something new can feel in-

herently rewarding, driving us to exhibit curiosity. Because we are unlikely to

correctly predict a novel stimulus, high prediction error can indicate a novel ex-

perience. Error-based approaches leverage this idea, encouraging agents towards

further experience with surprising stimuli (experienced error) or poorly-explored

states or novelty (expected error). In this section, we cover two case studies of

error-based approaches.

2.3.3.1 Intelligent Adaptive Curiosity

Our first case study will be the Intelligent Adaptive Curiosity (IAC) mechanism

presented by Oudeyer et al. (2007). IAC represents a key moment in the history

of machine curiosity. Study of machine curiosity appears to have hit its stride

with the growth in interest in developmental/epigenetic robotics at the turn of

the century. Herrmann et al. (2000) offered initial ideas for machine curiosity for

autonomous robots, but it was the line of research pursued by Oudeyer et al. to

develop intrinsically motivated systems (Kaplan and Oudeyer, 2003; Oudeyer and

Kaplan, 2004; Oudeyer et al., 2007; Baranes and Oudeyer, 2009) that appears to
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have begun the most influential push towards designing machine curiosity.

In their seminal paper, Oudeyer et al. (2007) they followed a line of thought

inspired by Berlyne (1960) and Csikszentmihalyi (1991) who suggested that inter-

nal reward is maximized when the agent deals with a challenge which “is not too

easy but also not too difficult” (Oudeyer et al., 2007, p. 266). We can describe the

IAC mechanism as an error-based approach because for each pair of consecutive

time steps, the agent makes a prediction of the state signal it expects to expe-

rience next, then compares it to the state it actually experiences, and computes

the discrepancy between them (its error) using some distance function (pp. 270-

271). These errors, kept in memory, are used to compute the value Oudeyer et al.

(2007) call Learning Progress (p. 271). Learning Progress is computed based on a

comparison between two windows of time steps. One window is the most recent ⌘

steps,3 and the other is a window of the same size ⌧ steps prior, where the ⌘ and

⌧ are integer parameters, with ⌘ generally ⇡ 25 and ⌧ ⇡ 15. Oudeyer et al. (2007)

take the difference between the average squared error over each window of time,

which is the increase in error, and negate it to compute Learning Progress (p. 271).

For example, if the average error for the earlier window was 50, and the average

error for the most recent window was 100, then the Learning Progress would be

�50, since the agent’s predictions have become worse. Oudeyer et al. (2007) use

Learning Progress as the intrinsic (and only) reward for the IAC system (p. 272).

Oudeyer et al. (2007) tested their IAC mechanism using two different experi-

ments. The first experiment is called the Simple Simulated Robot Experiment, an

experiment in which the open-ended behaviour of a simple simulated robot (a box

with two wheels, a sound emitter, and a sensor allowing it to perceive its distance

from a small toy) is observed. The robot can control its wheels and sound emitter

independently, setting a real value within a known interval for each. The wheels

allow the robot to move around the room, but the key part of its control system
3The parameter here denoted by ⌘ is the smoothing parameter, denoted by ✓ in the original

description by Oudeyer et al. (2007, p. 271); this change of notation was to avoid confusion with
the symbol ✓(t, i), which is used elsewhere in this document to denote a distribution.
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Figure 2.3: This plot, adapted from Fig. 4 from Oudeyer et al. (2007, p. 274),
shows the approximate evolution of time spent: (in red) emitting a tone in the
frequency range which results in the toy moving randomly, (in green) emitting a
tone in the frequency range which results in the toy not moving, and (in blue)
emitting a tone which results in the toy jumping into the robot.

is that the tone emitted by the robot determines the behaviour of the toy. Of the

interval of possible tone frequencies available to the robot, one third causes the toy

to move randomly, one third causes the toy to stop moving, and one third causes

the toy to jump into the robot (p. 273).

The general shape of the behaviour followed by the Simple Simulated Robot

controlled using the IAC mechanism is shown in Figure 2.3. For a short (approx-

imately 250-step) phase of the 5000-step trial, the agent chose actions apparently

randomly. For the next phase, the robot generally tended toward the frequency

range where the toy would simply jump into the robot (simple because the robot’s

understanding of the toy is based on its distance away), and in the third phase,

it tended toward the frequency range where the toy stopped moving. The robot

was consistently disinterested in frequencies which resulted in the unpredictable,

random movement of the toy (p. 273).

The second experiment used was called the Playground Experiment. Oudeyer
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et al. (2007) set up a baby play mat with objects that could be seen, bitten, or

bashed. They implemented their IAC mechanism in a Sony AIBO robot agent.

They found that the agent focused on particular “sensorimotor loops” for segments

of time, with the complexity (in terms of dimensionality) of those loops increasing

over time (p. 278).

In both experiments, the observed behaviour can be understood as pursuing

increasing levels of complexity over time. Oudeyer et al. (2007) assert that this is

evidence that the IAC mechanism has allowed the agent to “autonomously generate

a developmental sequence” (p. 284).

2.3.3.2 General Value Function Surprise as Generating ‘Curious’
Behaviour

While the curious agent implemented by Oudeyer et al. (2007) chooses actions

based on prediction areas where they seem to be making the most improvement,

White et al. (2014), in proposing the method at the centre of our second case study,

developed an approach to curiosity without the concept of improvement. Instead,

White et al. (2014) use the term “curious behaviour” to refer to reactive changes

in behaviour to encourage re-learning in the face of surprise. In their paper, they

defined surprise as “unexpected prediction error” (p. 19). To compute the surprise

about a single GVF prediction i, they made use of the TD-error, �(i), in their

prediction of that sensor value. This allowed them to define the surprise, Z(i)
t ,

about GVF prediction i at time t, in computational terms as

Z(i)
t =

�(i)p
var [�(i)]

(2.9)

where · refers to an exponentially-weighted average.4

White et al. (2014) suggest that they wanted to approach the problem of select-

ing actions which provide effective training data for “learners with diverse needs”
4In later work, White (2015) refers to the construct in Equation 2.9 as Unexpected Demon

Error (UDE), where the “demon” is the prediction learner for prediction i. We will see UDE
again in Chapter 3.
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(p. 19). Though inspired by a bigger goal of making action choices for life-long

learning, their work is restricted to enabling changes in behaviour based on surprise

without providing mechanisms for the agent to decide what those changes should

be.

We can see how White et al. (2014) enabled changes in behaviour by consid-

ering where they implemented checking the levels of surprise in a robotic agent.

The experimental set-up used to test this measure of surprise used a robot making

predictions about two of its sensor values. Once the robot had learned to accu-

rately make both of these predictions, the humans suddenly made a change to the

world that changed the pattern obtained by a single sensor. Their system design

successfully allowed the robot to adaptively recognize the need to re-learn that

prediction pattern.

In this implementation, the policies used to learn the given patterns are human-

designed and fixed. However, the surprise measure Z(i)
t could feasibly be adapted

help the agent choose a policy. As another potential avenue to build on their

work, one could consider adapting what White et al. (2014) consider to be one

of their major contributions: “the first measure of surprise based on off-policy

GVF learning progress” (p. 22). In this case, the measure of surprise is based

on instantaneous temporal-difference error in the off-policy prediction. We can

imagine, however, applying other existing measures of curiosity to off-policy GVFs

to achieve different behaviour.

What is referred to as ‘curious behaviour’ by White et al. (2014, pp. 19–20)

might better be called determined or focused behaviour. As an example, perhaps

if a human tried to pick up a cup and expected to be successful, and instead failed,

they might realize that they want to be able to predict where their hand ought to

be each time they attempt to pick up a cup. This way, they will be successful at

this task when they need to be. As a result they might try to pick up the cup until

they feel confident in their ability to complete the task consistently or until they

realize (perhaps if the reason for their initial failure was a prank) that the task is
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so unpredictable that it is not worth trying any more. Although this tendency is

definitely useful, and might fall under the umbrella term of intrinsically motivated

behaviour, it does not seem to have the character of curiosity.

With respect to intrinsically motivated behaviour, on the other hand, animal

psychologists have observed a somewhat similar kind of behaviour in young rhesus

monkeys. In the case of rhesus monkeys, the monkeys were observed leaping, but

varying where and how they leaped. Simpson (1976) has referred to this repetition

of single tasks as ‘projects’ (p. 386). “Such patterns of behavior are often thought

of as play because they appear to be circumscribed in time and they do not satisfy

an immediate need” (Kubovy, 1999, p. 148). The defining difference between

Simpson’s ‘projects’ and White et al.’s ‘curious behaviour’ (pp. 19–20) may be

the aspects of variation and development. The leaping project starts off simple,

perhaps repeatedly jumping up to a low branch, but as the monkey develops, its

projects become more complicated and progressive. How the monkey chooses to

vary its leaping is the active component of play which might be seen as curiosity.

2.3.3.3 Discussion of Error-Based Measures

Though I have provided detail regarding only two studies in this section, error—in

some cases expected and in others experienced—form the basis of many existing

approaches. While I presented Sutton’s (1990b) exploration bonus and Schmidhu-

ber’s (1991a) curious model-building control system in an earlier section (2.3.1),

both belong to this family, as they used measures based on error to encourage

curious behaviour. Sutton’s (1990b) exploration bonus rewarded expected error:

actions taken in states which have not been visited recently are more likely to

have an unexpected reaction, particularly in non-stationary settings. Schmidhu-

ber (1991a) explicitly used prediction error for intrinsic reward.

Even more proposals from this family of approaches might be considered.

Schembri et al. (2007b) produced an example of similar work. They used er-

ror, specifically TD-error (Baldassarre and Parisi, 2000, p. 134), as the intrinsic
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reward (which they called ‘surprise’) as a component of their system evolving in-

trinsic reward signals. Stout and Barto (2010, p. 838) note that what Schembri

et al. (2007b) refer to as ‘surprise’ and use as intrinsic motivation forms the sim-

plest case for the intrinsic reward, �V , first presented by Şimşek and Barto in

2006. Stout and Barto used �V for their competence progress mechanism in 2010

(p. 835). The value of �V is a short-term error: the agent makes estimates for

the value of its greedy policy at each time step, and �V is the amount that this

estimate has changed over one time step (Stout and Barto, 2010, p. 835).

All of these approaches make use of error in their computation of intrinsic moti-

vation, but the mechanisms still vary greatly. While Sutton (1990b), Schmidhuber

(1991a), Schembri et al. (2007b), and Oudeyer et al. (2007) took approaches fo-

cusing on the intrinsic values of states and actions, Stout and Barto (2010) and

White et al. (2014) took a view one layer up, using curiosity not to pick the best

(most curious) next action, but to pick the next (policy) focus for the duration of

an option.

Despite these differing perspectives, both sides had some similar results in

their experiments. Both Oudeyer et al. (2007) and White et al. (2014) found

that, in implementation, they observed their robotic agents focusing on a group

of actions and states for periods of focused development. This behaviour was

clearly engineered in the algorithm by White et al. (2014), whereas this behaviour

follows in a more complicated matter from the design by Oudeyer et al. (2007) As

mentioned while describing the approach by White et al. (2014) in Section 2.3.3.2,

these types of focused behaviour share a certain resemblance to ‘projects’ Simpson

(1976) observed in animal behaviour, seeming to be key for their development.

In keeping, several error-based approaches are designed to push an agent towards

‘project’-like behaviours, which focus on one task for a while and then move on to

another of greater complexity.
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2.3.4 Measures Based on Information

Part of the philosophy of the reinforcement learning framework is to let the machine

decide the best way to act to achieve a goal, avoiding human-designed behaviour

choices. Unfortunately, our attempts to work within this philosophy towards com-

putational curiosity are hindered by our uncertainty regarding what the goal of

curiosity is. One possibility is the accumulation of information, and this leads to

the next class of approaches.

As introduced with Berlyne’s ideas regarding curiosity in Section 2.1.1, Claude

Shannon’s Mathematical Theory of Communication and the field of information

theory have given a reasonable theoretical basis for the amount of information

contained in data. The following approaches use a notion of the “amount” of

information that their agent holds and try to increase it intelligently. For this

reason, I classify these approaches as based on information.

One of the key concepts shared by several of the information based approaches

is mutual information. The mutual information of two discrete random variables

X and Y is

I(X;Y ) ..=
X

x2X

X

y2Y

p(x, y) log2

✓
p(x, y)

p(x)p(y)

◆
(2.10)

where where p(x, y) is the joint probability distribution function of the random

variables X and Y , and p(x) and p(y) are the marginal probability distribution

functions of X and Y respectively (MacKay, 2003, p. 143). Intuitively, the mutual

information measures, for each pair of possible events x, y from the two random

variables X and Y , the decrease in the uncertainty of x if we know y occurs (Osteyee

and Good, 1974, p. 10; Cover and Thomas, 1991, p. 18). Alternatively, the mutual

information can be thought of as the decrease in the amount information we would

gain by the occurrence of x caused by the occurrence of y (Osteyee and Good,

1974, p. 10).
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2.3.4.1 Empowerment

In 2005, Klyubin et al. introduced ‘empowerment’ as an objective for knowledge

acquisition; like Barto (2010), they take the line that “it is all about control” (2010,

p. 3) but also value the agent-centric idea of perception, developing a measure for

the amount of control that an agent perceives it has over its environment (2005,

pp. 128–129). To develop such a measure mathematically, Klyubin et al. (2005)

take advantage of the information-theoretical concept of communication systems,

as developed by Shannon (1948).

The key communications systems concept used by Klyubin et al. (2005) is that

of a channel. When describing the parts of a communication system, Shannon

(1963) defines a channel as the medium over which a signal travels from the trans-

mitter to the receiver (p. 5). The transmitter’s signal in a communication system

may be deterministic, but in most situations, the signal is random, in that it is

unpredictable—an observer would not know with exact certainty the signal’s fu-

ture value, even with knowledge of its entire history (Rao, 2009, p. 2.1). Because

of this uncertainty, we may represent a signal with a random variable, X. Further-

more, the channel over which the transmitter’s signal travels may be noisy, and

so the signal retrieved by the receiver is generally represented by another random

variable, Y .

When the signals X and Y are discrete, the channel is completely characterized

by the conditional probability distribution p (y|x), because this defines how “trans-

mitted signals correspond to received signals” (Klyubin et al., 2005, p. 129). It is

sometimes useful to consider how much information from the transmitted signal

can possibly be received: this is called the channel capacity, maxp(x) . Recall is the

mutual information, as defined in Equation 2.10. By taking the maximum over all

possible distributions of the transmitted signal, the capacity allows us to maintain

a measure of the most information we could possibly receive by modifying the

transmission signal.

With this mathematical framework in mind, Klyubin et al. (2005) translate
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the reinforcement learning framework into a communication system framework by

treating the sequence of actions chosen by an agent as a transmitted signal to

their later self, through the very noisy channel of the environment, to eventually

be received by the agent’s own sensors.

Like Oudeyer et al. (2007), Klyubin et al. (2005) make use of a window of time

steps, writing specifically of the length of a sequence of actions (p. 130). For a

window of length n, the signal starting at time step t is the sequence of actions

taken within that window, an
t
= (at, at+1, ..., at+n�1). That signal is received by the

agent at time t + n as their state signal st+n (p. 130). Klyubin et al. (2005) then

write An

t
and St+n as the random variables from which an

t
and st+n, respectively,

are outcomes.

Klyubin et al. (2005) define empowerment as the information-theoretic capacity

of an agent’s actuation channel (p. 128): the empowerment of the agent at time t

is written as

Et = max
p(ant )

I(X;Y ) (An

t
;St+n) (2.11)

Klyubin et al. (2005) approach the goal of maximizing empowerment by evolv-

ing its sensor and actuator, but we could just as easily imagine using this measure

as an objective for a learning agent to maximize during its lifetime (p. 131).

2.3.4.2 Predictive Power with Limited Complexity

In 2012, Still and Precup described another example of an information-gain ap-

proach: predictive power with limited complexity. Like Klyubin et al. (2005),

who emphasized an agent-centric approach, Still and Precup (2012) make use of

information-theoretic measures of how much information is held by two probabil-

ity distributions specific to the agent. Rather than the probability distributions

defined by the agent’s sequence of actions and sensor input, they consider the dis-

tributions implicit in a model maintained by the agent of the probabilities of being

in each visited state, and the probability distribution defined by the agent’s policy.
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Still and Precup’s (2012) choice of probability distributions allows them to

approach curiosity through two concepts. The first is an objective to maximize

the predictive power of the agent’s policy—Still and Precup (2012) use a formal

definition of predictive power which has been used in the literature to measure

“how complex, surprising, or ‘interesting,’ a time series is.” Intuitively, increasing

predictive power should mean an increase in the agent’s knowledge of the environ-

ment.

The second concept is limiting the complexity of the agent’s policy. Limited

complexity is obviously desirable with limited computational resources, but Still

and Precup (2012) suggest that it is also useful in organizing an agent’s devel-

opment to tend towards more sophisticated behaviours as the agent attains more

experience.

These two concepts are central to Still and Precup’s (2012) aim to balance

control and exploration (p. 143). The first concept, increasing predictive power,

should push the agent to explore, while the second concept, limited complexity,

adds more control. While the goal of the first part of Still and Precup’s paper is

similar to that of Şimşek and Barto’s (2006) work in that they aims to optimize

exploration, Barto (2010) might question this choice of balance. He argues that

exploration is only useful to the extent that it later facilitates control, and so

might question whether the goal of curiosity should indeed be to balance control

and exploration, or instead be to balance present and future control.

Still and Precup (2012) give a simple example setting where the agent, in a

two-state world, has a continuous action space, [0, 1], where, if the agent takes

action a, then with probability a, it will move to the other state (p. 143). An

agent motivated using Still and Precup’s (2012) approach has an optimal policy

which only chooses actions 0 and 1, with equal probability. This example suggests

that their curiosity mechanism seems to only motivate for exploration of state, not

action. The optimal policy with regards to their curiosity measure stops ‘exploring’

all possible actions.
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2.3.4.3 Discussion of Information-Based Measures

Intuitively, the goal of curiosity is to gain information. This makes information-

based measures very appealing objective functions for computational curiosity.

Though the detail in this chapter is limited to carefully developing only two ap-

proaches, a number of others have been invented and should be considered as part

of the family of information-based approaches. For instance, Polani, one of the

designers of the empowerment measure we explored in Section 2.3.4.1, has since

collaborated with Tishby to publish a 2011 work that uses an information theoretic

perspective to approach balancing the costs and benefits of information-sampling

(Gottlieb et al., 2013, p. 587).

Before that, Ay et al. (2008) tried to motivate “behavior which is both explo-

rative and sensitive to the environment” in a robotic agent (p. 329). Their 2008

work did not consider the actions of the agent, but considered the mutual infor-

mation held between the sensor values in one step and the next, I(X;Y )(St+1;St)

(pp. 329, 333).

Itti and Baldi (2005, 2006) developed a measure of ‘surprise’ and showed that

their measure was closely correlated with the attention of humans in terms of eye

tracking. They did not use their measure to motivate a computational agent, but

they influenced Abdallah and Plumbley, who, in 2009, argued that an observation

might be better valued not by its inherent surprisingness, but by the amount of

“information it carries about the unobserved future,” given what we know about the

past (p. 93). They computed an information measure that they called predictive

information. Like Still and Precup (2012), both Itti and Baldi (2005, 2006) and

Abdallah and Plumbley (2009) used the Kullback–Leibler (KL) divergence.

More recently, Orseau (2014) published two objective functions to motivate

knowledge-seeking, both based on measures of information. He published the al-

gorithms for his Square Knowledge Seeking Agent and Shannon Knowledge Seeking

Agent in 2014. In the same year, Gordon et al. (2014) developed an approach that

modularly combined an information basis with ideas from predictive, error-based
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approaches.

Though it seems that increasing the quantity of information held by the agent

is the goal of curiosity, we are not curiously motivated by all information. We

certainly are not attracted to signals with the most information—that is to say,

signals that are completely random. Both Klyubin et al. (2005) and Still and Pre-

cup (2012), in this light, restrict the information the agent is inclined to acquire.

Klyubin et al. (2005)’s approach is to maximize information about future states,

but limited to the information that can be held by the agent’s sequence of actions.

Still and Precup (2012)’s approach, on the other hand, is to maximize the infor-

mation about the future state distribution carried by the agent’s current state and

action, while limiting the information about the actions carried by the state. The

different methods for restricting which information is attractive to the agent form

some of the key differences in information-gain approaches.

***

In this chapter, we have explored some of the key ideas that have shaped

the study of machine curiosity. We have also sampled some of the variety of

methods that have been proposed for computational curiosity. We may gain a

better understanding of these methods by contrasting the behaviour each approach

generates, with both information-based approaches and error-based approaches.

In the chapter that follows, we will see the first main contribution of this thesis:

a family of experiments designed for the empirical comparison of these already-

existing methods.
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Chapter 3

The Curiosity Bandits

3.1 Principled Study of Curious Behaviours

One way we hope to develop our understanding of curiosity is to model curios-

ity and employ these models of curiosity in computational systems. As curiosity

appears to motivate many of the decisions made by animals, including humans,

reinforcement learning (RL) is a strong candidate for helping us develop such mod-

els—an idea already suggested in Chapter 1 (Section 1.1). RL provides a natural

approach for designing different motivations for our systems. In particular, RL

allows machines and biological systems to learn, through trial and error, the value

of situations and choices. In computational RL, we formalize this idea by requiring

that a signal known as reward is delivered to the learner throughout its interac-

tions with its environment. Reward can be used to provide a type of motivation

for computational systems. Existing RL algorithms can be used to efficiently learn

which actions maximize future reward. Designing our reward, therefore, offers an

approach for designing different motivations for our systems. Researchers have de-

veloped different methods to modify the reward delivered to a learner or to modify

other parts of an RL algorithm so as to evoke behaviours inspired by curiosity

in their systems. Many of these methods have shown promise in real-world or

simulated domains, as can be seen with the examples described in Section 2.3.
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However, it is unclear whether different learning systems inspired by curios-

ity produce qualitatively different behaviour when placed in the same situation.

To create a clear comparison of different curiosity methods, one approach is to

hold both the domain and the majority of the agent’s internal workings constant,

varying only the curiosity method used to motivate the agent. This approach is

particularly straightforward when working with curiosity methods primarily cen-

tred on the design of an intrinsic reward, and is analogous to a suggestion by

Oudeyer and Kaplan (2007, p. 13). Repeatedly placing such agents in a single

domain while varying their curiosity methods (intrinsic rewards) can allow us to

clearly see how each agent’s behaviour differs with respect to other agents in the co-

hort. To gain an understanding of how the resulting behaviours compare to what

might be expected or desired given the methods’ theoretical underpinnings, we

suggest that initial experiments should be carefully designed, using uncomplicated

domains with variations specifically chosen to untangle the differences between cu-

riosity methods. The domains presented in this chapter are examples of this kind

of carefully designed domain.

In this chapter, we describe experiments assessing how different approaches

to curiosity in RL lead to different behaviours within a controlled experimental

domain. The principal contribution of the work presented in this chapter is a

family of domains that allows us to investigate the behaviour elicited by different

computational curiosity approaches. Results from the study of curiosity in psychol-

ogy have suggested that behaviour associated with curiosity may be prompted by,

roughly, a degree of difference in “comparison of information from different sources”

(Berlyne, 1963, pp. 290, 292; see also Berlyne, 1966, p. 30), sometimes stripped

down to “the degree of novelty, surprisingness, and complexity” (Berlyne, 1963,

pp. 292). In the domains presented in this chapter, an agent observes a variety

of signals of differing variability—or complexity—and, importantly, which signal

the agent observes depends on their own actions. By focusing the design of the

domains on action-dependent observations, we provide insight into how different
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approaches to computational curiosity drive agent behaviour.

Our results represent the first look at computational curiosity in unified set-

tings, and are therefore an important step toward a better understanding of curious

behaviour in learning systems. We expect the principled understanding of compu-

tational curiosity will make significant contributions to the development of general

machine intelligence.

3.2 Previous Comparative Studies

Despite a boom of new research on computational intrinsic motivation, little has

been done to compare the many methods springing into existence. To the best

of my knowledge, only three publications prior to the initial publication of the

experiments presented in this chapter provide comparative analyses of different

approaches. In this section, I will describe the work exhibited with those publica-

tions and contrast their goals with my own.

In 2007, Oudeyer and Kaplan explored a variety of ways to classify both existing

and newly proposed approaches to intrinsic motivation in terms of the intuitive

motivation behind their theoretical foundation. Their broad collation of different

intrinsic reward approaches allowed them to present an important early definition

of computational intrinsic motivation (IM):

Each of the described models defines a certain interpretation of intrin-

sic motivation in terms of properties of the flow of sensorimotor values

and of its relation to the knowledge and know-how of the system in-

dependently of the meaning of the sensorichannels that are involved.

(Oudeyer and Kaplan, 2007, p. 12)

Additionally, their typology helped them to develop hypotheses about which types

of IM “can lead to open-ended developmental trajectories” like those observed

in human children: they suggest Information Gain Motivation (IGM), Learning
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Progress Motivation (LPM), and Competence Progress Motivation (CPM) (p. 13).

For experiments in more complex domains in which different IRs cannot be com-

prehensively tested, such hypotheses (along with the results of other comparative

studies) may act as suggestions about which varieties of IR to prioritize. Though

Oudeyer and Kaplan (2007) note the significance of the behavioural trajectories of

different approaches, behavioural comparison and analysis is beyond the scope of

their work (pp. 5, 13)—a gap to which we propose to contribute in this work.

Taking a more experimental tack, Santucci et al. (2012) investigated which IM

signals would be best suited to develop a learner’s “capacity to act so as to achieve

a state of the world when it becomes desirable,” which they called competence

(pp. 1, 5). While their 2012 work used “a simple grid-world environment,” (p. 1)

they continued this line of work comparing different IM choices into 2013b, with

their publications in the latter year focused on robotic experimental domains (San-

tucci et al., 2013b, p. 1; Santucci et al., 2013a, p. 1). The goal to have open-ended

learners develop competencies or skills is an example of an intelligent-systems-

designer’s goal that curiosity or intrinsic motivation are thought to potentially

support. Historically, we have developed systems whose operating procedures are

designated by their human designers. But the reality is that, in many situations, a

system designer cannot be expected to determine the best way to operate in every

environment the system could encounter. Rather, the system itself is in the ideal

position to determine its own capabilities. We can observe humans discovering

their own capabilities—we see human infants testing their own motor functions

and refining these functions into skills to apply in different situations. Curiosity

has long been posited as supporting competence acquisition (White, 1959, p. 318),

so metrics that evaluate competence offer one important perspective with which

to compare different computational curiosity or intrinsic motivation approaches.

However, there is further work to do: A small number of metrics cannot provide

us with the breadth or depth of understanding we might want for the variety of

potential applications of curious machine learners.
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Figure 3.1: The environment used by Santucci et al. (2012) for their comparative
study. It is a simple 1⇥ 10 gridworld. The agent has two options from each state,
‘right’ and ‘left.’ For either option, in any state, the agent has a 95% chance
of moving in the direction specified, and a 5% chance of moving in the opposite
direction (Santucci et al., 2012, p. 2).

In 2013, Santucci et al. wrote that their 2012 analysis was “limited” to “a

simple grid-world environment” (p. 1). While simple domains with discrete states

can feel quite disconnected from “animal, human and robotic learning which takes

place in continuous states and actions” and may be of primary interest for many

researchers (Santucci et al., 2013a, p. 2), the use of complex robotic domains has

downsides. For one thing, a robotic domain adds further parameter decisions,

and, as will be clear from Section B.1.3, the number of parameters involved in a

simple discrete-state study is already substantial. For another, it complicates the

researcher’s ability to make the kinds of precise observations of behaviour we will

use in Section 3.4.2. Yet, we too recognize that some cases of curiosity as it is

observed in humans and other animals may only be applicable in environments

that allow for generalization and temporally extended sequences of decisions (see

Chapter 4), which is an important limitation of simple domains with discrete states.

However, methods specifically centred on IR can often be faithfully ported to

discrete-state domains and meaningfully compared, allowing us to take advantage

of simplicity.

In this chapter, we will present experiments comparing multiple IRs on small

discrete-state domains, just like Santucci et al. (2012), making their 2012 grid-

world study the most closely related work to that presented in this chapter. They

compared three different mechanisms (p. 4). These mechanisms included one based

on the IAC mechanism by Oudeyer et al. (2007; see Section 2.3.3.1 for a summary),

one analogous to the mechanism designed by Barto et al. (2004), and the last
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similar to work published by Hart and Grupen (2013). Santucci et al. (2012,

p. 2) tested their implementations of these mechanisms in the decision process

environment shown in Figure 3.1. For each approach, they ran the simulation for

100,000 trials (p. 4). At the beginning of each trial, the agent was placed randomly

in one of state s0, s1, ..., s8. The trial terminated when the agent reached s9 for

the first time or at a timeout of 20 time steps.

While the robotic experiments presented by Santucci et al. (2013a,b) are less

closely related to our work than their predecessor, we still note here their con-

clusions, as they add to our general comparative understanding of IR approaches.

Their first 2013a paper extended their setting to include multiple skills and con-

tinuous state and action spaces and the second included a couple more approaches

in their comparison. Only error-based approaches were compared in their studies.

The main conclusion offered by Santucci et al. (2013b) from across all three papers

is that the best performance was achieved by “coupling the activity of the mecha-

nism generating the IM signal to the competence of the system in performing the

different tasks” (p. 1).

3.2.1 Evaluation of Behaviour

This subsection is about how we might evaluate behaviour, drawing ideas from

the literature. Much like the experiments performed by Santucci et al. (2012), the

experiments set out in this chapter manipulate the intrinsic motivation approach

used by the learner in simple decision processes. However Santucci et al. (2012) set

out a clear goal and performance metric for how well the agent achieves this goal

under the influence of each motivational approach. Evaluating the behavioural

trajectory of agents is not so cut and dry.

In the same way that Santucci et al. (2012) chose to measure how many skills

an agent can learn quickly, other authors have suggested possible measurements

of how well an agent explores. We recall that Schmidhuber (1991a) measured the

speed at which the agent learned to predict deterministic parts of its environment.
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Lim and Auer (2012) developed a measure of the “amount of exploration [the

agent] uses to learn the environment” (p. 40.1). We can engineer agents which will

attempt to maximize these measures, but these measurements give little insight

into the behaviour we will observe from an agent over a long lifetime.

We are interested in the behaviour of the agent. When referring to this per-

spective, Oudeyer et al. (2007) specify this perspective as being an external point

of view on the behaviour. We especially considered two suggestions about how to

evaluate a learner’s behaviour with regards to curiosity:

• In evaluating the behaviour of the agent, it is helpful to call on our intu-

ition of what we expect curious behaviour to exhibit. As initially suggested

by Schmidhuber (1991a, p. 2), intuitively, neither chasing patterns in the

environment which are easily understood nor chasing (non-)patterns in the

environment which are impossible to understand are curious choices.

• When studying the external behaviour of the simple simulated robot mo-

tivated by their own approach, Oudeyer et al. (2007) characterizes the fre-

quency with which the agent takes actions with specific impacts on its sensor

feedback (tones in each interval). It seems that the simplest measures of

behaviour could be similar for our experiments.

Therefore, we propose quantifying what percentage of a trial the agent takes

each action. Measuring these proportions will give a sense of important general

tendencies, but for a more subtle understanding of the behaviour, it will be im-

portant to be able to see progression over a trial. Because this environment is so

simple, it it be possible to test most approaches over multiple runs. Further, it

allows us to ask, with what frequency is each action taken? Using this, we can

produce and analyse a graphical representation of any tendencies of action over

time. Further, we can go beyond the methods used by Oudeyer et al. (2007), we

can ask similar questions regarding states and state-action pairs. These measures

are simple and provide more insight into the behavioural development of learners
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motivated by existing computational curiosity approaches than has been explored

in the prior literature.

3.3 The Curiosity Bandit Family

The major contribution of this chapter is the introduction of decision-making prob-

lems designed to provide opportunities for agents to exhibit behaviour character-

istic of some conceptualizations of curiosity. These decision-making problems are

the Curiosity Bandits, which we devised to showcase the behaviour elicited by

variations in a real-valued signal (e.g., the cumulant used for the computation of

a GVF). The Curiosity Bandit derives its name from bandit environments; an n-

armed bandit decision problem has a single state (equivalently can be thought of

as stateless) and n possible actions (the n arms) to choose from. For a detailed

introduction to bandits, see Chapter 2 of Sutton and Barto (2018).

The Curiosity Bandit problems are designed to showcase a learner’s ability to

differentiate the interestingness of different signals sampled by choosing different

actions. Examples of this setup are shown visually in Figures 3.2 and 3.8. One

longstanding view of curiosity is that it motivates agents to maintain an inter-

mediate level of ‘arousal’ (cf. the Wundt curve as described by Berlyne, 1960,

pp. 200–201; Kidd et al., 2012 also provide evidence that human infants allocate

more attention to visuals that are neither too simple nor too complex, p. 1). In

the design of the Curiosity Bandits, the choice of signals (which are paired with

actions) is meant to offer a variety of complexity levels from very simple (e.g., a

signal that is always constant) to more complex (e.g., a high-variance, random

signal). Example choices of signals are shown visually in Figures 3.2 and 3.9 and

instances of curiosity bandits will be described in detail for the two studies that

follow in this chapter.
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Figure 3.2: The Curiosity Bandit domain (upper) and its interaction with a two-
part agent (lower) suitable for error-based intrinsic reward methods.
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3.4 First Study: Behavioural Comparison

We devised the first Curiosity Bandit to showcase the behaviour elicited by vari-

ations in extrinsic reward. This original design is depicted in Figure 3.2. In this

first study, the Curiosity Bandit has a single state (S = {s0}), but each of its three

actions, a1, a2, a3 2 A(s0) result in a different pattern of rewards. If the agent takes

a1, its reward is drawn uniformly randomly from [�1, 1]—the random action. If the

agent takes a2, it always receives a reward of 0—the constant action. If the agent

takes a3, then it receives a reward of sin(c · t)—the sinusoid action, where c is a

small constant (set to c = 0.001 in the included experiments) and t is the current

timestep (starting at t = 0 in our experiments). All three arms deterministically

return to the same state s0 and produce reward between �1 and 1 with mean

0. The constant action deterministically results in a reward of 0. The random

action stochastically returns any value within the continuous interval [�1, 1]. The

reward resulting from taking the sinusoid action is a deterministic function of the

current timestep t. The Curiosity Bandit is not Markov (this is in contrast with

a standard bandit, which would have the Markov property). In reference to the

idea that curiosity helps maintain an intermediate level of arousal, providing the

sinusoid action as one form of regularity between the most simple (constant) and

the most complex (random) was a natural starting point in exploring the agent’s

possible reactions to variations in domain-delivered (extrinsic) reward.

3.4.1 Agent Design

The design of our agent was motivated by emphasizing simplicity and consistency

in the inner workings of the agent while allowing for the computations for a variety

of curiosity methods.

Many RL control algorithms rely on maintaining an estimate of the value of

each action. For this reason, we included a prediction learner, which used the

Sarsa (prediction) algorithm (Sutton and Barto, 2018, pp. 129–130) to estimate
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the action-value Q(s, a) of each action a, given it is taken from state s, where the

action-value estimates are with respect to the extrinsic reward. At each time step,

t, given St, At, Rt, St+1, At+1 as described in Section 2.2, the prediction learner

computed the temporal-difference error (TD error), �t, as

�t  Rt+1 + �Q(St+1, At+1)�Q(St, At). (2.7)

where � is the discount factor as described in Section 2.2 (set to � = 0.9 in this

study).

Essentially, the TD error is the difference between our predicted value, Q(St, At),

of taking action At from state St, and our sample value, Rt+1 + �Q(St+1, At+1),

which combines our sample reward Rt+1 and the estimated value of our sample

action At+1, as taken from our sample state St+1.

Because there may be an element of randomness to the domain’s rule for de-

termining the next state and reward given the current state and action, we do not

necessarily want to change our new estimated value to the sample value—we only

move it towards that value, so the estimated value for action At from state St is

then updated as follows:

Q(St, At) Q(St, At) + ↵�t (3.1)

where ↵ is the learning rate (kept constant at ↵ = 0.1 in our experiments). We

initialized Q(s, a) to 0 for all states and actions.

Since we are already computing a form of prediction error—the TD error—

we can conveniently implement several intrinsic reward methods based around

prediction error. For the purposes of this initial experiment, we limited the tested

methods to several which computed a new intrinsic reward from the prediction

error for each transition. This meant we could control the overall agent by simply

using a control learner aiming to maximize cumulative future intrinsic reward

(intrinsic value).

For control, we used "-greedy Q-learning (Sutton and Barto, 1998, p. 140).

Q-learning maintains estimates of the value (in the cases of our intrinsic reward
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methods, intrinsic value) of each action, assuming the agent will choose the action

with the highest value in the next step. If we had perfect estimates of our values,

we would want to always act greedily, taking the action with the highest value. But

to learn and maintain our estimates of each action-value, the agent must try every

action occasionally. With probability ", the agent will choose a random action,

but otherwise, it really does choose the action with the highest value (hence the

name, "-greedy). In this experiment, we set " = 0.1.

Baseline Methods We selected one baseline method for this experiment.

(a) Extrinsically Motivated Actor, referring to an agent using the same con-

trol strategy as used with the intrinsic reward methods ("-greedy Q-learning)

to maximize the extrinsic reward (as opposed to an intrinsic reward).

Intrinsic Reward Methods We selected four intrinsic reward methods for our

initial experiments. Each of these methods relies on prediction error as a compo-

nent of the computation of its intrinsic reward.

(a) Absolute prediction error, referring to the absolute value of some measure

of prediction error, was one of the earliest learning signals optimized specif-

ically for curiosity, suggested by Schmidhuber (1991b). The initial intuition:

to improve prediction, the agent should spend more time in areas of high er-

ror. Unfortunately, such an agent might get stuck repeatedly choosing areas

that are highly unpredictable or random (Schmidhuber, 1991a, p. 2).

RI

t+1  |�t| (3.2)

(b) Schembri et al. (2007a) specifically aimed to maximize (signed) TD-error in

domain value, as opposed to general prediction error. The intuitive benefit

of maximizing TD error is that the agent’s choices should favour areas which

seem to be better than expected (and so afford positive TD error) and avoid
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Figure 3.3: The Extrinsically Motivated Actor tracks the sinusoidal action, show-
ing a greater preference for the constant action than the random action when the
sinusoial action’s rewards are negative. As noted in the text, the externally moti-
vated actor is a typical RL agent: it uses standard Q-learning control to maximize
accumulated discounted future extrinsic reward.
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areas which seem to be getting worse (affording negative TD error) in terms

of the usual RL goal of maximizing cumulative future extrinsic reward.

RI

t+1  �t (3.3)

(c) Learning Progress, as defined by Oudeyer et al. (2007), refers to the de-

crease in error over a recent window of time steps. Intuitively, an agent

achieves high learning progress as its prediction improves.

I implemented Learning Progress in two different ways. The simpler imple-

mentation (for which results are shown in Figure 3.6) used a single shared

buffer of recent squared errors: the buffer, of length ⌘ + ⌧ holds the observed

TD errors from �t�⌘�⌧ to �t, where ⌘ is what Oudeyer et al. (2007, p. 271) call

a smoothing parameter, which determines the size of the time windows that

the squared errors are averaged (smoothed) over, and ⌧ is what Oudeyer et al.

(2007, p. 271) call a time window parameter, which determines the length of

the time window between which the smoothed squared errors are compared.

The intrinsic reward is then computed as follows:

RI

t+1  
1

⌘ + 1

⌘X

j=0

�2
t�j�⌧

� 1

⌘ + 1

⌘X

j=0

�2
t�j

(3.4)

I also implemented Learning Progress with separate buffers for each action

(results not shown). Using TD error is substantially different from the predic-

tion error in next-state predictions using in the original formulation of IAC.

(d) Unexpected Demon Error (UDE) was designed by White et al. (2014) to

measure the surprisingness of an observation and can be used as a curiosity

reward. UDE is the ratio of a moving average of the prediction error and

the square root of the variance in the prediction error. If the prediction

error is consistently large then the samples have high variance, and we expect

high error. If the error becomes larger than expected, something about the
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observation is surprising, and should be explored further.

RI

t+1  
EWMA(�)tp

var(�)t
(3.5)

In this study,1 the Exponentially Weighted Moving Average (EWMA) at time

t of the TD error, EWMA(�)t, is initialized as the first TD error observed,

EWMA(�)0  �0, (3.6)

then computed incrementally at each time step as

EWMA(�)t+1  EWMA(�)t + ↵EWMA · (�t � EWMA(�)t), (3.7)

and the sample variance at time t, of the TD error, var(�)t is initialized to 0,

var(�)0  0, (3.8)

and then computed incrementally at each time step as

var(�)t+1  (1� ↵EWMA)
�
var(�)t + ↵EWMA · (�t � EWMA(�)t)

2
�

(3.9)

where 0 < ↵EWMA < 1 is a weighting factor parameter. In these experiments,

↵EWMA was set to 0.25. This algorithm for incrementally updating the Expo-

nentially Weighted Moving Average (EWMA) and variance was provided by

Finch (2009, p. 8).

3.4.2 Results and Conclusions

For comparison, in Figure 3.3 we show an illustration of the behaviour of an agent

without a specific intrinsic reward method, simply aiming to maximize future do-

main reward. This agent is using the "-greedy Q-learning control learner described
1In the paper introducing UDE, White et al. (2014) do not specify the algorithm used for

computing the exponentially weighted average, so in this initial experiment we followed the
algorithm provided by Finch (2009, pp. 7-8). However, White’s thesis (2015) does specify the
algorithm used (p. 121) and it differs from our choice. In the experiments in the second study
(later in this chapter, in Section 3.5), White’s algorithm is implemented as it was in the original
experiments using White’s choice of exponentially weighted average algorithm.
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prediction learning algorithm Sarsa
control learning algorithm Q-learning
learning rate (applied in Eq. 3.1) ↵ 0.1
probability of taking a random action " 0.1
discount factor � 0.9
initial action values for all s, a Q(s, a) 0
weighting factor for EWMA ↵EWMA 0.25

Table 3.1: Parameter settings for initial Curiosity Bandit experiment.

above, but it is estimating and making choices based on the domain reward. The

plot shows, at each time step and for each action, the percentage of the last 400

actions (or up to 400 actions, for time steps earlier than 400) that the action was

selected. Because the TD error is used to compute each IR, we initially thought

that tracking the TD error might afford us some insight into the behaviour of the

agent in relation to its computational intrinsic reward method. However, com-

paring the sample value to the predicted value provided better insight, as their

difference is the TD error, but the trends in each vary, particularly depending on

the sinusoidal reward signal. Interpretation of this comparison is described in the

captions of Figures 3.4–3.7 and the sample value and the predicted value for the

constant and sinusoidal actions are shown in the lower plot of each of those fig-

ures. Because the changes in the sample value and predicted value are subtle, but

important for understanding the behaviour policy of the learner, these figures are

presented in full-page format.

These initial experiments have already shown that we can more clearly discern

differences in the behaviour motivated by different computational intrinsic reward

methods by controlling other aspects of the experiment. We have initial insight into

how regularities in the environment can impact the behaviour of agents motivated

by different intrinsic reward methods.
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Figure 3.4: As predicted, when the agent is motivated by absolute prediction
error, we observe an attraction to randomness. Though one might expect the
sinusoidal action to be chosen most (hardest to predict) when it experiences the
largest change, around zero, the sinusoidal action actually shows periodic spikes
exactly at its crests and troughs. These spikes occur because ↵ is small; it is at
these peaks that the value estimate lags most.
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Figure 3.5: When the agent is aiming to maximize its (signed) TD error, it
can guarantee the greatest error when it chooses the sinusoidal action at its crests,
similar to the learner maximizing absolute error. In contrast, at the troughs for the
sinusoidal action, the constant action is under-estimated. This under-estimation
occurs because the prediction learner is taking the possibility of the sinusoidal
action into account in its estimate. This results in the constant action giving the
best error.
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Figure 3.6: The behaviour of a control learner motivated by learning progress.
In taking the constant action, the agent always shifts the value of the constant
action closer to zero by increasingly smaller amounts. Therefore, the sinusoidal
action only ever shows more Learning Progress at the crests and troughs, where
the predicted and sample values cross, resulting in corresponding blips.
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Figure 3.7: In the behaviour of an agent maximizing Unexpected Demon Error
(UDE), we see two peaks of the constant action either side of each trough and two
peaks of the sinusoidal action either side of each crest.
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3.5 Second Study: Balancing Learning Many

Things

Learning about many things can provide numerous benefits to a reinforcement

learning system. For example, the UNsupervised REinforcement and Auxiliary

Learning (UNREAL) and Intentional Unintentional Agent (IUA) architectures,

designed by Jaderberg et al. (2017, pp. 1–3) and Cabi et al. (2017, p. 207), re-

spectively, learn about many things, going above and beyond the more typical

choice to learn a policy and value function for the extrinsic reward. In partic-

ular, they learn the optimal policies and value functions for a variety of GVFs

(p. 1). Jaderberg et al. (2017) found that learning additional policies and value

functions—which they called ‘auxiliary tasks ’—improved their system’s represen-

tation (p. 2–3). Learning GVFs for additional signals improved performance for

both UNREAL and IUA (Jaderberg et al., 2017, p. 2; Cabi et al., 2017, p. 212).

Similarly, the Hybrid Reward Architecture (HRA) designed by van Seijen et al.

(2017) demonstrated state-of-the-art performance in problems in which the pri-

mary reward functions can be broken apart into components. Their design lever-

ages learning a separate value function for each component and combining the

results when determining behaviour (pp. 1–2, 8). Riedmiller et al. (2018) took the

learning of numerous policies a step further, using a scheduler to decide which pol-

icy should be put to use at a given time (p. 4344). Along with learning a policy to

maximize the primary reward associated with a practical robotic task, like stack-

ing objects or tidying a table (p. 4345), the Scheduled Auxiliary Control (SAC-X)

system designed by Riedmiller et al. (2018) learned multiple simple GVFs where

the pseudo-rewards/cumulants are based on control of the robot’s own sensory

observations (p. 4344–4345). Scheduling these policies with a learned scheduler

improved performance in the primary task, particularly by improving exploration.

In all the examples above, a learning system updates a collection of GVFs (see

Sutton et al., 2011) from a single stream of experience. The question we tackle in
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this study is how to sculpt that stream of experience—how to adapt the learning

system’s behaviour—when the system is learning a collection of value functions.

One option is to simply choose actions expected to maximize the environmen-

tal (extrinsic) reward. This was the approach explored by Jaderberg et al. (2017)

with UNREAL and the simple addition of auxiliary learning problems shaping the

learned representation resulted in significant performance improvements in chal-

lenging visual navigation problems. However, it is not hard to imagine situations

where this approach would be limited. In general, the extrinsic reward may be de-

layed and sparse: what should the agent do in the absence of extrinsic motivation?

In their design of SAC-X, Riedmiller et al. (2018) suggested an answer to that

question: the system scheduled and executed policies maximizing the GVFs for

different cumulant signals to achieve exploration in the search for sparse external

rewards (p. 4345, 4352). The learned scheduler, however, was designed to decide

which policy to follow based on how the chosen policy contributes to maximizing

the external reward (p. 4347). Similarly, Bagot et al. (2020) treated the policies

associated with the maximization of different cumulants as options to be selected

by a control learner aiming to maximize extrinsic reward (using Q-learning in their

experiments).

Learning reusable knowledge such as skills (Sutton et al., 1999) or a model of

the world might result in more long-term reward. Such auxiliary learning objec-

tives could emerge automatically during learning (Silver et al., 2017). Most agent

architectures, however, include explicit skill and model learning components. It

seems natural that progress towards these auxiliary learning objectives could pos-

itively influence the agent’s behaviour, resulting in improved learning overall.

Learning many value functions off-policy from a shared stream of experience—

with function approximation in an unknown environment—provides a natural set-

ting to investigate intrinsically motivated learning without extrinsic rewards. The

basic idea is simple. The aim is to accurately estimate many value functions in-

dependently. Directly optimizing the data collection for all estimations jointly

68



is difficult because we cannot directly measure this total learning objective and

because actions have an indirect impact on learning efficiency. There is a large

related literature in active learning (Cohn et al., 1996; Balcan et al., 2009; Settles,

2012; Golovin and Krause, 2011; Konyushkova et al., 2017) and active perception

(Bajcsy et al., 2018), from which to draw inspiration for a solution but which do

not directly apply to this problem. In active learning the agent must sub-select

from a larger set of items to choose which points to label. Active perception is a

subfield of vision and robotics. Much of the work in active perception has focused

on specific settings—namely visual attention (Bylinskii et al., 2015), localization in

robotics (Patten et al., 2018) and sensor selection (Satsangi et al., 2018, 2020)—or

assumes knowledge of the dynamics of the world (see Bajcsy et al., 2018).

We can instead formulate our task as a reinforcement learning problem. We

can use an intrinsic reward, internal to the learning system, that approximates the

total learning across all learners. Behaviour can be adapted to choose actions that

maximize the accumulation of intrinsic reward, towards the goal of maximizing the

total learning of the system. The choice of intrinsic rewards can have a significant

impact on the sample efficiency of such intrinsically motivated learning systems.

This study provides the first formulation of parallel value function learning as a

reinforcement learning task. Fortunately, there are many ideas from related areas

that can inform our choice of intrinsic rewards.

Rewards computed from internal statistics about the learning process have

been explored in many contexts over the years. Intrinsic rewards have been shown

to induce behaviour that resembles the development stages exhibited by young

humans and animals (Barto, 2013; Singh et al., 2004; Oudeyer et al., 2007; Lopes

et al., 2012; Haber et al., 2018). Internal measures of learning have been used

to improve skill or option learning (Singh et al., 2004; Schembri et al., 2007b;

Barto and Şimşek, 2005; Santucci et al., 2013a; Vigorito, 2016), and model learning

(Schmidhuber, 1991b, 2008). Most recent work has investigated using intrinsic

reward as a bonus to encourage additional exploration in single task learning (Itti
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and Baldi, 2006; Stadie et al., 2015; Bellemare et al., 2016; Pathak et al., 2017;

Hester and Stone, 2017; Tang et al., 2017; Andrychowicz et al., 2017; Achiam

and Sastry, 2017; Martin et al., 2017; Colas et al., 2018; Schossau et al., 2016;

Pathak et al., 2019). Few have investigated the impact of making these internal

measures the main objective of learning (Berseth et al., 2021), however previous

studies have noted that intrinsic reward is useful even in single-task problems with

a well-defined external goal (Bellemare et al., 2016).

It remains unclear, however, which of these measures of learning would work

best in our no-reward setting. Most prior work has focused on providing demon-

strations of the utility of particular intrinsic reward mechanisms. One study, by

Burda et al. (2019a), was on a large scale, but focused on a suite of complex control

domains, holding the intrinsic reward constant (p. 1). In their experiments, Burda

et al. (2019a) varied the feature space used for the learner’s representation of its en-

vironment (pp. 3). For some of the experiments in that study, Burda et al. (2019a)

trained their learner with pure intrinsic reward (p. 5), while in others they used

the intrinsic reward as an exploration bonus (p. 9). In each of these experiments,

Burda et al. (2019a, pp. 5–7) measured performance either based on accumulation

of an external reward associated with the domain of interest (for example, in-game

reward in Arcade Learning Environment video games) or with respect to a metric

that was meaningful with respect to the environment (for example, count of ball

bounces in a juggling domain).

Another large study, by Graves et al. (2017), on the other hand, compared eight

different IRs, and so is more closely related to this work. In their work, their goal

was to choose an intrinsic reward to accelerate the learning of a neural network,

by using that IR to guide the system’s choices about “which task to study next”

(p. 1). has been conducted on Learning Progress measures for curriculum learning

for neural networks (Graves et al., 2017), where the goal is to learn from which

task to sample a dataset to update the parameters. Variants of their measures

are related to the intrinsic rewards explored in this study, but their setting differs
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substantially in that learning is offline from batch supervised learning datasets

and the underlying problems are stationary. To the best of our knowledge, there

has never been a broad empirical comparison of intrinsic rewards for the online

multi-prediction setting with non-stationary targets.

A computational study of intrinsic rewards is certainly needed, and we believe

that insight can be gained by sidestepping function approximation and off-policy

updating, at least to start. Estimating multiple value functions in parallel requires

off-policy algorithms because each value function is conditioned on a policy that

is different than the exploratory behaviour used to select actions. In problems

of moderate complexity, these off-policy updates can introduce significant tech-

nical challenges. Popular off-policy algorithms like Q-learning and V-trace can

diverge with function approximation (Sutton and Barto, 2018). Sound off-policy

algorithms exist, but require tuning additional parameters and are relatively under-

studied in practice. Even in tabular problems, good performance requires tuning

the parameters of each component of the learning system—a complication that

escalates with the number of value functions. Finally, the agent must solve the

primary exploration problem in order to make use of intrinsic rewards. Finding

states with high intrinsic reward may not be easy, even if we assume the intrinsic

reward is reliable and informative. To avoid these many confounding factors, the

right place to start is in a simpler setting.

In this study, we investigate and compare different intrinsic reward mechanisms

in a Curiosity Bandit designed as a parallel learning testbed. The testbed consists

of a single state and multiple actions. Each action is associated with an indepen-

dent scalar target to be estimated by an independent prediction learner. An ideal

behaviour policy will focus on actions that generate the most learning across the

prediction learners. However, the overall task is partially observable, and learning

is never done. The targets change without any explicit notification to the agent,

and the task continually changes due to changes in action selection and learning of

the individual prediction learners. Different configurations of the target distribu-
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tions can simulate unlearnable targets, non-stationary targets, and easy-to-predict

targets. This new testbed provides a simple instantiation of a problem where intro-

spective learners should help achieve low overall error. An introspective prediction

learner is one that can autonomously increase its rate of learning when progress is

possible, and decrease learning when progress is not—or cannot—be made.

This study summarizes a comprehensive empirical comparison of different in-

trinsic reward mechanisms, including several ideas from reinforcement learning and

active learning. This study helps demonstrate the versatility of the Curiosity Ban-

dit family, focusing on accurately learning explicitly non-reward signals for one

potential quantitative evaluation of intrinsic rewards. In addition, this computa-

tional study highlighted a simple principle: intrinsic rewards based on the amount

of learning (e.g., Bayesian Surprise and simple change in weights) can generate

useful behaviour if each individual learner is introspective. Across a variety of

problem settings we found that the combination of introspective learners and sim-

ple intrinsic rewards was most reliable, performant, and easy to tune. We conclude

the description of this study with a discussion about how these ideas could be ex-

tended beyond our one-state prediction problem to drive behaviour in large-scale

problems where off-policy learning and function approximation are required.

3.5.1 Problem Formulation

In this section we formalize a testbed for comparing intrinsic rewards using a state-

less prediction task and independent learners. This formalism is meant to simplify

the study of balancing the needs of many learners and facilitate comprehensive

comparisons.

We formalize our multiple-prediction learning setting as a collection of indepen-

dent, online supervised learning tasks. On each discrete time step t = 1, 2, 3, ..., the

control learner selects an action At 2 {1, . . . , N}. Each action corresponds2 one-
2To clearly separate the action selected by the agent and the prediction task, we use At to

denote the action selected at time t and we use i to denote the prediction task. At is uppercase
to indicate it is a random variable. In our setting, there is an equivalence between taking an
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to-one to a task i 2 {1, . . . , N}. Choosing the action associated with task i lets the

agent sample a target signal, Ct,i, with distribution, ✓(t, i); that is, Ct,i ⇠ ✓(t, i).

This distribution, ✓(t, i), is indexed by time to reflect that it can change on each

time step; this enables a wide range of different target distributions to be consid-

ered, to model a non-stationary, multi-prediction learning setting. We define the

particular distributions we use in our experiments later in this section, in Equation

(3.12).

Associated with each prediction task, i, is a simple prediction learner that

maintains a real-valued vector of weights to produce an estimate, Ĉt,i 2 R, of the

expected value of the target; that is, Ĉt,i ⇡ E [Ct,i]. The vector of weights could

be updated using any standard learning algorithm at each time step its associated

action/task is selected. In this work, we use a 1-dimensional weight vector, with

the current weights for task i at time t denoted wt,i and so the update is a simple

delta-rule/least-mean-squares (LMS) learning update:

wt+1,i  wt,i + ↵t,i�t,i (3.10)

where ↵t,i is a scalar step-size parameter and �t,i ..= Ct,i � wt,i is the prediction

error of prediction learner i on step t. On a step where task i is not selected, wt,i

is not updated, implicitly setting wt+1,i to wt,i.

In alignment with the idea that, at any given time step, we want our learner

to have an accurate estimate of every signal, we define the primary goal as the

minimization of the Mean Squared Error (MSE) across both time and tasks. We

define the MSE at time step t as

MSE(t) ..=
1

N

NX

i=1

(Ĉt,i � E [Ct,i])
2. (3.11)

The control learner does not observe the MSE, nor sufficient information to com-

pute it; the control learner only observes an intrinsic reward signal on each time

action and observing data for its corresponding task i, and so there is an equivalence between
the actions and tasks. More generally, such as in the full reinforcement learning setting, this is
not the case; for extensions on this work, it is useful to clearly delineate between actions and
prediction tasks.
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step. Each prediction learner, on the other hand, observes one of the targets Ct,i

on each time step and the target signal observation is a noisy sample of the signal’s

true expected value, E [Ct,i], which, as noted above, Ĉt,i is meant to estimate.

Our problem can be naturally formulated as a sequential decision-making prob-

lem, where on each time step t, the control learner chooses an action At correspond-

ing to a task i, resulting in a new sample, Ct,i, which the learner can use to update

the associated weight, wt,i. To design an agent to minimize the MSE, we must

devise a way to choose which prediction task to sample at each time step. In this

work, we choose to associate an intrinsic reward RI

t
2 R with the action choice

at each time step as a basis for which to learn a preference over actions. In this

work, we investigate different intrinsic rewards. Given a definition of an intrinsic

reward, we can use a bandit algorithm suitable for non-stationary problems; our

experiments included two such algorithms, but for the purposes of this dissertation

we focus on one, as discussed in Section 3.5.1.1.

The targets for each prediction learner are intended to simulate the dynamics of

targets that a real-world system learning parallel auxiliary tasks might experience,

such as sensor values of a robot. To simulate a range of interesting dynamics,

we construct the distribution for a target signal at a given time step, ✓(t, i), as a

normal (or equivalently, Gaussian) distribution with a mean that drifts over time:

✓(t, i) ..= N (µt,i, �
2
i
) (3.12)

for µt+1,i  ⇧[x,y] (µt,i +Dt,i)

for Dt,i ⇠ N (0, ⇠2
i
)

where µ0,i, x, y 2 R, �2
i
, ⇠2

i
2 R>0, are parameters of the problem that must be

set as part of experimental setup. For visual depictions of example signals, see

Figure 3.9, which shows the target data generated by one run of the problem in

our experiments. The symbols µt,i and �2
i
, respectively, denote the mean and

variance of the target distribution ✓(t, i). At each time step, the mean drifts by a

stochastic amount represented by the random variable Dt,i. Since the distribution
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of the amount of drift, Dt,i, is normally distributed around zero, the parameter ⇠2
i

controls the rate of drift. Similarly, the parameter �2
i

controls the amount of noise

in the samples. The function ⇧[x,y] is a projection function that bounds the input

to the range [x, y]:

⇧[x,y](z) ..=

8
<

:

x for z < x
z for z 2 [x, y]
y for x > y

(3.13)

In this way, ⇧[x,y] projects the drifting µt,i back to the range [x, y] to keep it

bounded. Note that µt,i is updated on each time step t regardless of which action

is selected.

The two variance parameters, �2
i

and ⇠2
i
, which control the target signal sample

variance variance and the amount of drift, respectively, are indexed by t because we

explore experimental settings where they change. These changes are not commu-

nicated to the control learner, and the individual prediction learners are prevented

from storing explicit histories of the targets. The purpose of this choice was to

simulate the partial observability common in many large-scale systems (e.g., Sut-

ton et al., 2011; Modayil et al., 2014; Jaderberg et al., 2017; Silver et al., 2017).

Given our setup, the learning tasks for both the control learner and the prediction

learners are best treated as non-stationary, so we can expect better performance

(lower MSE) from algorithms that track in comparison to algorithms that con-

verge (Sutton et al., 2007), as long as ⇠2
i

is greater than zero. Our formalism is

summarized in Figure 3.8.

3.5.1.1 Non-stationary Bandit Algorithms for Prediction Learning

This work is not focused on the formalism of bandits itself, nor bandit algorithms.

Rather, our goal is to investigate intrinsic rewards and their utility for learning

multiple predictions. In particular, we aim to complete this investigation in the

simplest setting in which we can obtain meaningful insights: a bandit-like setting.

Our choice of bandit algorithm, therefore, is simply to facilitate this investigation,

rather than for the purpose of investigating the properties of the bandit algorithms
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Figure 3.8: Our parallel multi-prediction learning formulation.

themselves. To ensure our conclusions are not due primarily to the choice of bandit

algorithm, we performed experiments applying two different bandit algorithms.

We chose a gradient bandit algorithm (Sutton and Barto, 2018, p. 37–40) and an

extension of Dynamic Thompson Sampling (DTS) (Gupta et al., 2011). In this

dissertation we will focus only on the gradient bandit algorithm for simplicity, but

more detail about the results with DTS is provided by Linke et al. (2020, pp. 1317–

1319), but the differences between the results are minimal between the gradient

bandit algorithm and DTS. Below, we describe the gradient bandit algorithm and

briefly speak to why we chose it.

Our learning setting is not a typical multi-armed bandit problem; rather, it

may be better considered a non-stationary partial monitoring problem where we

care about pure exploration with anytime evaluation. Learners in typical bandit

problems receive the loss of the chosen action as feedback at each step (Lattimore

and Szepesvári, 2020, Ch. 37); partial monitoring, on the other hand, extends the

multi-armed bandit framework to include problems “where the loss is not directly

observed by the learner” (Lattimore and Szepesvári, 2019, p. 1). In our setting,
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the loss, or cost, at each time step is the MSE across tasks, MSE(t) (Equation 3.11).

Our setting presents a partial monitoring problem because, rather than directly

observing the cost, the control learner only observes an intrinsic reward. Our

setting is also non-stationary: the underlying target signals, from which the MSE

is computed, are non-stationary.

We care about anytime evaluation because we are aiming for the prediction

learners to always have estimates that are as accurate as possible. Anytime evalu-

ation means that the agent needs to carefully choose when it selects a given arm,

unlike in some pure exploration problems, where evaluation only occurs after some

number of actions are taken (in the stationary case, one-time—as opposed to any-

time—evaluation can essentially mean that the order the actions are taken doesn’t

really matter). These factors can be expected for real-world learners deciding what

to observe in the world, especially if we want these learners to be prepared for un-

expected situations where sufficiently accurate predictions allow them to behave

appropriately.

Fortunately, for our prediction setting, the structure of our problem (described

in Section 3.5.1) admits a simple approach that performs well in practice: to err

on the side of taking an action periodically. There is no action selection which

is detrimental, as it provides information about one of the targets. Particularly

in a non-stationary setting, each action should be taken periodically, to check if

expected reward estimates remain accurate. One reasonable strategy is to ob-

tain a distribution over the actions—not find the single best action—and sample

proportionally to that distribution, as is done by the gradient bandit algorithm.

The gradient bandit algorithm specified by Sutton and Barto (2018, Section

2.8) attempts to maximize the expected average reward by modifying a vector of

action preferences H t 2 RN—indexed by action and incremented at each time

step—based on the difference between the reward and average reward baseline:

H t+1(a) 
⇢

H t(a) + ↵(Rt+1 � R̄t)(1� ⇡t(a)) if At = a;
H↵(a)� ↵(Rt+1 � R̄t)⇡t(a) otherwise.

where R̄t 2 R is the average of all the rewards up to time t, maintained using

77



an unbiased exponential average (Sutton and Barto, 2018, Eq. 2.9), and R̄t and

H0(a) are both initialized to zero. Actions are selected probabilistically according

to a softmax distribution which converts the preferences to probabilities:

Pr{At = a} = ⇡t(a) ..=
eHt(a)

P
N

b=1 e
Ht(b)

The gradient bandit algorithm will sample all the actions infinitely often, though

if an action preference is very low then that action will rarely be taken. It may

be helpful for the reader to note that the gradient bandit algorithm is similar to

policy gradient methods in reinforcement learning.

3.5.2 Simulating Parallel Prediction Problems

We considered several prediction problems as described by Linke et al. (2020),

varying the problems by changing the the target signal variance, �2
i
, and the drift

variance, ⇠2
i
. In this dissertation, we focus on a single problem setting with task

distributions ✓(t, i) set as defined in Equation (3.12). Figure 3.9 shows target data

simulated for one run from each problem setting.

high-variance
target (4)

drifting target
(2)

high-variance 
target (1)

constant target
(3)

target
values

50 15
0

jumpy target
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Figure 3.9: This figure shows the the target data generated in one run of the
Drifter-Distractor problem.
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target type µ0,i �2
i

⇠2
i

constant ⇠ U(x, y) 0 0
distractor 0 1 0
drifter 0 0 0.1

Table 3.2: These parameters define each target distribution used in the Drifter-
Distractor problem. The parameter µ0,i specifies the initial mean of each target,
�2
i

is the sampling variance, and ⇠2
i

is the drift variance.

The Drifter-Distractor problem has four actions and, correspondingly, four tar-

get signals: (1) two (stationary) high-variance targets as distractors (2) a slowly

drifting target and (3) a constant target, with ⇠2
i

and �2
i

for each of these types in

Table 3.2. A distractor target is simply a noisy stationary target: the variance is

high enough such that an agent might oversample the target even after the mean

estimate is accurate. This is inspired by what Burda et al. (2019b) call the noisy-

TV problem (p. 3; Burda et al., 2019a, p. 10), where forms of motivation designed

to encourage learners to make observations where their models need improvement

can also lead them to focus on natural sources of randomness, like a TV where the

channel flips randomly, earlier articulated by Schmidhuber (1991a, p. 1460; 2008,

p. 58).

3.5.3 Introspective Prediction Learners

The behaviour of a learning system that maximizes intrinsic rewards relies on the

underlying prediction-learning algorithms as well as the definition of the intrin-

sic reward. In this section we introduce a distinction between two categories of

learners, for which behaviour can be substantially different: introspective and non-

introspective learners. We consider a learner to be introspective if the algorithm

can modulate its own learning without help from an external process. More con-

cretely, an introspective learner stops updating if it cannot improve. For example,

in the case of prediction learning, an introspective learner would regulate its up-

dates to mitigate noise in its prediction targets. A non-introspective learner, on
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the other hand, will continually update regardless of whether or not the incoming

data is helping it make progress.

We experiment with both non-introspective and introspective learners for the

prediction learners in our multi-prediction problem. We use basic LMS learn-

ers with a constant step-size parameter as our non-introspective learner. With

a constant step-size parameter, the LMS algorithm will always try to adapt its

estimates toward the sample targets on each time step. It does not matter if the

target exhibits high variance or if the target is actually constant; the LMS algo-

rithm will continue to adapt its estimates attempting to track each target in the

online setting. Consider how a constant global step-size parameter would work on

our Drifter-Distractor Problem discussed above. If the step-size parameter value

is too large for the distractor target, then the prediction learner will continually

make large updates due to the sampling variance, never converging to low error.

If the step-size parameter is too small for the tracking target, then the prediction

learner’s estimate will often lag, causing high-error. A constant global step-size

parameter cannot balance the need to track the drifter targets, and the need to

learn slowly on the distractor targets.

To create a simple introspective learner for our setting, we simply combine our

LMS predictors with a step-size adaption method called Autostep. Autostep is a

simple meta-learning algorithm that adapts the step-size parameter of each LMS

learner over time (Mahmood et al., 2012). The basic idea behind Autostep is to

increase the step-size parameter when learning is progressing, and lower the step-

size parameter value when learning is not progressing. It does so by keeping a trace,

h 2 R, of the previous prediction errors. Roughly speaking, if the error changes

sign often then the predictions are not improving and the step-size parameter

value should be lowered. If the error is mostly of the same sign, then the step-size

parameter value should not be reduced. Autostep has one key hyper-parameter,

the meta learning-rate, : this controls how quickly the algorithm changes the

step-size parameter (↵). The full pseudocode, specialized to our stateless tracking
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tasks, is given in Algorithm 1.3 Note that Autostep changes the step-size parameter

with a multiplicative exponential, which allows geometric or rapid changes to the

LMS learners step-size parameter.

Algorithm 1 : The Autostep algorithm specialized to stateless prediction
 is the meta learning-rate parameter
n and h are scalar memory variables initialized to 1 and 0
� is the prediction error and ↵i (initialized to 1.0) the step-size parameter of pre-
dictor i
1: procedure Autostep(�)
2: n max(|�h|, n+ 1

10000↵i(|�h|� n))
3: ↵i  min(↵i exp

�
 �h

n

�
, 0.5)

4: h h(1� ↵i) + ↵i�

To give some intuition about how Autostep changes the step-size parameter,

consider what happens when we apply it to the Drifter-Distractor Problem in

Figure 3.10. Here we simply plot ↵ over time for four LMS learners—one for each

target—with each step-size parameter adapted by Autostep. We used the gradient

bandit algorithm and Weight Change reward4 to generate the behaviour. The

initial ↵ of each LMS learner were set to one. The lines for the constant target

(blue) and drifter target (green) are overlapping, and the lines for the distractor

targets (red and black) are overlapping. Autostep progressively decreases ↵ for the

distractor targets, as the updates oscillate around zero. The update magnitude (or

error) for the constant target goes to zero, and so Autostep stops changing ↵. This

makes sense: why change the ↵ if the prediction is perfect. Autostep keeps the

↵ high for the learner estimating the drifter target, because continual progress

is possible. On each time step the LMS learner moves its estimate towards the

recent sample and most of these updates are in the same direction, at least over a

recent window of time. In terms of prediction performance, Autostep significantly
3Our implementation of Autostep clips the step-size in step 3, given by Degris and White

(2020), and so differs slightly from the form given by Mahmood et al. (2012).
4The details of the intrinsic reward function used to generate the data do not matter for the

purpose of this experiment. Nevertheless, the Weight Change reward will be defined in the next
section.
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improves tracking, enabling different update rates for different prediction learners

and reducing ↵ on unlearnable targets or noisy targets once learning is complete—

as you will see in the experiments included in this study.

� - constant

� - high-variance

� - high-variance

� - drifter

St
ep

-s
iz

e 
o
ve

r 
ti

m
e

Figure 3.10: Sample run showing how Autostep changes the step-size parameters
(↵) over time with Weight Change reward. The lines for the constant target (blue)
and drifter target (green) are overlapping, and the lines for the distractor targets
(red and black) are overlapping.

We experimented with other step-size adaption methods, including ADADELTA

(Zeiler, 2012) and RMSProp (Hinton et al., 2012), but the results were qualitatively

similar. In this study we chose Autostep because (a) it was specifically designed

for non-stationary, incremental, online tracking tasks like ours, (b) it uses a simple

and easy to interpret update rule, and (c) there is a long literature demonstrating

the practical utility of this method dating back to its origins in the Incremental

Delta-Bar-Delta (IDBD) method (Sutton, 1992).

The choice of using meta-learning to obtain introspective learners not only

works well in our multi-prediction tasks, but also should scale to larger tasks with

function approximation in future work. Step-size adaption methods like Adam and

RMSProp can speed up training in neural networks and make learning more robust

to non-stationarity. In online reinforcement learning, extensions of Autostep have

shown to improve prediction and control performance with function approximation

(Kearney et al., 2018; Günther et al., 2020). We discuss these extensions and

how our results go beyond stateless tracking at the end of the study. It is worth
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emphasizing that introspective learners are not optimal learners and that they are

in fact the most common type of agent used in deep reinforcement learning. The

main criterion is that an introspective learner should regulate its own updates

based on an internal measure of improvement.

3.5.4 Intrinsic Rewards for Multi-prediction Learning

Many learning systems draw inspiration from the exploratory behaviour of humans

and animals, uncertainty reduction in active learning, and information theory—

and the resulting techniques could all be packed into the suitcase of curiosity

and intrinsic motivation. In an attempt to distill the key ideas and perform a

meaningful yet inclusive empirical study, we consider only methods applicable to

our problem formulation of multi-prediction learning. Although few approaches

have been suggested for off-policy multi-task reinforcement learning—approaches

by Barto et al. (2004) and White et al. (2014) as notable exceptions—many exist-

ing approaches can be used to generate intrinsic rewards for multiple, independent

prediction learners (see the excellent summary by Barto, 2013). We first summa-

rize methods we evaluate in our empirical study. The specific form of each intrinsic

reward discussed below is given in Table 3.3, with italicized names below corre-

sponding to the entries in the table. We conclude by mentioning several rewards

we did not evaluate, and why.

Reward Name RI

t,i

Absolute Value of Learning
Progress
(Oudeyer et al., 2007)

�����
1

⌘ + 1

⌘X

j=0

�2
t�j�⌧ ,i

� 1

⌘ + 1

⌘X

j=0

�2
t�j,i

�����
Parameter ⌘ specifies the length of the window and parameter ⌧ the
amount of overlap; ⌧  ⌘ < t

Expected Error
(see explanation on p. 85)

����t,i
�
���

The exponentially weighted average, �t,i
�, is incrementally computed at

each step as �t,i
�  (1� �)�t�1,i

�

+ ��t,i, where � 2 (0, 1) is a parameter.
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Step-size Change
(see explanation on p. 103) |↵t�1,i � ↵t,i|

Error Reduction
(see explanation on p. 85;
inspired by Schmidhuber, 1991a)

|�t�1,i|� |�t,i|

Squared Error
(Gordon and Ahissar, 2011) �2

t,i

Bayesian Surprise
(Itti and Baldi, 2006)

1

2
log2

✓
⌫t,i
⌫t�1,i

◆
+

⌫t�1,i + (Ĉt�1,i � Ĉt,i)2

2⌫t,i
� 1

2

An estimate, ⌫(y)
t,i

, of the target variance, var[Ct,i], is obtained using an
exponential average variant of Welford’s algorithm: ⌫(y)

t,i
 (1� �)⌫(y)

t�1,i +

�(Ct,i� Ĉt�1,i)(Ct,i� Ĉt,i) from which the posterior variance estimate, ⌫t,i,
is computed as ⌫t,i = max(⌫(y)

t,i
/dt, 10�3) where dt = (1� �)dt�1 + 1.

Unexpected Demon Error
(White et al., 2014; White, 2015)

�����
�t,i

�

p
var[�t,i] + c

�����
Here c is a small constant, set to 10�6 in our experiments, and var[�t,i]
is a sample variance computed using the mean computed with an
exponentially-weighted average.

Variance of Prediction
(see explanation on p. 88) ⌫̂t,i

Variance of Prediction, ⌫̂t,i, denotes an estimate of var[Ĉt,i], the variance
in the estimate of the target signal, computed using an exponentially-
weighted average variant of Welford’s algorithm:

⌫̂t,i  (1� �)⌫̂t�1,i + �

✓
Ĉt,i � Ĉt�1,i

�
◆✓

Ĉt,i � Ĉt,i

�
◆

(3.14)

for 0 < � < 1, with Ĉt,i

�

= (1 � �)Ĉt�1,i

�

+ �Ĉt,i the exponentially-
weighted average of the predictions for task i.

Uncertainty Change
(see explanation on p. 88) |⌫̂t�1,i � ⌫̂t,i|
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Variance of Prediction, ⌫̂t,i, is computed as shown immediately above in
this table.

Weight Change
(see explanation on p. 88) kwt,i � wt�1,ik1 = ↵tkĈt,i � Ĉt�1,ik1

Absolute Error*
(Schmidhuber, 1991b) |�t,i|

Uncertainty Reduction*
(see explanation on p. 89) ⌫̂t�1,i � ⌫̂t,i

Variance of Prediction, ⌫̂t,i, is computed as shown above in this table.

Table 3.3: Intrinsic rewards investigated in the second study. Separate statistics
are maintained for each task i, and only updated when task i is selected by the
control learner. Starred (*) rewards performed poorly and were excluded from the
results. We compute sample averages using an unbiased exponentially-weighted
average introduced by Sutton and Barto (2018, Eq. 2.9).

Several intrinsic rewards are based on violated expectations, or surprise.

This notion can be formalized using the prediction error itself to compute the in-

stantaneous Absolute Error (Schmidhuber, 1991b) or Squared Error (Gordon and

Ahissar, 2011). We can obtain a less noisy measure of violated expectations with an

exponentially-weighted average of the error, which we call Expected Error. Regard-

less of the specific form, larger error results in larger intrinsic reward, encouraging

further sampling for that target. Such errors can be normalized, as was done for

UDE (White et al., 2014), to mitigate the impact of noise in and magnitude of the

targets.

Another category of methods focus on improvement, and assume that the

learning system is capable of continually improving its policy or predictions. This is

trivially true for approaches designed for tabular stationary problems (Barto et al.,

2004; Still and Precup, 2012; Little and Sommer, 2013; Meuleau and Bourgine,

1999; Barto and Şimşek, 2005; Szita and Lorincz, 2008; Lopes et al., 2012; Schossau

et al., 2016). The most well-known approaches for computational intrinsic motiva-

tion make use of rewards based on improvements in (model) error, including those

proposed by Schmidhuber (1991a, 2008), and Oudeyer et al. (2007). In our experi-
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ments, we include an intrinsic reward inspired by the intrinsic reward that Schmid-

huber (1991a) referred to as “the current change of confidence in [the learner’s world

model]’s current prediction” (p. 1460–1461), which we call Error Reduction. Error

Reduction is a coarse analog of Schmidhuber’s (1991a) proposal, as we compute

the difference in absolute error between one time step and the next, meaning error

is considered for two different observations, as opposed to measuring a difference

in the error for the same observation before and after updating. A better analog,

for this reason, might be �2
t,i
� (Ct,i � wt+1,i)2 = (Ct,i � wt,i)2 � (Ct,i � wt+1,i)2,

but we do not include such a reward in this study due to time constraints. Im-

provement in an extrinsic value function can also be used to construct intrinsic

rewards, such as by using the (signed) TD-error as an intrinsic reward (Schembri

et al., 2007b; Mirolli and Baldassarre, 2013, p. 55) or by tracking improvement in

the value function over all states (Barto and Şimşek, 2005). Our problem does not

include an extrinsic reward, so these last methods are not clearly applicable.

An alternative to improvement is to reward amount of learning. Doing so

does not penalize errors becoming worse, and instead only measures that estimates

are changing: the prediction learner is still adjusting its estimates and so is still

learning. Bayesian Surprise (Itti and Baldi, 2006) formalizes the idea of amount

of learning. A Bayesian learner, here defined as a learner which maintains a dis-

tribution over its weights, allows for the computation of Bayesian Surprise, which

corresponds to the KL-divergence between this distribution over parameters be-

fore and after the update. The KL-divergence, in this case, measures how much

the distribution over parameters has changed. Bayesian Surprise can be seen as

a stochastic sample of mutual information, which is the expected KL-divergence

between prior and posterior across possible observed targets. Linke et al. (2020,

pp. 1303–1306) discuss this further. Other measures based on ‘information gain’

have been explored (Still and Precup, 2012; Little and Sommer, 2013; Achiam

and Sastry, 2017; de Abril and Kanai, 2018; Berseth et al., 2021). In the tabular

case, different variations of information-gain reward perform similarly to Bayesian
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Surprise empirically (Little and Sommer, 2013). In this study we use an approxi-

mation of Bayesian Surprise for non-stationary settings with non-Bayesian learners,

detailed by Linke et al. (2020, p. 1300).

While Bayesian Surprise was originally derived assuming stationarity and Bayesian

learners, we use an approximation of Bayesian Surprise more appropriate for our

non-stationary setting with non-Bayesian learners. In our setting, the prediction

learner’s main objective is to estimate an unknown mean. A Bayesian learner

would maintain a distribution representing its belief about what this unknown

mean could potentially be. Bayesian learning requires the assumption of an ini-

tial such belief distribution; a simple choice is to use a Gaussian distribution with

an assumed variance. This choice has the advantage that the posterior belief

distribution will also be Gaussian. We can have this advantage assuming the

observations, Ct,i, made by the learner are themselves drawn from Gaussian dis-

tributions with known variance. In our case, the observations are indeed drawn

from Gaussian distributions (refer to Equation 3.12), but we do not actually know

the variance, �2
i
. To mitigate this issue, we maintain an estimate of the target

distribution’s variance, ⌫(y)
t,i

, and use it as our “known” variance.5 We estimate the

variance using an exponentially-weighted average variant of Welford’s algorithm:

⌫(y)
t,i
 (1� �)⌫(y)

t�1,i + �(Ct,i� Ĉt�1,i)(Ct,i� Ĉt,i); using the exponentially-weighted

average helps account for the non-stationarity of the target distribution. At each

time step, we construct analogs of the Bayesian prior and posterior distributions.

For the prior distribution, we take the mean to simply be the prediction learner’s

estimate, Ĉt,i, of the mean at time t (before the observation at time t) and the

variance to be ⌫(y)
t,i

/dt, where dt = (1 � �)dt�1 + 1. The denominator, dt is like a

decayed version of t. If we were doing a real Bayesian update for a Gaussian prior

with the observations drawn from a Gaussian with known, constant variance (that
5Typically, a Bayesian learner would simply maintain a distribution over both the mean and

variance when both are unknown. Our goal here, however, is to approximate Bayesian surprise
for a non-Bayesian learner. Since the learner only estimates the mean, we assume that the
corresponding Bayesian learner can only maintain a distribution over the mean.
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is, if we knew �2
i
), then the posterior variance, ⌫t,i, would satisfy 1

⌫t,i
= 1

⌫prior
+ t

�
2
i
,

where ⌫prior is the prior to the update at time t = 1. We consider ⌫prior to be

infinite,6 so the preceding equation simplifies to ⌫t,i =
�
2
i
t
. But because we need to

estimate �2
i
, we replace �2

i
with the estimate ⌫(y)

t,i
and because the distribution is

non-stationary, we replace t with a decaying analog, dt (each new sample does not

provide as much increase in certainty as it would if the distribution was stationary)

and prevent the variance from decreasing below 10�3. We do not claim that this is

an ideal approximation strategy for Bayesian Surprise for non-Bayesian learners,

but employ it as a simple strategy that allows us to include an approximation of

Bayesian Surprise in our experiments.

We can additionally consider non-Bayesian strategies for measuring amount of

learning. In this work, we include four intrinsic rewards invoking such strategies.

Absolute Value of Learning Progress, adapted from Oudeyer et al. (2007), reflects

change in error over a recent time interval. Variance of Prediction similarly re-

flects amount of learning via measuring the amount of recent variability in the

prediction learner’s estimate. Rewarding Variance of Prediction can also be seen

as encouraging behaviour analogous to uncertainty sampling from active learning:

Settles (2012) describes uncertainty sampling as querying the “which the learner

has the highest output variance in its prediction” (p. 17). Variance of Prediction

can be manipulated to produce what we call Uncertainty Change: how much the

Variance of Prediction estimate has changed since the preceding time step, which

reflects the degree to which the prediction learner is settling on a stable prediction.

Last, we also include an intrinsic reward based on the change in weights: Weight

Change can be understood as measuring amount of learning when the control

learner trusts that the prediction learners are using the observed data appropri-

ately towards their primary responsibility of estimating their targets accurately.
6A normal distribution with infinite variance can be thought of as a uniform distribution over

the entire real line, which implies no prior knowledge about the unknown mean, which is exactly
our situation prior to making any observations. This ‘distribution’ is not a valid probability
distribution, but it is what is known as an improper prior in Bayesian statistics, and still results
in a valid posterior after the first observation.
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With this assumption, the learning system can make use of intrinsic rewards based

solely on the prediction learner’s parameters, such as the change in the weights.

In this work, we define Weight Change using the `1 norm,

Weight Change(wt,i, wt+1,i) ..= kwt,i � wt+1,ik1. (3.15)

Note that, in our setting, Weight Change is simply Absolute Error scaled by the

step-size parameter, emphasizing the role that learner capability plays in ensuring

an effective reward.

kwt,i � wt+1,ik1 = kwt,i � [wt,i + ↵t,i�t,i]| {z }
(3.10)

k1 (3.16)

= k � ↵t,i�t,ik1 = ↵t,i|�t,i| (3.17)

If we instead assumed that the prediction learners could not be trusted, the

intrinsic rewards would need to be computed to overcome poor learning. This

approach would require the learning system to recognize when a prediction learner

is non-introspective, and decrease the reward associated with that learner. If

the learning system can measure this, though, then presumably so too can the

prediction learner—they are, after all, part of the same system. The prediction

learner should then be able to use the same measure to adjust its own learning.

The Uncertainty Change intrinsic reward can be modified to reflect improve-

ment rather than amount of learning by removing the absolute value. We experi-

mented with such a reward, calling it Uncertainty Reduction.

We omit several strategies because they either (1) would result in uniform ex-

ploration in our pure exploration problem, (2) require particular predictions about

state to drive exploration, (3) are designed for the offline batch setting, or (4) are

based on statistics of the targets rather than the statistics generated by the pre-

diction learners. Count-based approaches (e.g., Brafman and Tennenholtz, 2002;

Bellemare et al., 2016; Sutton and Barto, 2018) are completely unsupervised, re-

warding visits to under-sampled states or actions—resulting in uniform exploration

in our problem. Though count-based approaches are sometimes used in learning
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systems, they reflect novelty rather than improvement or surprise (compare Barto

et al., 2013).

The second set of strategies we omit are methods that use a model to en-

courage exploration (Schmidhuber, 2008; Barto et al., 2004; Stadie et al., 2015;

Pathak et al., 2017, 2019) such as by using Bayesian Surprise for next-state pre-

diction (Houthooft et al., 2016). Subgoal discovery systems (Kulkarni et al., 2016;

Andrychowicz et al., 2017; Péré et al., 2018) define rewards to reach particular

states. Empowerment and state control systems are explicitly designed to respect

and use the fact that some tasks or regions of the state-space cannot be well

learned. Often such systems use only unsupervised signals relating to statistics

of the exploration policy, ignoring the statistics generated by the learning process

itself (Karl et al., 2022). Like count-based approaches, unsupervised measures like

this would induce uniform exploration in our stateless task.

Curriculum learning—learning what task to sample next—is closely related to

our multi-prediction problem. Graves et al. (2017) introduce several measures

for batch curriculum learning that are related to the ideas underlying the intrin-

sic rewards discussed above. Most related, Prediction Gain corresponds to Error

Reduction, albeit assuming a batch of data rather than an online instance. An

approximation, called Gradient Prediction Gain, corresponds to the norm of the

gradient; for our setting, this is the same as the Absolute Error. Several of the mea-

sures considered by Graves et al. (2017) require the ability to sample new batches

of data, such as Supervised Prediction Gain and Target Prediction Gain. Finally,

Graves et al. (2017) investigated several Complexity Gain measures for the neu-

ral networks, measuring KL divergence between the posterior and a learned prior.

The prior is updated towards the previous posterior, and so the resulting KL is

related to Bayesian Surprise. The KL itself, though, is not used: rather, the gain

in complexity is measured by looking at the difference in two KLs, before and

after an update. These approaches require Bayesian learners with a separate prior

distribution to be learned just to measure the complexity. The most simple and
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computationally feasible of these is L2 Gain, which is simply the difference in `2

norm of the weights before and after and update: kwt,ik22 � kwt�1,ik22. L2 Gain

rewards the learning system for making the weights smaller, and performed worse

than random for curriculum learning (Graves et al., 2017).

Finally, we do not test intrinsic rewards based only on targets, such as variance

of the target. To see why, consider a behaviour that estimates the variance for a

constant target, and quickly determines it only needs to select that action a few

times. The prediction learner, however, could have a poor estimate of this tar-

get, and may need many more samples to converge to the true value. Separately

estimating possible amount of learning from actual amount of learning has clear

limitations. Note that in the stationary bandit setting, with a simple sample av-

erage learner, the variance of the target provides a measure of uncertainty for the

learned prediction (Audibert et al., 2009; Garivier and Moulines, 2011; Antos et al.,

2008), and has been successfully applied in education applications (Liu et al., 2014;

Clement et al., 2015). When generalizing to other learners and problem settings,

however, variance of the target will no longer obviously reflect uncertainty in the

predictions. We therefore instead directly test intrinsic rewards that measure un-

certainty in predictions, including Uncertainty Change and Variance of Prediction.

3.5.5 Experimental Setup

We conducted five experiments in the Drifter-Distractor problem described in Sec-

tion 3.5.2. The goal of these experiments is to (a) assess the utility of different

intrinsic rewards in our testbed, and (b) to understand how the ability of the

underlying prediction learners—introspective or not—impact the results.

Each component of the learning system is modulated by several hyper-parameters

that interact in different ways. The control learner (using the gradient bandit al-

gorithm) makes use of a step-size parameter ↵ and the step-size parameter of

its average reward estimate ↵r. For non-introspective learners, each prediction

learner makes use of a (shared) step-size parameter ↵p, with ↵i = ↵p for all i.
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For introspective learners, the step-size adaption method Autostep uses a meta

learning-rate parameter . Finally, many of the intrinsic rewards have their own

tunable parameters. For example, UDE uses an exponential average of recent er-

rors which requires a smoothing parameter, �. The Absolute Value of Learning

Progress reward makes use of two windows of recent errors determined by scalar

parameters ⌘ and ⌧ . In most cases the key parameters of the prediction learner,

control learner, and intrinsic reward correspond to different timescales—slower or

faster—and so required noticeably different values. We show that these choices

have a big impact on behaviour, so we needed extensive sweeps and analysis to

gain insight into the methods. This warranted investigating each result deeply, to

communicate a nuanced picture.
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Hyper-parameters
control learner Step-size parameter ↵ 2{2�8, 2�7,

... , 2�2}
(Gradient bandit algorithm) Average reward rate

↵r 2{10�5, 10�4, ... , 10�1}
control learner Step-size parameter ↵ 2{2�8, 2�7,

... , 2�2}
(Dynamic Thompson Sampling) Initial mean estimate ma = 100

Non-introspective prediction
learner

Step-size parameter

(LMS with a constant step-size parame-
ter)

↵p 2{2�7, 2�6, ... , 2�2} , with ↵i =
↵p

Introspective prediction learner Meta learning-rate
(LMS with Autostep)  2{0.01, 0.05, 0.1}

Initial step-size ↵0,i = 1.0

Smoothing parameter
(Variance of Prediction, Uncertainty
Change, Bayesian Surprise, UDE, Ex-
pected Error)

� 2{10�7, 10�6, ... , 10�1}

Absolute Value of Learning
Progress Window

⌘ 2{1, 5, 10, 25, 100, 1000}

(all combinations s.t. ⌘ > ⌧) ⌧ 2{1, 5, 10, 25, 100}

Table 3.4: The hyper-parameter configurations investigated across all experiments
in the second study. There was a total of 50,000 combinations of intrinsic reward
function and hyper-parameter setting, with each of these evaluated using 200 in-
dependent runs.
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We extensively sweep all the key performance parameters of every learner and

reward function, to ensure an accurate characterization of performance. Table 3.4

lists all the parameter settings we tested. In some cases we report results for several

parameters to gain more specific insights into the behaviour induced by an intrinsic

reward. When providing overall results, we report the best performance of the

learning system for each intrinsic reward, using the best performing parameters

across all parameters tested. The best performing parameters were those that

achieved the lowest total MSE (defined in Equation 3.11) averaged over every

timestep of the experiment and averaged over 200 independent runs. All told

we tested over 50,000 parameter configurations 200 times each across our three

experiments.

When reporting results under the best parameters, we jointly tune hyper-

parameters for the intrinsic reward and the prediction learners. These hyper-

parameters are all part of the agent; the best hyper-parameters reflect the best the

agent could do for that intrinsic reward and prediction learner. Even under ideal

circumstances, many intrinsic rewards can fail to induce the desired behaviour,

highlighting issues with the intrinsic rewards or with the use of non-introspective

learners.

Nonetheless, reporting the best parameters does not provide the full picture,

and though we attempt to highlight certain key results for other hyper-parameters,

we cannot and do not attempt to show the full picture. Ideally, we could slice down

further, to provide this nuance. At the extreme, this could consist of showing all

possible intrinsic rewards—Absolute Value of Learning Progress with the smallest

step-size parameter, Absolute Value of Learning Progress with a the largest step-

size parameter, and so on—for each of the many combinations of prediction learner

and control learner (with different hyper-parameter settings). This is infeasible,7

and part of the role of the empirical analysis is to summarize key outcomes. We
7To enable the reader to do this on their own, we have provided a Python notebook to explore

the full set of data, at http://jair.adaptingbehaviour.com.
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have provided what we believe are the key slices: different intrinsic rewards (under

their ideal circumstances) with two types of prediction learners (non-introspective

and introspective). When intrinsic rewards fail under idealized scenarios, this

reflects how they might perform across hyper-parameter settings. When intrinsic

rewards result in near-ideal behaviour, we then dig deeper to understand if this was

an accident of idealized hyper-parameter tuning, or more generally a characteristic

of the intrinsic reward.

We follow the same basic template in the presentation of the results. First

we report the behaviour of the best configuration for each reward function using

non-introspective learners (i.e., without Autostep). For a given reward, the be-

haviour is depicted by the probability of selecting each action over time according

to the control learner’s policy. This gives us insight into how each reward drives

action selection over time. We then investigate the MSE over time, plotting both

the error of each predictor and the average. Finally, in each experiment we inves-

tigate the performance sensitivity of several intrinsic rewards with respect to the

tunable parameters. This provides more detailed understanding of how the param-

eters interact and helps explain when some intrinsic rewards produce unexpected

behaviours.

As a final note, the behaviour plots (showing the action selection probability)

do not include error bars. The error bars over 200 runs are negligibly small,

except in some cases where action probabilities across runs varied significantly for

poorly performing intrinsic rewards (e.g., the selection of the distractor targets

with Squared Error reward in Figure 3.15). The variance across runs, however,

can both make the plots difficult to read and hides how the action probabilities

can vary over time within one run. For these plots, therefore, we instead show

a sampling of individual runs. All learning curves (plotting root MSE) include

standard error bars. The error bars in all learning curves are not visible because

they are smaller than the width of the mean line.

95



3.5.6 Experiment: The Drifter-Distractor Problem

The Drifter-Distractor problem has one constant target, two distractor targets

and one drifter target (see Figure 3.9 in Section 3.5.2). This four-action problem

highlights some key features we want from our learned behaviours. The behaviour

should not be continually distracted by noisy or unlearnable things (the two distrac-

tor targets). It should be able to quickly learn about simple targets (the constant

target), and ultimately focus action selection on targets that result in continual

prediction improvement (the drifter target). We test if such a behaviour is learned,

with non-introspective and introspective learners, under different intrinsic rewards.

Let us first be more precise about how the behaviour should look in this prob-

lem. Consider the ideal setting, where we have a Bayesian prediction learner. The

behaviour should try out all the actions in the beginning. The prediction learner

associated with the constant target should quickly reduce its error and control

learner should almost completely stop selecting the corresponding action. The

prediction learners associated with the high-variance distractor targets will take

longer to learn due to the target variance, but eventually the posterior for these

narrows as well and the learner converges to the correct prediction of zero. Once

that happens the behaviour should stop choosing the actions corresponding to

the distractor targets. Finally, the prediction learner corresponding to the drifter

target cannot ever reduce its error to zero: unending prediction improvement is

possible. A Bayesian learner for the drifter target is effectively performing filter-

ing, and needs to see samples constantly to track the changing mean. Therefore

the behaviour should eventually settle on selecting the action corresponding to the

drifter target the majority of the time. This behaviour is the ideal, or correct,

behaviour, in that it most efficiently gathers the data needed for each prediction

task.

There are a few common degenerate behaviours that are possible in this prob-

lem. The first is over-selecting the actions corresponding to the distractor tar-

gets. Every time the behaviour takes one of these actions, the corresponding
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non-introspective prediction learner updates toward a random target and so its

predictions can oscillate around the optimum. Over short windows of time, the

variance of the drifter target is smaller than the distractor targets; within that

window, the errors generated by the distractor targets will appear larger. This

results in the behaviour frequently selecting the distractor targets, occasionally

selecting the drifter target and cycling between the three. Any methods that rely

on prediction learners to not chase noise, such as Weight Change, should exhibit

this degenerate behaviour. With non-introspective learners, this can only be pre-

vented if the intrinsic reward can somehow distinguish between distractor targets

and drifter targets.

The other common degenerate behaviour is selecting all actions nearly equally.

This strategy does not result in the lowest possible MSE, but it does result in lower

MSE than other behaviours such as mostly selecting the actions corresponding to

the distractor targets. The uniform strategy emerges because there is no setting

of the parameters of the intrinsic reward to force the behaviour to follow the ideal

strategy described above.

3.5.6.1 Results with Non-introspective learners

Figure 3.11 summarizes the behaviour of the gradient bandit algorithm with several

intrinsic reward functions, with non-introspective learners. The bold dash lines

reflect the probabilities averaged over 200 runs, while the light stroke solid lines

depict probabilities of individual runs. Several rewards induced the ideal behaviour

described above to varying degrees. Rewards based on simple moving averages

of each learner’s prediction error, including Expected Error and UDE, quickly

latch on to the action corresponding to the drifter target. The parameter sweep

chose a short averaging window, because the � are more consistently the same

sign for the drifter target, making the Expected Error higher for the drifter target.

Using the variance of each predictors estimate, as in Variance of Prediction and

Uncertainty Reduction, the behaviour also converges to mostly selecting the action
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Figure 3.11: Behaviour in the Drifter-Distractor problem with non-
introspective learners. Each subplot corresponds to the behaviour of the gra-
dient bandit algorithm with a different intrinsic reward. Each line depicts the
action selection probabilities learned by the control learner, over 50000 steps. The
bold dashed lines show the mean probability of each action, averaged over 200
repetitions of the experiment. The light stroke solid lines show the probabilities
computed by the gradient bandit algorithm for each action on individual runs—we
only show a small random subset of 15 runs for readability. The green line corre-
sponds to the drifter target, the blue line corresponds to the constant target, and
the red and black lines correspond to the distractor targets. Intrinsic rewards
based on variance estimates and averaging errors over time induce near-ideal ac-
tion selection.
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corresponding to the drifter target, after exploring the actions corresponding to the

constant and distractor targets initially a bit longer. A parameter corresponding to

a long window is used, because the predictions for the drifter target change much

more over time than those for the distractor targets. Perhaps unsurprisingly the

Squared Error and Error Reduction produce inappropriate behaviour. Bayesian

Surprise and Weight Change cause the gradient bandit algorithm to be distracted

by the distractor targets resulting in sub-optimal behaviour. The Absolute Value of

Learning Progress reward induces behaviour that looks near-ideal in expectation,

albeit there is more variance across runs than exhibited by other intrinsic reward

functions.
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Figure 3.12: The impact of varying the key parameters ⌘ and ⌧ of the Absolute
Value of Learning Progress reward, in the Drifter-Distractor problem, with
non-introspective learners. Each subplot depicts the behaviour of the gradient
bandit algorithm with the Absolute Value of Learning Progress reward for many
combinations of ⌘, ⌧ as indicated by the labels. As in Figure 3.11, each subplot
shows both the average action selection probability for each action over time, and
a small subset of individual runs. A large diversity of behaviours can be induced
by changes to the window length parameters. Only one setting induced correct
behaviour: ⌘ = 1000, ⌧ = 100. This explains why the initial action selection was
uniform in Figure 3.11: the reward is zero until the windows fill, which takes 1000
steps for ⌘ = 1000.

Performance in the Drifter-Distractor problem with non-introspective learners
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is largely dependent on setting the hyper-parameters of the each reward correctly.

To illustrate this sensitivity, consider the Absolute Value of Learning Progress

reward, which is parameterized by two scalars ⌘ and ⌧ . The ⌘ parameter controls

the size of the window used to average recent errors, and ⌧ controls how much each

of the two windows overlap. Figure 3.12 shows the behaviour of the gradient bandit

algorithm, in terms of action selection probability over time, for every combination

of ⌘ and ⌧ . For each pair of (⌘, ⌧) we selected all the other hyper-parameters in the

learning system to minimize the total MSE; each subplot of the figure represents

the best performance possible for a given (⌘, ⌧) pair according to MSE. Across

these combinations, we see the full gamut of behaviours. Only one setting out of

twelve exhibited the described good behaviour; most were uniform or focused on

the distractor targets.
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Figure 3.13: The impact of varying the LMS step-size parameter, ↵p, with the Ab-
solute Value of Learning Progress intrinsic reward, in the Drifter-Distractor
problem, with Non-introspective learners. Each subplot depicts the behaviour
of the gradient bandit algorithm with Absolute Value of Learning Progress reward
for for different values of ↵p as indicated by the labels. Large ↵p—faster target
tracking—induces a uniform behaviour, and smaller ↵p produce action selection
more similar to the ideal behaviour but MSE is higher because predictions are
learned slowly. The third subplot, corresponding to ↵p = 0.03125, achieved the
lowest total MSE, because it allowed for somewhat faster learning for the predic-
tions, but was still slow enough for the behaviour to estimate learning.

The hyper-parameters of the other components of the learning system also in-

teract with the reward function. Figure 3.13 shows the best behaviour—in terms

of MSE—of the gradient bandit algorithm for different values of the LMS predic-
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tor step-size parameter ↵p. As the predictors learn faster, the Absolute Value of

Learning Progress reward induces nearly uniform action selection. If we slow the

prediction learners updates with a smaller step-size parameter value, then the be-

haviour strongly favors the action for the drifter target. This makes sense because

with a small ↵p, the intrinsic reward for the distractor targets becomes smaller

and much bigger for the drifter target because the step-size parameter value is not

large enough to track quickly. Though the action selection by the behaviour is

correct, this is not what we want from the learning system: we want the prediction

learners to learn quickly, rather than artificially slowly so that the behaviour can

more easily track what they know. In fact, with small step-size parameter values,

the MSE is much worse than we can get with the introspective learners, where it is

much easier to estimate prediction improvement and prediction learners can learn

more aggressively.

Finally, let us investigate the error over time for each intrinsic reward. Figure

3.14 shows the exponential average of the root MSE over time for each reward

function. We choose an exponential average to smooth the results (with a decay

constant of 0.999). We plot both the error of each target, and the error average

across targets. All rewards except UDE result in perfect prediction of the constant

target; even UDE has near-zero error, indicating only minor under-selection of the

action for the constant target. Rewards that induce nearly uniform action selec-

tion generate larger prediction error in aggregate (Error Reduction and Bayesian

Surprise). Reward functions that do not induce a strong preference for the drifter

target exhibit high or growing error (Weight Change). Rewards that induce strong

preference for the distractor targets do achieve better error on those predictions

at the cost of accuracy in predicting the drifter targets (Squared Error). Achiev-

ing the lowest overall error requires first selecting the actions for the constant

and distractor targets at first, and then focusing on the drifter target (i.e., UDE,

Uncertainty Change, and Variance of Prediction).
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Figure 3.14: Root MSE over time corresponding to each intrinsic reward function
in the Drifter-Distractor problem with non-introspective learners. Each
subplot corresponds to a different reward as labelled. The line colors correspond
exactly as in the previous plots: green drifting, black and red high-variance,
and blue constant. Each line is the exponentially weighted moving average of
the LMS predictor’s root MSE. The root MSE is computed with an exponential
average, with a decay 0.999. The final results are averaged over 200 independent
runs (standard error bars are plotted but not visible). The heavy stroke black
dashed line reports average of the other four. Although many rewards induce
similar action selection strategies, they can produce different root MSE curves.
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3.5.6.2 Results with Introspective Learners

In this section we analyze the impact of different intrinsic rewards with introspec-

tive learners. We use LMS learners with Autostep, a step-size adaption method,

to obtain introspective prediction learners. First let us recall how the step-size

parameter for each LMS learner might change over time (see Figure 3.10 in Sec-

tion 3.5.3 for reference), based on the errors generated by each of our three target

types. The distractor targets are noisy—even if the mean is stable—so the LMS

learner will experience positive and negative errors. The Autostep algorithm will

reduce the step-size parameter corresponding to these targets, allowing each LMS

learner to mitigate the variance and converge to the correct prediction of zero.

The constant target on the other hand is easy to predict. Autostep will keep the

step-size parameter large because the errors will be of the same sign. However, the

error on the constant error can easily be reduced to zero with repeated sampling.

Once the prediction error is zero Autostep will modify the step-size parameter no

further. The drifter target has noise, like the distractor targets, but the mean is

not centered at zero, and it exhibits temporal structure. Consequently, the Au-

tostep algorithm will keep the step-size parameter value high for the duration of

the experiment. It is not hard to see that introspective learners should efficiently

reduce error across all the targets, at least compared with a global, constant step-

size parameter value. More subtly, an intrinsic reward that takes into account the

dynamic values of the step-size parameter could exploit this additional information

to adapt behaviour to reduce error even faster.

The setup of our second experiment was identical to the first except that each

LMS learner maintained its own step-size parameter, ↵t,i, updated via Autostep.

We also include an intrinsic reward based on the amount of change in the step-size

parameter, Step-size Change, to assess the utility of rewarding action choices that

caused changes in the step-size parameter values. This reward only makes sense

if the step-size parameter can change over time, and thus was not included in the

previous experiment.
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Figure 3.15: Behaviour in the Drifter-Distractor problem with introspective
learners. Each subplot corresponds to the behaviour of the gradient bandit al-
gorithm with a different intrinsic reward. Each LMS learner uses the Autostep
algorithm to adapt the step-size parameter over time. The line coloring, labelling,
and semantics mirror Figure 3.11. With Autostep, Weight Change induces near-
ideal action selection. Absolute Value of Learning Progress and Expected Error
rewards, on the other hand, induce inappropriate action selection.
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The results of our second experiment are summarized in Figure 3.15. As before

we plot the action selection probabilities to summarize the behaviour. Weight

Change reward now induces near-ideal action selection. The step-size parameters

for the distractor targets decay to a relatively small values causing Weight Change

to decrease—those actions become less and less rewarding. Autostep keeps the

step-size parameter value relatively high for the drifter target, on the other hand,

and the change in weights remains relatively high. Finally, even though the step-

size parameter does not decay to zero for the constant target, the prediction error

for the constant target does go to zero. Consequently, the magnitude of the update

also goes to zero, meaning Weight Change goes to zero and preference for the

constant target diminishes over time. Bayesian Surprise induces similar behaviour

as Weight Change as suggested by analysis by Linke et al. (2020, pp.1303-1306).

The variance-based rewards and UDE induce the same overall action preferences

as without Autostep.

Across the board, MSE is reduced, as shown in Figure 3.16. The root MSE

is about half of that for the non-introspective learners. The differences in root

MSE between the intrinsic rewards appear more minor, but the differences are

meaningful. The total root MSE is well correlated with our definition of ideal

behaviour in this domain—reward functions that result in lower error exhibit the

expected action preferences over time. To see larger differences, though, we need

more actions. This first experiment was primarily designed to investigate qual-

itative behaviour; the final experiment uses more actions and provides a better

insight into quantitative differences.

For non-introspective learners, we observed that careful tuning of hyper-parameters

allowed for the correct behaviour for certain intrinsic rewards, by slowing predic-

tion learning. This was the case for the Absolute Value of Learning Progress, where

in Figure 3.13 we observed that if the predictors learned too quickly, the drifter

target did not produce the highest Absolute Value of Learning Progress. For in-

trospective learners, prediction learning cannot be slowed: they increase learning
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Figure 3.16: Root MSE over time corresponding to each intrinsic reward func-
tion in the Drifter-Distractor problem with introspective learners. Results
averaged over 200 runs, and standard error bars included. In this experiment,
reward functions that induce similar action preferences produce similar root MSE
reduction over profiles. Using Weight Change reward produces the lowest root
MSE (0.108), however both UDE (0.109) and Uncertainty Change (0.110) result
in similar performance. Squared Error results in the worst performance overall
(0.292), and rewards that induce uniform action selection like Absolute Value of
Learning Progress result in larger error (0.124) compared with Weight Change.

when learning is possible. We might expect Absolute Value of Learning Progress

to therefore perform poorly, and be unable to find an appropriate hyper-parameter

setting. We find this is the case: Absolute Value of Learning Progress with Au-

tostep does not induce the action selection preferences we expect—it causes nearly

uniform action behaviour—and no setting of the window parameters resulted in

appropriate action preferences (Figure 3.17).

Overall, the preference for the drifter target is less pronounced with introspec-

tive learners, as seen in Figure 3.15. Instead, the behaviour selects the actions for

the distractor targets for longer. This is because step-size adaption is a meta (or

second order) learning process, and so a non-trivial amount of data is required to

recognize that learning is oscillating.
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Figure 3.17: The impact of varying the window length parameters ⌘ and ⌧ of Ab-
solute Value of Learning Progress reward in the Drifter-Distractor problem
with introspective learners.

One might therefore wonder if rewards like Weight Change simply hide the

hyper-parameter tuning issue inside the step-size adaption algorithm. This seems

not to be the case: the parameters of Autostep are straightforward to tune, and

the behaviour is largely insensitive to these choices as shown in Figure 3.18. Small

meta learning-rate parameter values slow learning but do not prevent preference

for the drifter target. The results of our first experiment highlight the utility of

both simple intrinsic rewards—one’s without hyper-parameters—and introspective

learners in multi-prediction learning systems.
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Figure 3.18: Action selection probabilities for the gradient bandit algorithm with
Weight-Change reward under different meta learning-rate parameter values ,
in the Drifter-Distractor problem with introspective learners.
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One final point of note is the surprising difference between UDE and Expected

Error. In the previous experiment, with non-introspective learners, they performed

similarly. In this experiment, with introspective learners, Expected Error results

in uniform action selection whereas UDE provides the correct behaviour. This is

surprising, as UDE corresponds to Expected Error divided by the long-run sample

standard deviation of the target. If we look more closely at the behaviour induced

by Expected Error with different smoothing parameters, �, in Figure 3.19, it be-

comes more clear why this is the case. A small � results in early errors dominating

the exponentially-weighted average; consequently, the constant target is preferred,

as it generates high error at first. A larger � is needed to avoid this issue, but this

unfortunately causes poor estimates of the true expected error for the distractor

targets (which should be zero). In fact, it makes the errors for those target appear

higher. Consequently, for the four smaller � settings, the constant target is pre-

ferred and for the two large �, the distractor targets are preferred; there is no �

amongst our set that lets the behaviour focus on the drifter target.

UDE, on the other hand, has a way to overcome this: the long-run variance

estimate makes the drifter target appear better. The variance of the drifter target

appears small in the beginning of learning, and it takes many steps to start to

recognize that it is actually high variance. In contrast, the variance estimate for

the distractor targets are learned quickly, and the variance for the constant target

looks higher initially due to consistent decrease in the error. This behaviour is

perhaps a bit accidental, and again highlights the complex interactions between

all these hyper-parameters. This only further motivates the utility of intrinsic

rewards without hyper-parameters, that instead rely on introspective prediction

learners.
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Figure 3.19: The impact of varying the smoothing parameter � of Expected
Error reward in the Drifter-Distractor problem with introspective learners.

3.5.7 Discussion: Adapting the Behaviour of a Horde of
Demons

The ideas and algorithms promoted in this study may be more impactful when

combined with policy-contingent, temporally-extended prediction learning. Imag-

ine learning hundreds or thousands of off-policy predictions from a single stream of

experience, as in the UNREAL (Jaderberg et al., 2017) and Horde (Sutton et al.,

2011) architectures. In these settings, the behaviour must balance overall speed of

learning with prediction accuracy. That is, balancing action choices that generate

off-policy updates across many predictions, with the need to occasionally choose

actions in almost total agreement with one particular policy. In general we can-

not assume that each prediction target is independent as we have done in this

study; selecting a particular sequence of actions might generate useful off-policy

updates to several predictions in parallel (White et al., 2012). There have been

several promising investigations of how intrinsic rewards might benefit single (al-

beit complex) task learning (see Pathak et al., 2017; Hester and Stone, 2017; Tang

et al., 2017; Colas et al., 2018; Pathak et al., 2019). However, to the best of our

knowledge, no existing work has studied adapting the behaviour based on intrinsic

rewards of a model-based or otherwise parallel off-policy learning system.

Simple intrinsic reward schemes and the concept of an introspective learning

system should scale nicely to these more ambitious problem settings. We could
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swap our stateless LMS learners for Q-learning with experience replay, or gradient

temporal-difference learning (Maei et al., 2010). The Weight Change reward could

be computed for each predictor with computation linear in the number of weights.

It would be natural to learn the behaviour policy with an average-reward actor-

critic architecture, instead of the gradient bandit algorithm used here. Finally,

the notion of an introspective learner still simply requires that each prediction

learner can adapt its rate of learning. This can be achieved with quasi second

order methods like Adam (Kingma and Ba, 2015), or extensions of the Autostep

algorithm to the case of temporal difference learning and function approximation

(Kearney et al., 2018, 2019; Günther et al., 2020; Jacobsen et al., 2019). It is not

possible to know if the ideas advocated in this study will work well in a large-scale

off-policy prediction learning architecture like Horde, however they will certainly

scale up.

Maximizing intrinsic reward as presented in this study is not a form of explo-

ration, its the objective of the learning system—the agent must explore in order

to maximize the intrinsic reward. The intrinsic rewards do not provide a bonus to

help improve exploration. In our stateless prediction task, sufficient exploration

was provided by the stochastic behaviour policy. This will not always be the case,

and additional exploration will likely be needed. Efficient exploration is an open

problem in reinforcement learning. Combining the ideas advocated in this study

with exploration bonuses or planning could work well, but this topic is left to

future work.

3.5.8 Discussion: The Second Study in Context

The Drifter-Distractor is just one problem in the benchmark suite for compar-

ing intrinsic rewards proposed by Linke et al. (2020). For a learner to perform

successfully on this benchmark, it must demonstrate several important capabili-

ties: avoiding dawdling on noisy outcomes, tracking non-stationary outcomes, and

seeking actions for which consistent improvement is possible. This study included

110



the empirical investigation of analogs of ten different well-known intrinsic reward

schemes. In the process, we found that simple intrinsic rewards based on amount of

learning can induce effective behaviour—avoiding classic degenerative behaviour—

if the base prediction learners are introspective. Introspective prediction learners

can decide for themselves when learning is done. Our results show the strength

of focusing on more effective learning alongside simple (ideally parameter-free) in-

trinsic rewards. We found that intrinsic rewards based on amount of learning—like

Weight Change—can perform well in problems specifically designed to distract the

learning system.

This second study is a case study for how Curiosity Bandits can be used for

both quantitative and qualitative comparison of different learners with open-ended

behaviour. While this study was interested in accurate learners, so we used MSE

as a measure of performance, other measures of performance can and should be

considered.

3.6 Discussion: The Role of Interpretation

As I mentioned in Section 2.2, some authors, like Stojanov and Kulakov (2006),

argue that curiosity requires a “more refined model for internal representation and

thinking” than that used by the RL framework (pp. 46–47). However, through

these experiments, we see that even simple decision-making problem models of the

world still provide considerable complexity to consider.

The majority of intrinsic motivation methods are not designed for use in a

simple decision process, and may use more information than differentiable states,

actions, and rewards. Therefore, there are multiple ways to interpret each method

when implementing an agent to make decisions in a simple single-state domain.

For instance, many of the approaches I hope to test rely on other system compo-

nents (like the expert learning machines in the approach devised by Oudeyer et al.

(2007), which could be implemented many ways, including with neural networks,
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support-vector machines, Bayesian machines (Oudeyer et al., 2007, p. 270) or RL

techniques). The choices made for these components necessarily have an impact

on the behaviour of the overall system. For these reasons, these experiments do

not give a complete evaluation of the possibilities inspired by each researcher’s

methods. However, it would be possible to explore the results achieved when these

other components are manipulated. For example, how do different error-based

IM methods compare when the prediction error is computed using different algo-

rithms? In the first study we used Sarsa (temporally extended, policy-dependent

predictions), and in the second we used LMS learning (myopic predictions), but

one could consider other alternatives.

3.7 Conclusions

The goal of this work was to systematically investigate curiosity methods, and

intrinsic reward methods more broadly. This chapter has two central contribu-

tions. The first is the introduction of curiosity bandits as a way to study intrinsic

motivation algorithms in a unified context. The second is a comprehensive empir-

ical comparison of different intrinsic reward mechanisms that, for the first time,

puts them in context with each other. Along with a survey of intrinsically moti-

vated learning systems, this work provides several new insights into the strengths

and weakness of different intrinsic reward mechanisms, and may provide guidance

for constructing larger, even more complex intrinsically-motivated reinforcement

learning systems where an extensive and systematic study like ours is not feasible.

3.7.1 Fielding the Diversity of Curiosity

Curiosity is diversely defined. This is part of what makes computational curiosity

so challenging and the approaches so widely varying. What kinds of behaviour

should be considered curious is unclear, and the views on its benefits to an agent

are discordant. So far, according to Santucci et al. (2012), most computational
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curiosity mechanisms have been designed either for “(a) the acquisition of knowl-

edge, for example the acquisition of better prediction capabilities or the formation

of object representations; (b) the acquisition of competence, i.e. the capacity to

act so as to achieve a state of the world when it becomes desirable” (p. 1). These

are not necessarily the only goals that are thought to be sought through curiosity,

and of the knowledge and competencies available to an agent, it is often unclear

which ones are ‘better.’

However, this diversity of definition is also why studying the behaviour pro-

duced by different approaches is so valuable. In this chapter, with the context of

the development of reinforcement learning approaches to computational curiosity

as a whole, we have introduced simple experiments which will allow us to consider

the developmental trajectories and behavioural tendencies of agents motivated to

maximize different curiosity measures in a clear setting.

One way this work is limited is in that the choices which we intuitively believe

to be most interesting in each world react with some function of time. We could

imagine that patterns in the environment might not always be varying over time;

they might vary spatially or with the activity of the agent. These patterns are

generally still intuitively interesting, and should not be disregarded when testing

computational curiosity approaches.

Further, the design of the Curiosity Bandits uses human intuition about which

choices are curious and which are not. In future work, we may be able to develop

more complex worlds for agents to explore based on existing studies in psychology,

like those done by Berlyne and his successors. We may even be able to do our

own studies of human choices in simulated microworlds with no effect on extrinsic

reward (perhaps as very simple computer games).

In the proposed simple environments, a human evaluator will generally see only

three choices. In future work, it would be interesting to place an agent in a world

with more than three possible choices and see if varying the objective measure

changes the order in which the choices are tackled.
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3.7.2 Future Directions for Computational Curiosity

As we have already seen in Section 3.6, setting existing approaches in the ex-

tremely simple setting of a decision process pushes us as designers to recognize

the choices available to us. This can provide excellent opportunities for modifying,

modularizing, and combining different approaches. For example, the designers of

the two information-theoretic measures discussed in detail in Chapter 2 do not

use the sequence of reward observed in the computation of their curiosity intrinsic

motivation in the agent. We may want to consider how we might incorporate the

information provided by reward as part of these curiosity signals. The signal re-

ceived by the agent in the current definition of empowerment is only St+✓. It might

be valuable to also include the sequence of rewards. In the context of Still and

Precup (2012), the Predictive Power held by the agent is originally described as

the mutual information carried by the current action and the current state about

the future state, I({At, St};St+1) (p. 142). We might also want to consider includ-

ing what information recent rewards might carry about the future state, or what

information the current action and state might carry about future rewards.

Decisions in the development of new approaches can be made with the current

context of computational curiosity in mind. One of the key open challenges in

autonomous development is the intelligent restraint of an exploring agent. This

direction has been emphasized by both Oudeyer (2010) and Doya (2010). Doya

(2010) suggests that “the killer problem in designing curiosity is how not to let

agents try to learn all the detailed structures in the world, most of which have

nothing to do with their life” (p. 6). Oudeyer (2010) agrees, “intrinsically motivated

exploration needs to be further constrained to harness the very large, potentially

unbounded, volume and high-dimensionality of the space” (p. 7).

Much current work on exploration attempts to maintain the constraint where

we must find the optimal policy, and the goal is to decrease the amount of time it

takes to find that policy. For real-world, embodied agents like humans, animals,

and robots, expecting to find the optimal policy is unreasonable. Exploring every
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possible state is infeasible (could lead to walking off a cliff), and many lifelong

learning problems do not allow us to fulfill that kind of restraint, which is necessary

if we want to achieve theoretical guarantees. What are more reasonable theoretical

guarantees to strive for in a lifelong learning situation?

A challenge which has not been well-emphasized yet is the safety of computa-

tionally curious agents, both to themselves and to the humans we hope they can

interact with. We recall from Section 2.1, the first recorded discussions on curios-

ity debated its value. Beyond highlighting the possible ethical debate which may

overlap with the design of artificially curious agents, questioning the value of cu-

riosity in humans should lead us to recognize the shortcomings and risks involved

in successful implementation. As the stories of Pandora and Eve and the idiom

about the cat8 have been shared to remind us, unchecked curiosity can lead to un-

desirable consequences. For a computational curiosity mechanism to be successful

in a general context, a balancing safety mechanism will be necessary.

While the field has some existing challenges, it also has potential. There are

a number of important concepts being developed in the area of reinforcement

learning which could be used in the development of approaches to computational

curiosity. These include acquiring appropriate system biases, as demonstrated

by Sutton (1992, p. 171). The rapid improvement of the GVF framework has also

opened up problems whose solutions might come from curious behaviour, including

choosing which policies would be updated, or followed, or which GVFs should be

maintained at a particular moment in the agent’s life. For an agent building up

layers of abstractions as its representation of the world, how should it figure out

what abstraction to build next? Though exploring these ideas in detail was beyond

the scope of this chapter, developing these concepts is likely to be an important

part of future work. Whether it is toward solving challenges or embracing area

of potential, computational curiosity still has much room for growth. Analysis of

behaviour is a key component of a full understanding of the field.

8“Curiosity killed the cat.”
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Chapter 4

Five Properties You Didn’t Know

Curious Machines Should Have

4.1 Books, Bookstores, and Machine Curiosity

Imagine you have a favourite corner bookstore near your home. You walk into

the shop, browse the shelves for something new, take it home and read it end-

to-end in less than a week—perhaps at the expense of sleep. The reading feels

good; the unfolding plot makes you almost unable to put down the book. You

close the last page and want more. There isn’t any more book left, so you walk

directly back to the bookstore for a chance at another great read. You don’t buy

and read the same book (that would be silly and you know how it ends); instead,

you know that the bookstore can give you a new engaging reading experience.

The more you read, the more you like reading (and that corner bookstore too!)

This example is rooted in the properties of human curiosity. In this chapter, we

focus on improving the specificity of how we think about curiosity with the goal of

facilitating the implementation of key properties of human curiosity in machines.

As we described in the introduction to this dissertation, there is a long history

of human thought and discussion around curiosity, culminating most recently with

important advances in machine intelligence spurred by using curiosity as inspira-

tion. In that section, we further emphasized the value of curiosity to our future
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machine learning systems and their human collaborators, and potential value to

our understanding of curiosity as a whole. In this way, advancing curiosity in the

domain of machine intelligence is expected to have substantial reciprocal benefits

for research domains focused on human and animal curiosity, like those in psychol-

ogy, education, philosophy, neuroscience, and behavioural economics. After all,

advances in machine intelligence have long supported the development of new the-

ories of biological intelligence (MacPherson et al., 2021, pp. 603, 604; Newell, 1970,

pp. 363–370; Sutton and Barto, 2018, Chs. 14–15). We propose that the under-

standing of curiosity, as a facet of intelligence, can be similarly bolstered through

the development of models of curiosity for machine intelligence. Given curiosity’s

political role “equip[ping] us to pursue a more intellectually vibrant and equitable

world” (pp. xi–xii), scholars like Zurn and Shankar (2020) have emphasized the

urgency of transdisciplinary conversation on curiosity.

To readers focused on curiosity in domains beyond computing: this chapter

is in large part addressed to you. One goal of this chapter is to provide a new

perspective on curiosity applicable to any learner, whether human, animal, or

machine. Implementing any concept as an algorithm requires a different way of

thinking. The abstractions that have been used thus far to improve our under-

standing of biological curiosity are different from those needed to build a curious

machine. This approach and this work provide a unique perspective that may

help researchers from multiple disciplines understand curiosity more deeply. This

dissertation is meant to contribute as much to the field of curiosity studies (see

Zurn and Shankar, 2020, p. xii–xiii) as to that of machine intelligence.

The synthesis completed in this work has led us to define and explore five key

properties needed to capture the full value of human curiosity for machine curiosity.

While, as we noted in Chapter 1, existing frameworks for curiosity in machine

intelligence have offered clear successes, we suggest that learners implementing

those frameworks would not exhibit the full range of curious behaviours exhibited
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in our bookstore example1—and we do want to see that full range. In contrast,

with our five properties, we posit that a learner would exhibit recognizably curious

behaviour.

Our five properties are all drawn from the study of specific curiosity. Specific

curiosity has been described by Loewenstein (1994, p. 77) as “the desire for a

particular piece of information.” In this chapter, the term specific curiosity refers to

one of the most intuitive uses of the unadorned term curiosity, as it is the cognitive,

emotional, and embodied condition humans imply by saying, “I am curious to know

X.” However, we aim not to consider specific curiosity through the lens of any

particular definition in this work. Instead, we focus on detailed descriptions of its

properties, allowing for future proposals of aspects of specific curiosity that this

list does not include.

We have seen numerous recent successes in artificial intelligence (AI), generat-

ing popular expectations that machines can learn efficiently and effectively. Yet,

artificial intelligence systems often fall short, particularly when they must direct

their own learning. For humans in such situations, much of their learning is driven

by specific curiosity, a temporary desire to find out a specific piece of informa-

tion. We expect AI to similarly benefit from specific curiosity, yet it has not been

explored directly as inspiration for mechanisms for machine intelligence.

To understand why we refer to specific curiosity in particular, it helps to know

some history of curiosity research. The term curiosity has been used as an um-

brella term to describe a number of phenomena, generally information-seeking and

knowledge-seeking behaviours in humans and other animals (Kidd and Hayden,

2015, p. 449). When a particular subset of these phenomena is studied, it often

acquires a distinct name to define the scope of the study and clarify that the be-

haviours of interest may or may not represent a “different” phenomenon than other

phenomena under the curiosity umbrella (e.g., Berlyne, 1954, p. 180). This choice
1This argument can be found in 4.3.3.2, but we recommend understanding the five key prop-

erties in Section 4.2 first.
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allows authors to leave open the possibility that the phenomenon may be “differ-

ent” in any of a number of ways, such as having different underlying mechanisms.

Specific curiosity is one such subset of the curiosity umbrella.

In particular, the identifier ‘specific’ is typically used in contrast with ‘diversive’

(Loewenstein, 1994, p. 77). While only later used with the word ‘curiosity,’ the

specific–diversive division derives from Berlyne (1960), who differentiated taking

exploratory action for the purpose of learning something specific (specific explo-

ration) versus for the purpose of relieving boredom or increasing stimulation (di-

versive exploration) (Berlyne, 1960, p. 80; 1966, p. 26). While Berlyne (1966) felt

that diversive exploration seemed “to be motivated by factors quite different from

curiosity” (p. 26), the terms ‘specific curiosity’ and ‘diversive curiosity’ have been

used by other authors over the intervening years. We have chosen to adopt the

term specific curiosity not only to emphasize that we are interested in a motivation

to learn something specific, but also to differentiate our goals from those of works

on machine curiosity typical today (see Section 4.3.3 for an overview).

In Section 4.2, we describe the five key properties of specific curiosity in detail,

specifically considering in Section 4.3 their translation to the domain of reinforce-

ment learning and related curiosity methodologies therein. In Section 4.3.3.4, we

then offer an experimental demonstration of a computational specific curiosity

agent inspired by those properties, along with detailed analysis of the resulting

behaviour both with the properties intact and when each individual property is

ablated in turn. Would a machine learner exhibit behaviour similar to that of

the curious reader (you!) if placed in a similar setting? In our experiment, we

will show how including just three of the key properties already helps a machine

learner exhibit behaviour analogous to yours in the bookstore example. A machine

learner might indeed return to the bookstore with the addition of a few specific

and possibly easy to implement computational properties of specific curiosity.
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4.2 Understanding Specific Curiosity and the

Five Properties

As you were reading your book, why did you have trouble putting it down? A

clever author can walk the reader from question to question along the narrative.

Each individual question seems to be a variation on: “What’s going to happen

next?” but each question is new and specific to the moment (How did they get out

of the locked room? What is that character’s motivation? Did the butler do it?)

You know how to find each answer and in doing so, satisfy your curiosity—keep

reading!

4.2.1 A Framework for Expressing Specific Curiosity

Our first major act of synthesis in this manuscript will be to conceptually separate

the moment where curiosity is induced from the moment where curiosity is satisfied.

A curious learner cycles between these two types of situations. While Gruber and

Ranganath (2019) proposed a similar cycle—the Prediction, Appraisal, Curiosity,

and Exploration (PACE) cycle (p. 1015)—their focus was on the development

of a neuroscientific framework. Their neuroscientific focus does not emphasize the

conceptual options and multiplicity of theoretical positions that we believe will best

support the machine intelligence research community. In contrast, our synthesis is

designed to support exploration of the range of possibilities for effective machine

curiosity.

Two key ideas are needed for understanding specific curiosity: (1) specific cu-

riosity involves the consideration and manipulation of something the learner does

not know: an inostensible concept; (2) inducing and satisfying curiosity require

substantially different cognitive (and often physical) activities from a learner. Nei-

ther of these ideas are commonplace in the machine curiosity literature to date.

Within this section, we set the stage by providing detail to develop the reader’s

intuition of these ideas, as this intuition will be needed to understand the five
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key properties that follow. From a computing perspective, where we aim to im-

plement these ideas, some of the language we will use to describe our framework

will be uncomfortably vague. This language include abstractions like knowledge,

concept, and object. However, given the research community’s current understand-

ing of minds—both biological and machine—these abstractions are still necessary.2

The challenging work of understanding mechanisms of mind is ongoing, and with

progress towards solidifying these abstractions, our understanding and implemen-

tations of curiosity will improve as well.

4.2.2 Between Inducing and Satisfying Curiosity

4.2.2.1 Inostensible Concepts

As you asked each question about the narrative of your book, you were able to think

about something you wanted to know. This experience follows the perspective put

forward by Loewenstein (1994, p. 87) where specific curiosity3 arises when a learner

becomes focused on an information gap4—a gap between what they know and
2Our view on our inability to define these abstractions mirrors Frege’s defense of using the

word concept without definition (as translated by Geach; 1951, pp. 42-43): “If something has
been discovered that is simple, or at least must count as simple for the time being, we shall have
to coin a term for it, since language will not contain an expression that exactly answers.”

3Loewenstein (1994, p. 92) actually expresses the information-gap perspective as a description
of specific epistemic state curiosity, a term which delineates his concept of interest on traditional
axes of types of curiosity: specific vs. diversive, perceptual vs. epistemic, and state vs. trait. The
specific-diversive axis stems from the difference between taking exploratory action for the purpose
of learning something specific (specific exploration) versus the purpose of relieving boredom or
increasing stimulation (diversive exploration) (Berlyne, 1960, p. 80; 1966, p. 26). In this chapter,
we focus on specific state curiosity, but primarily use the simplified term specific curiosity with
‘state’ implied throughout. See Footnote 8 for more description of the state-trait distinction.
Finally, the perceptual-epistemic axis is meant to provisionally differentiate motivation relieved
by perception from motivation relieved “by the acquisition of knowledge” (Berlyne, 1954, p. 180;
1957, pp. 399–400; 1960, p. 274). For the purposes of this chapter, we need not make a distinction
along this axis, as the properties effectively describe either perceptual or epistemic forms. Even
Berlyne, who made the original distinction, suggested that epistemic and perceptual curiosity
seem to be closely related (1960, p. 280).

4While Loewenstein (1994) appears to have popularized the information gap as a theory
of curiosity, the connection between curiosity and “gaps in information” goes back at least to
Berlyne, who extended Bartlett’s (1958) suggestion that thinking arises as a “reaction to a gap”
(Berlyne, 1960, p. 280) to suggest that such “gaps in information” (Berlyne, 1960, p. 280; cf.
Bartlett, 1958, pp. 22, 24) are similar to his own idea of conflict, and not only evoke thinking,
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what they want to know. However, the term information gap is not well-specified

(cf. Berlyne, 1960, p. 281)5 and needs to be clarified before we can implement it

algorithmically.

We can partially clarify the meaning of information gap via the term inostensi-

ble concept, as coined by Inan (2010, p. 30; 2012, p. 34).6 An inostensible concept

can be simplified as a “known unknown”: something you know you do not know.

If you are experiencing specific curiosity, you have an inostensible concept at the

focus of that specific curiosity. In thinking about something you don’t know, you

are manipulating a concept of that something you don’t know.

To make this more concrete, let’s think through an example. As you were

reading, perhaps you stumbled upon the following description:

Except for an odd splash of some dark fluid on one of the white-papered

walls, the whole place appeared neat, cheerful and ordinary.

If you’re anything like me, you might ask yourself, “Why is there dark fluid on

the wall?” An inostensible concept is implicit to this question.7 The inostensible

concept could be approximated as “how dark fluid ended up on the wall.” If we

knew the story of the dark fluid, our question would be answered: the concept

would be ostensible, rather than inostensible.

but other knowledge-seeking behaviours (Berlyne, 1960, p. 280).
5The prevalence of the term ‘information gap’ in the study of curiosity, and the breadth of

definitions and posited types of curiosity have led to the definition of ‘information gap’ occasion-
ally being stretched beyond our area of interest in this chapter. For example, Pekrun (2019) has
recently extended the term to include “a gap between current knowledge and the as yet unknown,
expanded knowledge that could be gained by unspecific exploration” (p. 908) to account for di-
versive curiosity. We do not include this non-specific viewpoint in our treatment of the idea,
a choice which we believe is appropriate, as multiple authors have called into question whether
diversive ‘curiosity’ should be considered a form of curiosity at all (Markey and Loewenstein,
2014, pp. 229–230; Loewenstein, 1994, pp. 77-78).

6Beyond Loewenstein (1994)’s idea of an information gap, Inan’s term, ‘inostensible concept,’
follows earlier work that describes ideas similar to the inostensible concept. Berlyne (1954)
described questions evoking “mediating ‘concepts’ or ‘meaning’ responses” (p. 182).

7Here, we use the word question loosely, to refer to a feeling of recognizing an inostensible
concept, because these can often be reasonably approximated as questions in the linguistic sense.
We do not assume that curiosity requires linguistic abilities, and suggest that curiosity can arise
prior to, or without, putting such a feeling into words.
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“How dark fluid ended up on the wall ” can be manipulated like any other con-

cept in the mind. Note that you don’t need to know how dark fluid ended up on

the wall to be able to think about the inostensible concept “how dark fluid ended

up on the wall.” Your inostensible concept (your known unknown) is composed of

other concepts you are already familiar with: you have enough of an idea of what

“fluids” and “walls” are and what “dark” and “ended up” mean to roughly concep-

tualize what it would mean to know “how dark fluid ended up on the wall.” This

rough concept cobbled together from concepts you already know is the inostensible

concept. It is in this sense that Whitcomb (2010) indicates that curiosity does not

require you “to conceive of its satisfier,” rather, “curiosity requires you to conceive

only of everything your questions are about” (p. 671). The inostensible concept is

the concept formed from everything your question is about.

Each inostensible concept has an object that it refers to, also called an inos-

tensible referent. For our example concept, the inostensible referent is the story of

how dark fluid ended up on the wall. The term object is not well-defined from a

computational perspective, but we can think instead about what we are trying to

achieve. While we might talk about trying to acquire this object, this story, we’re

really thinking of a particular objective: we want to incorporate the story of how

the dark fluid ended up on the wall into our knowledge base. This incorporation

is the act of making an inostensible concept ostensible. There may be multiple

approaches to make the inostensible concept ostensible: while we could read the

next few pages of the book, we could also ask someone who has read this book

before. It is computationally relevant that there are likely many different possible

sets of observations one could make through different sensory apparatuses (e.g.,

eyes or ears) to make a given inostensible concept ostensible.

The term inostensible concept gives us additional power over the information

gap perspective alone, as it gives us a foundation for satisfying our curiosity, for

closing the gap. Our inostensible concept is defined by properties of the object

of our curiosity (for example, the story must involve dark fluid ending up on the
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white-papered walls) that help us differentiate our particular object of interest

from others.

This foundation allows us to use mental simulation—“the capacity to imagine

what will or what could be” (Hamrick, 2019, p. 8)—to plan out sequences of actions

we could take to make an inostensible concept ostensible. But before focusing on

satisfying curiosity, we should talk about inducing curiosity.

4.2.2.2 Inducing and Satisfying Curiosity

Within the context of this work, we are focused on specific curiosity as temporary8

and emphasize that specific curiosity is binary (it can be ‘on’ or ‘off’). In particular,

each time specific curiosity is induced, it is associated with exactly one inostensible

concept at its focus.When curiosity associated with a different inostensible concept

arises, it is not a continuation of the same instance of specific curiosity.

For this reason, the recognition of an inostensible concept is key to an instance

of specific curiosity being induced. Specific curiosity primarily arises after pro-

cessing new observations, where we allow for both observations we might consider

external, like your eyes falling across the phrase, “Except for an odd splash of some

dark fluid on one of the white-papered walls,” and observations we might consider

internal, like a thought. We refer to a set of such observations as curiosity-inducing

observations and the situation where we make such observations as a curiosity-

inducing situation.

There are multiple theories about what kinds of situations induce curiosity.

Berlyne theorized that curiosity was induced by observations resulting in his con-

cept of conflict, where two or more incompatible responses to an observation are
8Curiosity has been studied both as occurring temporarily, as is our focus, and as a persistent

personality characteristic (Litman and Spielberger, 2003, p. 76; Pekrun, 2019, p. 908). In the
literature, the former is termed state curiosity while the latter is called trait curiosity. In the
study of reinforcement learning—a field central to the computational components of this text—
the term state has a formal meaning (see Section 4.3.1) to which we will want to refer. For this
reason, we avoid using the term state curiosity in this work, despite recognizing it as the accepted
term. Following the Webster’s New World College Dictionary (2014) definition of ‘state’ as “a
particular mental or emotional condition” we will occasionally use condition in places the word
state might be used in other works on curiosity.
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evoked and the brain lacks the information to reconcile which is more appropriate

(1960, p. 10; 1966, p. 26). Inan (2012) contended that “a certain kind of interest”

(p. 126) is needed for awareness of an inostensible concept to result in curiosity.

Chater and Loewenstein (2016) suggested that curiosity arises when a learner either

obtains new information they can’t make sense of or becomes aware of a potential

way of obtaining “information that could help make sense of existing, stored, in-

formation” (p. 145). Pekrun (2019) and Peterson and Cohen (2019, pp. 812, 815)

theorize that a “sense of control that it will be possible to close the gap” (Pekrun,

2019, p. 909) is necessary to experience the condition of curiosity. However, while

Pekrun (2019) considers a sense of control to be necessary, it isn’t sufficient: the

theory also includes “an urge to close the gap” (p. 906) as a separate necessary

component of curiosity, leaving open the question of in which situations such an

urge will occur. This diversity of theories parallels the diversity of mechanisms

suggested for machine ‘curiosity’ that we will describe in Section 4.3.3. Despite

this question being a longstanding area of study, we still don’t precisely understand

the situational determinants of curiosity.

Once induced, specific curiosity is thought to be able to end in two different

ways: either attention is distracted (a possibility we discuss further in Section

4.2.6) or curiosity is satisfied (Berlyne, 1954, p. 183). Drawing from the terminol-

ogy of inostensible concepts used by Inan (2012), curiosity is satisfied when the

inostensible concept at the focus of that instance of curiosity is made ostensible

(pp. 35–36). While it may seem obvious to some readers, we wish to draw atten-

tion to the point that the curiosity-inducing situation and the curiosity-satisfying

situation must be different.9

As an example where this requirement may not seem to hold, imagine you’re

moving through the bookstore and notice a peculiar noise from the floorboard as
9Why is this distinction between curiosity-inducing situations and curiosity-satisfying situa-

tions so critical to us, the authors? In both the psychological literature on curiosity and the
literature on intrinsic-reward-based computational curiosity, the curiosity-inducing situation is
sometimes not differentiated from the curiosity-satisfying situation, limiting our understanding
of how learning occurs through curiosity. We speak more to these limitations in Section 4.3.3.2.
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you transfer your weight onto it. If you experienced curiosity focused on whether

your weight transfer caused the noise, you might find yourself satisfying your cu-

riosity by repeating the same action that seemed to generate the noise the first

time, transferring your weight back onto the same spot. In this case, it might

seem that the curiosity-satisfying observation is the same as the curiosity-inducing

observation. We see this kind of “repeated trial” action for many scientific curiosity

questions (Bonawitz et al., 2010, pp. 105–106). For curiosity to be induced, how-

ever, the learner needs an inostensible concept. Critically, this means the learner

knows there is something they do not know. If the curiosity-inducing situation

provided the right information to satisfy this instance of curiosity, specific curios-

ity would not have been entered to begin with, because the known unknown would

not be unknown after all. An observation of the peculiar noise as you transferred

your weight does not tell you that your weight transfer caused the noise. Rather,

it is the intervention and set of repeated, consistent observations that when you

transfer your weight onto that spot, the peculiar noise reoccurs that brings you

enough confidence in your understanding for your curiosity to be satisfied. How-

ever, that’s not to say that the difference between the curiosity-inducing situation

and curiosity-satisfying situation is never very subtle. The difference between

the curiosity-inducing situation and the curiosity-satisfying situation could be as

minute as a tiny movement of the eyes to obtain a new observation that satisfies

curiosity.

But what does it mean for curiosity to be satisfied? Turning back to our

example inostensible concept of how dark fluid ended up on the wall, if I were to

become curious about the content of this inostensible concept,10 my curiosity might

be satisfied when I read the phrase “‘The two clergymen,’ said the waiter, ‘that

threw soup at the wall,’” printed on the following page of the book; my observation

of this phrase upon turning the page constitutes a curiosity-satisfying situation.
10Yes, a learner can think about an inostensible concept without experiencing curiosity to

resolve it (Inan, 2012, pp. 42, 125–126). The question of whether curiosity will occur or not leads
us back to the open question of what kinds of situations induce curiosity.
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Assuming I considered the waiter sufficiently trustworthy, I may be satisfied that

I now know that two clergymen threw soup at the wall, leaving a dark stain is how

a splash of dark fluid came to be on the wall. My initially inostensible concept is

now ostensible, and my curiosity is satisfied.11

We use both the term observation and the term situation with the descriptors

curiosity-inducing and curiosity-satisfying because multiple observations may be

needed to enter or exit specific curiosity. For curiosity to be induced by reading the

phrase “Except for an odd splash of some dark fluid on one of the white-papered

walls,” you likely require multiple placements of gaze on the text. Similarly, you

had to transfer your weight over that peculiar-sounding floorboard multiple times

to be satisfied about the causal relationship. Without a sufficient set of the right

observations, curiosity won’t be induced or satisfied, respectively. Using the term

situation allows us to refer to the moment of the final observation while recognizing

that more observations beyond the final one may have been needed.12

The primary goal of this preliminary section was to clarify specific curiosity as a

short-term condition and to differentiate the terms inostensible concept, curiosity-

inducing situation and curiosity-satisfying situation. While these terms are not all

broadly used, in this work they are meant to help us be specific, as the concepts

they refer to have sometimes been described interchangeably in the literature. For

example, Dember and Earl (1957) used the term goal stimuli as both curiosity-

inducing (p. 92) and curiosity-satisfying (p. 91). Similarly, Dubey and Griffiths
11An illuminating description of the satisfaction of curiosity has been put forth by Inan (2012,

p. 135), where curiosity is satisfied “only when the curious being gains some new experience
that [they believe] to be sufficient to come to know a certain object as being the object of
[their] inostensible concept,” and the interested reader might look to Inan’s Chapter 9 for more
detail. The curious reader, on the other hand, who simply wants to know where our example
inostensible concept was lifted from can instead be directed to The Innocence of Father Brown
by G. K. Chesterton (1911).

12We considered following Isikman et al. (2016) in their use of the term curiosity-evoking events
rather than curiosity-inducing situations. However, we felt that the connotations of the word
event, while allowing for the inclusion of multiple observations, suggests that the observations
happen “all at once”—temporally close together—while we mean for situation to imply that a
complete set of curiosity-inducing observations might occur across more time than might be
considered a single event.
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(2020, p. 463) use the term stimulus as offering both the curiosity-inducing and

curiosity-satisfying observations (e.g. a trivia question and its answer considered

as one stimulus without differentiating which of the two the learner is seeking).

In this preliminary section, we have contributed an argument for the importance

of separating what occurs when curiosity is induced from what happens when

curiosity is satisfied. We believe that future work—both the study of biological

curiosity and the design of machine curiosity—can proceed with improved clarity

with this separation recognized.

4.2.3 Directedness Towards Inostensible Referents

Our first key property is directedness towards inostensible referents. When
specific curiosity is induced, the learner is motivated to take actions directed
towards satisfying their curiosity.

Directedness towards inostensible referents is inherent to many of the experi-

ments used for studying curiosity. One of the most common experimental paradigms

for this purpose is the trivia task. In trivia tasks, experimenters attempt to induce

curiosity using a trivia question, which can theoretically be satisfied by showing

the associated answer to the question. Many trivia task experiments require par-

ticipants to take specific actions to gain access to a curiosity-satisfying situation,

like paying a token (Kang et al., 2009, p. 970), breaking a seal to open an enve-

lope (Litman et al., 2005, pp. 565, 567), or pressing a key to indicate they would

like to wait a short period to see the answer rather than skip ahead to another

question immediately (Marvin and Shohamy, 2016, p. 268; Dubey and Griffiths,

2020, p. 463). When curious, participants generally took the specified actions to

gain access to the inostensible referent. Even using an experimental setup that

simply displayed the answer after a delay, Baranes et al. (2015, p. 81) showed that,

when curious, participants’ behaviour was directed in anticipation of receiving the

answer, as they moved their gaze to where the answer would be shown.

Another common experimental paradigm for studying curiosity requires partic-
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ipants to take an action to “uncover” a picture. For example, Nicki (1970, p. 390)

required participants to press a key if they wanted to see an in-focus version of a

just-seen blurred picture, while participants studied by Loewenstein et al. (1992, as

described by Loewenstein, 1994, p. 89) and Hsee and Ruan (2016, p. 663) needed

to click a computer mouse if they wanted to remove boxes occluding pictures of

animals.

While the above paradigms elicit simple actions to satisfy curiosity, experi-

menters have also used more complex situations requiring participants to take

more extended sequences of directed action to acquire curiosity-satisfying informa-

tion. Polman et al. (2017, pp. 819–820) observed an increase in stairwell traffic

when they placed a curiosity-inducing situation (a placard with a trivia question)

by an elevator along with the explanation that the answer could be found in the

nearby stairwell.

However, all of these experimental paradigms largely make use of what Polman

et al. (2017, p. 818) call a “curiosity appeal,” where the experimenter or the context

induces curiosity and offers a promise that a particular sequence of actions will

lead to a curiosity-satisfying situation. However, outside of experiments, there isn’t

always an obvious plan to follow to satisfy one’s curiosity. There have been multiple

suggestions of a theoretical connection with creativity (Gross et al., 2020, pp. 77–

78), at least in part because curiosity appears to often require the creation of non-

obvious plans of actions to acquire appropriate curiosity-satisfying observations

(Hagtvedt et al., 2019, p. 2). While the theory that curious learners can generate

complex, adaptable plans of action to satisfy their curiosity remains understudied,

this idea remains a strong starting point for thinking about how machine learners

might demonstrate the directedness characteristic of specific curiosity.
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4.2.4 Cessation When Satisfied

Our second key property is cessation when satisfied. This property refers to
the instance of specific curiosity ending immediately once curiosity has been
satisfied, so the learner’s motivation is no longer directed towards the same
kind of observations that were or would have been curiosity-satisfying when
the learner was still curious.

Once a learner has achieved the goal of transforming an inostensible concept

into an ostensible one, they do not need to seek the same curiosity-satisfying sit-

uation again. You didn’t repeatedly read the page describing how the protagonist

escaped their brush with death; once you knew the answer, curiosity did not drive

you to experience it again. Instead, in the process of transforming that particular

inostensible concept, you found yourself with a new question as to the relationship

of the protagonist with their mysterious saviour, and while curiosity motivates you

to investigate the same book, you’re no longer interested in the preceding pages,

only the following ones. Theories of specific curiosity regularly reference the satis-

faction of curiosity (Loewenstein, 1994, p. 92; Schmitt and Lahroodi, 2008, p. 129;

Gruber and Ranganath, 2019, p. 1015), and some authors consider the cessation of

curiosity when “the information gap is closed or the conflict is resolved” inherent

to curiosity’s definition (Renninger and Hidi, 2016, p. 45).

This understanding has unsurprisingly influenced the empirical study of curios-

ity. A number of studies have explored differences in behaviour or physiological

changes when curiosity is satisfied. On the behavioural side, results shared by

(Wiggin et al., 2019, p. 1194) suggest that when curiosity is left unsatisfied, hu-

mans are more likely to make indulgent choices—choices that provide short-term

pleasure but are not in the chooser’s long-term interest, like “the consumption of

luxuries, hedonics, and other temptations” (Wiggin et al., 2019, p. 1195). Fastrich

and Murayama (2018) similarly manipulated whether participants were provided

with curiosity-satisfying observations or not, but did not find any significant differ-

ence in participants’ rating of curiosity (pp. 13, 15) or willingness to bid to satisfy
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their curiosity on the next, unrelated trivia question in a sequence (pp. 14–15). On

the physiological side, in an fMRI (functional magnetic resonance imaging) exper-

iment performed by Jepma et al. (2012), participants were shown blurred pictures,

sometimes followed by the corresponding clear picture, sometimes followed by an

unrelated clear picture. In the condition with the corresponding clear picture—

where curiosity induced by the blurred picture was thought to be relieved—Jepma

et al. (2012) found both striatal and hippocampal activations were stronger than

in the unrelated clear picture condition. Similarly, Ligneul et al. (2018) performed

an fMRI experiment in which participants were shown trivia questions, sometimes

followed by the corresponding answer, sometimes followed by an unrelated filler

screen. In the condition with the corresponding trivia answer, Ligneul et al. (2018)

found that observing the answer yielded a ventral striatal response in the brain.

In prior work, the striatum has been implicated in both pain relief and reward

responses, while the hippocampus has been implicated in memory. These results

align well with the theory that specific curiosity is an uncomfortable experience

that can be relieved as well as with the evidence showing that curiosity improves

memory.

Despite evident interest in physiological changes when curiosity is satisfied,

there has been minimal empirical work to confirm that the behaviour and moti-

vation directing a learner towards curiosity-satisfying observations (observations

that would render the previously-inostensible concept ostensible, if it were still

inostensible) do indeed cease when satisfied. A notable exception is an experiment

performed by Wiggin et al. (2019). In this experiment, all participants were shown

a blurred picture, but while the participants in one condition were then shown

the clear version of the same picture, participants in the other condition were not.

Participants in both conditions responded to the “10-item state curiosity scale of

the State-Trait Personality Inventory (STPI) developed by Spielberger and Re-

heiser (2009),” and participants who had not been shown the clear picture rated

higher on the scale in terms of “the intensity of feelings and cognitions related to
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curiosity” (p. 1198).

Note that cessation when satisfied contrasts with the properties of behaviour

motivated by extrinsic rewards. Extrinsic rewards, in the terminology of psychol-

ogy, are material outcomes of an activity like obtaining food, water, or money

(Morris et al., 2022, p. 1801). Extrinsic rewards motivate behaviour repeatedly

leading to the same target (Gruber and Ranganath, 2019, p. 1014). For example,

animals confined to a box with a lever will learn to repeatedly press the same lever

if pressing it results in the mechanism providing the same food reward (Skinner,

1963, p. 504). This kind of directly repetitive behaviour is not exhibited towards

curiosity-satisfying observations, as specific curiosity is expected to provide no fur-

ther motivation towards the same target if the target satisfies the learner’s curiosity

(Gruber and Ranganath, 2019, p. 1014).

One view that may appear to contradict cessation when satisfied is that pro-

posed by Fastrich and Murayama (2018), who have suggested that curiosity may

persist even after curiosity-satisfying observations have been provided. In their

experiment, they found participants were more likely to demonstrate curiosity for

the answer to a trivia question in a sequence of trivia questions if they had been

curious for the answer to the preceding question in the sequence—whether or not

they had been provided with the answer to that preceding question. Fastrich and

Murayama (2018) explain their findings as suggesting that curiosity persists even

after the associated answer is provided, and curiosity can transfer to a tempo-

rally contiguous information gap. They call this effect the curiosity carry-over

effect. However, their results do not actually contradict the property of cessation

when satisfied, as in our terminology, while the present instance of curiosity ceases

when the associated inostensible concept becomes ostensible, this does not imply

that a learner is unlikely to become immediately curious again, but for a different

inostensible concept. Fastrich and Murayama’s (2018) results rather suggest that

human learners remain physiologically “ready” for curiosity for a time interval once

curiosity has been induced.
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Further, we can clarify that the property we are calling “cessation when satis-

fied” is not the same as the “knowledge satiation” described by Murayama et al.

(2019), in which a learner feels that they “completely understand the topic” (p. 882).

In our terminology, satisfaction occurs at the moment of making ostensible the

inostensible concept associated with the current instance of specific curiosity—

answering a single specific question—and does not imply a feeling of completely

understanding an entire topic.13

4.2.5 Voluntary exposure

Our third key property is voluntary exposure. This property refers to a
preference for curiosity-inducing situations, and that learners act on that
preference to purposefully make themselves curious.

“An active striving to encounter new experiences, and to assimilate and

understand them when encountered, underlies a huge variety of activ-

ities highly esteemed by society, from those of the scientist, the artist

and the philosopher to those of the polar explorer and the connoisseur

of wines.” Berlyne (1950, p. 68).

The experience of unresolved curiosity is inherently frustrating, as well-demonstrated

when you finish a chapter that ends with a cliffhanger, but know that reading the

next chapter would take you past your bedtime. Curious humans modify their

behaviour to alleviate the feeling of unresolved curiosity.14 Despite the aversive

quality or discomfort associated with curiosity,15 humans voluntarily expose them-
13Topics are understood as categorizations of related knowledge and activities (Krapp, 1994,

p. 83; Renninger and Hidi, 2016, p. 11).
14FitzGibbon et al. (2020, pp. 21-22) provide an overview of the lengths people will go to

to satisfy their curiosity, including paying for non-instrumental information (information that
provides no benefit in terms of traditional extrinsic rewards, like money or food) or exposing
themselves to pain or risk.

15The idea that being in a condition of curiosity is uncomfortable has sparked some debate.
Silvia (2006, pp. 50, 190–191) has argued that the idea of curiosity as aversive is a longstanding
assumption with little supporting evidence popularized by Loewenstein’s seminal work (1994).
The difficulty in disentangling evidence of an aversive quality to curiosity from other possible
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selves to curiosity, choosing to pick up mystery novels and puzzles because they

will pique curiosity (Loewenstein, 1994, p. 76). We aim to capture this tendency

with our third property, voluntary exposure.

We want to remind you of the separation of curiosity-inducing observations from

curiosity-satisfying observations as we introduced in Section 4.2.2.2. While your

new book contains examples of both curiosity-inducing observations and curiosity-

satisfying observations, if they are associated with the same inostensible concept,

then they must be in different places in the book. Re-reading the passage about the

butler’s shifty behaviour during the officers’ interrogation (a plausible curiosity-

inducing situation) will not tell you what the butler has done that they don’t

want the officers to be aware of (the inostensible concept). It is instead in reading

the passage where the officers confront the butler about damning evidence of the

butler’s theft of thousands of dollars worth of their employer’s property (a curiosity-

satisfying situation) that your curiosity about their behaviour is satisfied.

Voluntary exposure is perhaps best observed via the vast amount of time and

money that people across the world devote to activities associated with curiosity.

Two of the most obvious activities include engaging with puzzles and myster-

ies, both of which are hugely popular activities. As examples, the puzzle genre

raked in the second-highest total revenue across mobile game genres in the United

States and Canada in 2021 (NPD Group, 2022) and the mystery genre has held

an enduring share of entertainment production over the years in multiple coun-

tries (Knobloch-Westerwick and Keplinger, 2006, pp. 193–194). While myster-

ies and puzzles are some of the most obvious curiosity-generating activities, nar-

rative elements that induce curiosity are pervasive across genres of storytelling

(Bermejo-Berros et al., 2022, p. 12). Since storytelling features across media (in-

motivating factors still stands in more recent work (Murayama et al., 2019, pp. 886–887). Indeed,
recent accounts of how emotions are constructed in biological brains and bodies suggests that
the experience of curiosity may vary by culture (Barrett, 2017, p. 149), and individual differences
implicated in interpretation the experience of curiosity may account for some of the controversy.
In the computational part of this work (Section 4.3.3.4), we take inspiration from the aversive
quality of curiosity, but our computational analogue of aversive quality is not needed for our
computational learner to demonstrate recognizably curious behaviour (Section 5.5.1).
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cluding books, television, movies, games, and news), this single example of activ-

ities demonstrates a huge swatch of human life voluntarily engrossed in curiosity-

inducing activities at any given time.

While humans, as a group, seem to be drawn to voluntarily expose themselves

to curiosity-inducing activities, the type of curiosity-inducing activity seems to vary

from individual to individual. While one person might be drawn to formulating

mathematical proofs, another might prefer crosswords or language puzzles, and an-

other might instead spend time on puzzles of shape and geometry, and yet another

may select for mystery novels. All of these individuals demonstrate voluntary ex-

posure to curiosity, yet they are selective (compare Krapp, 1994, pp. 92–93). This

selectivity is a starting point for our hypothesis that voluntary exposure might be

learned over time, as an individual learns a preference for curiosity-inducing situ-

ations related to their preferred topics, domains, or puzzle styles. We will discuss

this preference further in Section 4.2.7, with the property of coherent long-term

learning.

4.2.6 Transience

Our fourth key property, transience, refers to how an instance of curiosity
ends when attention is distracted or diverted.

As you went to pay for your book, you became intensely curious to learn the

current news of a Hollywood star’s familial strife, but only while you paid atten-

tion to the magazines placed temptingly close to the checkout. Once you’ve torn

yourself away to pay, your mind is happy to resume other functions, so once you’re

out the door and on your way home to start your new book, the star’s struggles

are as good as forgotten (example inspired by Loewenstein, 1994, p. 76).

When attention is distracted, the instance of curiosity ends, and this property

is referred to as transience (Loewenstein, 1994, pp. 86, 92).16 While some authors
16The properties cessation when satisfied and transience are similar in that both refer to the

condition of curiosity ending, but we have separated them to better align with how the terms are
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have written about curiosity as though it can be sustained over long periods,

even over years (e.g., Engel, 2015, pp. 7-8), transience of curiosity is a frequently

recognized property.17

Like cessation when satisfied, transience appears prominently in theories of

curiosity and intuitive examples. Early on, Berlyne (1954) noted that curiosity

can end if distraction occurs (p. 183). More recently, the property of transience

appears to have shaped Loewenstein’s (1994) information gap theory: one of the

reasons that attention to an information gap is key to the formulation is that

curiosity is thought to end when attention is distracted (p. 92).

In recent experiments, Golman et al. (2021, Experiments 1B and 2B: “Salience”)

had participants solve puzzles (1B) or identify emotions associated with facial ex-

pressions (2B). Golman et al. (2021) manipulated the amount of time before par-

ticipants were offered the solution to one of the more challenging puzzles if they

failed to solve it (1B) or the amount of time before participants were offered the

chance to view their score on the facial emotion recognition test (2B). Partici-

pants who were immediately offered the opportunity to satisfy their curiosity were

more likely to click multiple times or complete an unrelated task to obtain the

solution/score than those who were offered the same opportunity 24 hours later.

Distanced from the original context of a concerted effort to solve the puzzle or test

questions, participants showed less impetus to acquire the solution or scores. While

this experiment is only a partial demonstration of transience, since by offering the

solution/score, Golman et al. (2021) draw attention back to the inostensible con-

cept, this decrease in demonstrated curiosity suggests that for many participants,

curiosity has ended and this simple return of attention is insufficient to rekindle

curiosity.

used in the literature. There may also be ways the mechanisms for each property should offer
different effects. For example, there are some theories that the satisfactory resolution of curiosity
is actively rewarding (Shin and Kim, 2019, p. 863; Murayama et al., 2019, p. 879).

17While the term transience was used in Loewenstein’s (1994, p. 76) seminal paper on the
information-gap theory of curiosity, the property is sometimes simply referred to as dissipation
or decline of curiosity, but specifically that caused by the distraction of attention (Markey and
Loewenstein, 2014, p. 232; Shin and Kim, 2019, p. 856; Dan et al., 2020, p. 152).
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Our use of the term transience refers to the specific behaviour of directedness

towards inostensible referents ending when attention is distracted. We mentioned

in Section 4.2.4 that Wiggin et al. (2019) did find evidence of a difference in

behaviour when curiosity is left unsatisfied versus not.

4.2.7 Coherent Long-Term Learning

The property of coherent long-term learning refers to how specific curiosity
works in concert with other mechanisms of attention and value to orient the
learner towards inostensible concepts related to the learner’s prior knowl-
edge.

In this work, we have attempted to be very careful to model specific curiosity

as a short-term motivational effect that begins when curiosity is induced and ends

when curiosity is satisfied or when attention is diverted. However, curiosity is

choosy. Moment-to-moment, humans are faced with a galaxy of unknowns, but

the mechanisms of curiosity choose carefully—and it is not as though curiosity

simply chooses the most readily available unknown; rather, curiosity often sends

us out on a temporally extended plan to make our inostensible concept ostensible.

Importantly, curiosity seems to be biased towards learning ideas related to the

learner’s pre-existing background knowledge (Wade and Kidd, 2019, p. 1377).

Zurn et al. have recently proposed a connectional account of curiosity (2022),

explicitly critiquing the ‘acquisitional’ metaphors commonly used for curiosity in

recent decades. Curiosity is often thought to drive us to acquire information

(p. 259-261). The connectional model instead emphasizes curiosity as building

connections between ideas (p. 261). The connectional account aligns with Wade

and Kidd’s (2019) notion that a learner’s level of curiosity is well-predicted by their

metacognitive estimates of their own knowledge (p. 1380). If a learner recognizes

metacognitively that they have existing knowledge related to a potential learning

opportunity, they are well-prepared to make that connection and integrate it into

their knowledge base.
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By including the property of coherent long-term learning in our list of key

properties, we are formally emphasizing the importance of specific curiosity’s in-

tegration with the learner’s current knowledge base. In humans, this integration

may occur via the mechanism of individual interest. Individual interest refers to a

predisposition to repeatedly engage with a class of content, where a class of content

usually refers to a domain or category of knowledge, objects, or ideas. The class of

content may be thought of as broad as ‘science’ or ‘playing tennis’ (Renninger and

Hidi, 2016, p. 6) or more narrow, like ‘approaches to machine curiosity that offer

the benefits of human curiosity’—the best description will be highly individual

and depend on the learner’s organization of their knowledge. The connectional ac-

count of curiosity can help us think of a class of content as a set of ideas that have

been connected in the learner’s mind, woven together by the relationships that the

learner recognizes among them. Individual interest is distinguished from other mo-

tivational concepts by two components: stored knowledge and stored value, both

for the particular class of content.

Curiosity ! Individual Interest: Curiosity may shape individual interest by

increasing both knowledge and value for content areas that a learner experiences

curiosity in. By driving learning, curiosity increases knowledge. Rotgans and

Schmidt (2017) have provided initial evidence that individual interest is a conse-

quence of learning, showing small but significant effects that growing knowledge

results in increased individual interest. Indeed, the process of continually develop-

ing knowledge (availability of “cognitive challenges”) in the content area of interest

is required to maintain an individual interest (Renninger, 2000, p. 379). Curiosity

provides impetus for a process of continually developing your knowledge.

Curiosity may also play a role in increasing value, as individual interest in a

class of content reflects high levels of not only knowledge but value for the content

relative to other classes of content (Renninger, 2000, p. 375). Experimentally, Ruan

et al. (2018, pp. 559, 566) found that, when subjects experienced the resolution
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of curiosity about particular well-known brands, they developed increased positive

attitudes towards those brands. Such increases in positive attitudes may reflect

increased value. In one experiment, Ruan et al. (2018) teased some participants

with an animation of a gift card gradually being revealed from an envelope (so

these participants needed to wait to find out where the card could be spent) and

showed other participants the whole gift card immediately (so these participants

immediately knew the card could be spent at Target) (p. 564). When surveyed

after, the participants who had to wait for the gift card to be pulled from the

envelope had a more positive average attitude toward Target (p. 565). Ruan et al.

(2018) also found similar results with different manipulations creating and resolving

uncertainty about different brands. Further research into this effect is needed,

but we hypothesize that, more generally, learners may develop increased positive

attitudes towards topics associated with the inostensible concept when curiosity is

created then resolved.

Individual Interest ! Curiosity: Individual interest may direct curiosity by

directing a learner’s attention. Individual interest schools our attention onto as-

pects of what we perceive that we relate to our pre-existing interests. Renninger

(2000) has described individual interest as acting like a filter on a learner’s per-

ception (p. 380). For example, I have an individual interest in curiosity, so when

a character in my book says, “No, I’m not curious,” my attention is drawn to how

curiosity fits into the situation and how my understanding of curiosity explains or

fails to explain the character’s lack of motivation. A learner with other individual

interests would likely focus on other aspects of the same scene. In this way, indi-

vidual interest can bias curiosity towards inostensible concepts that connect with

existing knowledge.

Curiosity  ! Individual interest: Given the early evidence we have de-

scribed, we hypothesize a bidirectional relationship between curiosity and indi-

vidual interest. Related bi-directional proposals have been previously raised by
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Arnone et al. (2011, p. 186) and Engel and Randall (2009, p. 185). There has

been a recent surge in effort to understand curiosity’s relationship with interest

(e.g., Peterson and Hidi, 2019). More recent work has focused on the direction

that experiences of curiosity may build individual interest (Shin and Kim, 2019,

pp. 863–864; Peterson and Cohen, 2019, p. 814) and substantial work remains to

develop a complete account. However, a relationship with some mechanism to re-

engage learning related to prior knowledge is likely necessary to provide specific

curiosity with the property of coherent long-term learning.

***

The property of coherent long term-learning, the last of our five properties,

closes the loop of how curiosity can guide a learner over a lifetime. Our list of

properties began with the impetus to satisfy our curiosity in a specific, directed

way (1, Directedness), an effect that ends relatively quickly, either via being satis-

fied (2, Cessation when satisfied) or via attention being diverted (4, Transience).

Our final two properties speak to aspects of curiosity relevant to a learner’s entire

lifetime: learners should seek curiosity-inducing situations (3, Voluntary exposure)

and curiosity should build up knowledge and value, biasing the learner’s future ex-

periences of curiosity towards learning opportunities to build on what they already

know (5, Coherent long-term learning).

In this section, we described five properties of curiosity, and in particular, of

specific curiosity (defined by Loewenstein (1994, p. 87) as “an intrinsically moti-

vated desire for specific information”). While specific curiosity is associated with

other properties, particularly intensity, association with impulsivity, and a ten-

dency to disappoint when satisfied (Chater and Loewenstein, 2016, p. 17; citing

Loewenstein, 1994), the set of five properties we described above are expressly

valuable to a learner. In the next section, we will provide the context of existing

approaches for machine curiosity and leverage this context to argue the need for

these five properties in Section 5.6. As researchers work to design curious machine

agents, we believe that these properties are ones we should attain.
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4.3 Specific Curiosity for Machine Intelligence

4.3.1 Reinforcement Learning

In the remainder of this chapter, we will rely on language and a choice of frame-

work drawn from reinforcement learning (RL). In this subsection, we introduce the

framework and define some of the language that we will help us both to express

the differences between the key properties proposed in this chapter and existing

related methods and to describe our case study in Section 4.3.3.4.

One way of representing an agent’s experience of the world in a reinforce-

ment learning framework is as an alternating sequence of observations and actions

marked by time. We think of time as discrete, and at each time step, a single

observation is made and a single action is taken, resulting in a sequence of the

form

O0, A0, O1, A1, ..., Ot, At, Ot+1, At+1, ... (4.1)

The agent has a set of actions, A, available to them, so the action taken at time

t is denoted At 2 A. Each observation, denoted Ot for the observation at time t,

provides (possibly partial) information about the current state of the environment,

St. Informally, the state of the environment is the situation that the agent finds

itself in; depending on the situation (state), the agent’s choice of action will have

different effects and could lead to different next situations (Sutton and Barto,

1998, pp. 7, 47). If I’m standing in the open doorway of the bookstore, a step

forward could lead me into the splendorous observation of mountains of books; if

I’m standing in front of the closed door, a step forward might lead to me bumping

my nose.

In classical reinforcement learning, each observation from t = 1 onwards in-

cludes a numerical reward signal Rt 2 R. The agent must choose actions to maxi-
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mize how much18 reward accumulates over time, a quantity called the return, Gt.

There are several possible definitions of return, but for simplicity in this chapter,

we use discounted return,19 which relies on a discount rate, � 2 [0, 1), to place less

value on rewards the further into the future they occur.

Gt =
1X

k=0

�kRt+k+1 (4.2)

It is common for a reinforcement learning agent to keep a running estimate

of how valuable different parts of the world are so that they can map their rep-

resentation of the current state St (usually formed using the present observation

Ot) to an estimate of its value and use these estimates to attempt to accumulate

more value. A value function, denoted v⇡, is defined as the expected return moving

forward from that state, assuming the agent follows policy ⇡.

v⇡(s) := E⇡ [Gt|St = s] (4.3)

We denote an agent’s estimated value function as V . Estimated value functions

intutively describe agent preferences: states with higher estimated value are pre-

ferred by the agent. In this way, we could algorithmically express the property of

voluntary exposure as the agent estimating increased value for situations that are

expected to induce curiosity.

While there are multiple ways that a reinforcement learning agent might main-

tain an estimated value function, one of the most important approaches is called

temporal-difference (TD) learning (Sutton and Barto, 2018, Ch. 6). When the

agent transitions from state St to state St+1, receiving reward Rt+1, we can form

a new estimate for V (St): Rt+1 + �V (St+1). However, since we may not always
18Grammatically, you may have expected “how many rewards” instead of “how much reward,”

but within reinforcement learning, each reward can be a different real number, and we are con-
cerned with maximizing return, a function involving the sum of rewards over time. For instance,
while the learner receives a reward at each time step, one reward of 76.243 is going to be more
desirable than accumulating three rewards of �8, 0, and 0.3, so “how many rewards” wouldn’t
reflect the meaning of return.

19Sutton and Barto (2018, p. 55) offer further intuition about this choice.
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arrive in the same next state or receive the same reward when leaving state St,

we usually only want to shift our estimate of V (St) towards Rt+1 + �V (St+1) by

a small step. We use a parameter ↵, known as the step size, to determine the

amount of shift, multiplying ↵ by the difference between the new estimate and the

old. This difference, the TD error, denoted �, is defined as

� := Rt+1 + �V (St+1)� V (St) (4.4)

The simplest TD method (and the approach we take in the case study described

in Section 4.3.3.4) updates the estimate of the value of state St upon transitioning

from St to St+1 and receiving a reward of Rt+1 as follows:

V (St) V (St) + ↵� (4.5)

The reinforcement learning framework, with these ideas of the state of the

world having a specific value to a learning agent and that an agent’s behaviour in

the future can influence how valuable the current state is to the agent, has been

used to study not only what kind of algorithms make the best choices in such a

problem setting, but also how humans and other animals choose actions, especially

to consider which algorithms seem to best replicate biological decision-making.

Within the reinforcement learning framework, there has been a long-standing

assumed or hypothesized link between curiosity and exploration (Fox et al., 2020,

p. 109)—some researchers hope that the study of curiosity holds the solution for

the exploration–exploitation dilemma. The exploration–exploitation dilemma is a

long-studied challenge of reinforcement learning (Sutton and Barto, 2018, p. 3).

Classically, reinforcement learning problems have an optimal solution: a policy

of behaviour that can obtain the maximal return. However, the learner doesn’t

start out knowing what the right policy is. To learn a good policy, the learner has

to balance taking an action that has offered the best value in their experience so

far (exploiting what they’ve learned) against taking an action they haven’t tried

enough times to be certain of the actions’ value (exploring alternative possibilities).
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In the following section, we will describe a number of existing methods inspired

by curiosity, and many of these methods are explicitly designed to improve explo-

ration. In this work, however, we do not assume that curiosity should contribute to

exploration in this return-driven sense. Indeed, curiosity might be most interesting

in the context where the learner does not have a persistent objective.

4.3.2 Goals in Reinforcement Learning20

The word goal lives a conflicted life within the terminology of reinforcement learn-

ing. One traditional use of the word goal is specifically in reference to maximizing

return (Sutton and Barto, 2018, pp. 6, 53), in reference to the reward hypothesis,

stated by Sutton and Barto (2018, p. 53) as:

That all of what we mean by goals and purposes can be well thought of

as the maximization of the expected value of the cumulative sum of a

received scalar signal (called reward).

And yet, when speaking to the intuition around reinforcement learning, there is

longstanding use of the the word goal to refer to abstract accomplishments like

grasp a spoon or get to the refrigerator (Sutton and Barto, 1998, Ch. 1.2; Sutton

and Barto, 2018, p. 5). If we assume the reward hypothesis holds for human

learners, the reward signals generated in our bodies were evolved over millions of

years to shape our behaviour towards such goals, and it isn’t obvious on what basis

our reward signal is generated (Sutton and Barto, 2018, p. 469).

The use of goal as specifically related to maximizing return is inspired by the

way goal can be used in the context of human and animal motivation and be-

haviour, but defining goal this way is limiting. More recently, taking a compu-

tational approach has led authors like Grace and Maher (2015) to define specific

curiosity as “the search for observations that explain or elaborate a particular

goal concept” (p. 262). We suggest that further consideration of what is meant
20Some of this text is adapted from Ady et al. (2022a) and is under review at the Journal of

Artificial Intelligence Research.
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by goal is needed when approaching the relationships between objectives as they

relate to both environment state and knowledge state, as described above, and

when attempting to broker the relationship between human and machine curiosity

literature.

4.3.3 Computational Approaches Inspired by Curiosity:
Intrinsic Rewards

The argument that reinforcement learning is an appropriate framework for com-

putational approaches to curiosity has been embraced by many authors over the

past few decades. Mechanisms inspired by curiosity have varied widely, with many

using the amount of error in their machine-learning predictions (‘prediction error’)

or ideas from information theory in the interests of simulating other constructs, like

confidence (Schmidhuber, 1991a), learning progress (Oudeyer et al., 2007, p. 269),

surprise (White et al., 2014, p. 14), interest/interestingness (Gregor and Spalek,

2014, p. 435; Frank et al., 2014, pp. 5-6), novelty (Gregor and Spalek, 2014, p. 435;

Singh et al., 2004, pp. 1, 5), uncertainty (Pathak et al., 2017, pp. 1-2), compression

progress (Graziano et al., 2011, p. 44), competence (Oddi et al., 2020, pp. 2417-

2418), and information gain (Bellemare et al., 2016, p. 4; Houthooft et al., 2016,

pp. 2-3; Still and Precup, 2012, p. 139; Frank et al., 2014, pp. 5-6).

Most existing methods inspired by curiosity are centred on generating special

reward-like signals, called intrinsic reward. In this section, we provide detail on

intrinsic-reward methods, including their benefits and limitations. Specific cu-

riosity may address some of the limitations of intrinsic reward and offer a better

choice for some applications of machine curiosity. Our list of properties provides

a specification for computational approaches that aligns with an interdisciplinary

understanding of curiosity based in the literature, in part inspired by observing a

poor alignment between intrinsic-reward methods and biological curiosity.

Computational intrinsic rewards are a spin-off of the formalism of reward (Rt),

a term described in the preceding subsection. As you may recall, reward is given
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as part of the observations the agent makes of the environment. The designer of

the agent’s learning algorithm cannot change the reward and so their algorithm

must solve the optimization problem as it stands. Intrinsic rewards, on the other

hand, are defined as part of the agent’s learning algorithm (they are ‘intrinsic’ to

the agent), behaviour can be optimized optimized for intrinsic rewards just as it

could be for the original reward signal. For clarity, the original reward signal is

often called extrinsic reward to distinguish it from intrinsic reward in the intrinsic

reward literature.21

Intrinsic reward is usually either (a) treated as a reward bonus added to the

extrinsic reward provided by the environment, or (b) treated as the only reward

signal, with the learner effectively ignoring any reward provided by the environ-

ment. If the intrinsic reward at time t is written RI

t
, then standard algorithms

for maximizing return can be used on the new, modified return (compare with

Equation 4.2):

(a)
1X

k=0

�k
�
Rt+k+1 +RI

t+k+1

�
(b)

1X

k=0

�kRI

t+k+1 (4.6)

While many intrinsic reward designs have been inspired by curiosity, there is

a wider body of literature about intrinsic rewards that doesn’t always reference

curiosity. However, many intrinsic rewards in this wider literature are designed

for the same reasons that researchers often want to include curiosity in their algo-

rithms, like improved exploration of the environment or allowing for self-directed

learning. For this reason, readers interested in learning more about current ma-

chine curiosity methods may wish to explore the larger literature on computational

intrinsic rewards.22

To create a computational form of specific curiosity, we essentially want an
21Use of the terms intrinsic reward and extrinsic reward in computational reinforcement learn-

ing, as described here, differs from its use in psychology. Oudeyer and Kaplan (2007, pp. 1–4, 12)
offer a discussion of how the terms extrinsic, intrinsic, external, and internal reward and moti-
vation are used within the contexts of psychology versus computational systems.

22Oudeyer and Kaplan (2007), Baldassarre and Mirolli (2013), and Linke et al. (2020), offer
overviews and surveys of intrinsically motivated computational systems.
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algorithm to exhibit the properties of specific curiosity. This means that a robot or

computer running such an algorithm would take actions reflecting these properties.

In this section, we want to discuss what infrastructure is needed to make such an

algorithm possible, and provide the preliminaries for the framework that we argue

is most appropriate—reinforcement learning.

For an algorithm to exhibit the properties of specific curiosity, the machine

running the algorithm should be able to decide how to act in the world and ex-

hibit preferences about its available choices; we see this especially in the properties

of directedness and voluntary exposure. Above the other properties, directedness

involves a preference for a sequence of actions expected to satisfy curiosity, and

voluntary exposure involves a preference for curiosity-inducing situations. It is

valuable if the agent can learn what kinds of situations induce curiosity and which

sequence of actions might lead to those particular situations and develop the appro-

priate preferences through learning. The capability to learn preferences and act on

them is the primary reason we consider reinforcement learning to be especially ap-

propriate for designing algorithms that reflect machine curiosity, as reinforcement

learning centres around algorithms that use access to sensations of their environ-

ments (at least partial) to choose actions that affect the environment around them

(Sutton and Barto, 2018, p. 3). Within the framework, instances of reinforcement

learning algorithms are often called agents, because they have the agency to shape

their own experience in the world and learn from their actions. This quality makes

the framework well-suited for the design of machine curiosity algorithms.

4.3.3.1 Benefits of Intrinsic-Reward Approaches

Intrinsic rewards have been very useful for increasing exploration on some impor-

tant testbeds (Pathak et al., 2017; Burda et al., 2019b; Bellemare et al., 2016),

and they have been used to perform well on problems where the objective outcome

metric is unavailable to the agent (Linke et al., 2020) or to generate developmen-

tal behaviour (Oudeyer et al., 2007). In intrinsic-reward approaches, the agent
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is rewarded for being in interesting (novel, surprising, uncertainty-reducing, etc.)

states. These rewards encourage the agent to stay in or return to the same state

repeatedly. Repeatedly visiting the same state has some important benefits for

learning.

1. Offers a simple way to recognize and remain on an exploration

‘frontier.’ Repeatedly visiting states that have not yet been visited many

times can mean staying on the frontier of a part of the world that the agent

has yet to explore. Frontier here refers to states of the world from which, if

the agent takes a particular action, they can end up in a state of the envi-

ronment that they have never experienced before. If the agent occasionally

takes a random action,23 staying on a frontier makes it more likely that it

will end up visiting unexplored parts of the world via such a random action24

than if the agent largely stayed in the middle of the part of the world already

explored.

2. Offers a way to check if an action results in a consistent reaction.

Another perceived benefit of doing the same thing repeatedly is to check for

consistency. In Section 4.2.2.2, we described repeating a test of the floor-

board to decide if it was the source of a peculiar noise. Similarly, for the

experimental section in Chapter 5, we completed multiple trials of each ex-

periment because we are interested in patterns that hold over time, rather

than one-time outliers. This benefit relates to an important assumption in

many uses of reinforcement learning: that the world is a little bit random.
23Many reinforcement learning agents occasionally take random actions (Hauser, 2018, p. 7).

Such agents learn about the world and develop estimates about which actions will let them
accumulate the best return, and take a best action (according to that metric) most of the time.
However, the agent occasionally takes one of its other possible actions, just in case its estimates
were wrong. This design element to take a random action is considered a type of exploration
strategy, and has good properties for ensuring the agent tries all possible actions from any state
an infinite number of times (Sutton and Barto, 2018, p. 103), at least if the agent has infinite time!
Two popular examples are ✏-greedy exploration and soft-max/Boltzmann policy exploration.

24Or, with carefully designed search control, the agent could be biased to take actions it has
never taken from a given state before.
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When we want to estimate the value of a particular state, we are really in-

terested in an average so we must observe a state multiple times to form a

reasonable estimate. Because of this assumption, many exploration methods

try to ensure the agent visits each state of its domain multiple times.

One way algorithm designers have encouraged agents to make exploratory

visits to each state multiple times is through intrinsic rewards that decay over

visits. This is an important area of study in exploration for reinforcement

learning, and some notable approaches include Upper-Confidence bounds

for Reinforcement Learning (UCRL, Ortner and Auer 2007 and UCRL2,

Jaksch et al. 2010), Model-based Interval Estimation (MBIE, Strehl and

Littman 2005, 2008), and Random Network Distillation (RND, Burda et al.

2019b)—even the early curiosity system by Schmidhuber (1991a) is based

on a decaying bonus (assuming it is applied in a deterministic environment).

The purpose of the decay is to only temporarily encourage visits to any given

state, enough to obtain sufficient samples.

3. No need for an explicit reward objective. Designing reward signals is a

longstanding challenge of applying reinforcement learning to computational

systems (Sutton and Barto, 2018, p. 469). While algorithms for learning

to maximize return can be designed without concern for what the reward

signal will be, complete reinforcement learning systems need reward signals.

Intrinsic rewards can act in place of an extrinsic reward signal.

The creation of open-ended learners without extrinsic reward functions is

currently an area of increased interest. The Intelligent Adaptive Curiosity

system devised by Oudeyer et al. (2007, pp. 265, 269, 283) was designed to

evoke developmental, progressive learning from an agent with no extrinsic re-

ward function. Pathak et al. (2017, p. 1), in their first demonstration of their

Intrinsic Curiosity Module—a system using intrinsic rewards—explicitly in-

vestigated the behaviour of their system without any extrinsic reward (see
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also Burda et al., 2019a, p. 1). These exploratory studies have demonstrated

that interesting or useful behaviours, like walking or completing video game

levels (Burda et al., 2019a, p. 10), can arise from purely intrinsically moti-

vated agents.

The specific value of designing systems that can navigate the world and learn

(develop) over their lifetimes has been well-argued by Oudeyer et al. (2007,

pp. 265–267). In particular, Oudeyer et al. (2007, p. 265) draw attention

to the idea that, while a system might have an easier time learning a task

we want it to complete if the system followed an incremental sequence of

increasingly difficult tasks (e.g. learn to stand before learning to walk),

it would be completely impractical to design each task in the sequence by

hand. Therefore, the creation of such sequences must eventually be made

autonomous. Further, when reward signals are designed by humans, they

are notoriously likely to be somehow misspecified (this problem is sometimes

referred to as reward hacking , specification gaming (Krakovna et al., 2020),

faulty reward functions, or as a case of the alignment problem). Essentially,

the objective you’re really trying to achieve is not always achieved via the

system’s solution to the objective function provided.

4.3.3.2 Limitations of Intrinsic-Reward Approaches

Although intrinsic-reward approaches have important benefits, they are limited in

their ability to achieve those benefits and lack some of the benefits we might expect

from an analogue of biological curiosity.

Detachment: One limitation relates to the first benefit we described—that an

intrinsic-reward approach offers a simple way to recognize and remain on an explo-

ration ‘frontier,’ because it doesn’t always work. In particular, since most intrinsic

rewards are designed to decrease as the agent returns to the same state over and

over again, it is possible for the agent to essentially use up the intrinsic reward
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without ever taking the actions required to continue into the nearby unexplored

part of the world. This is an example of the problem Ecoffet et al. (2021, Sup-

plementary Material, p. 20) called detachment, where an agent leaves and fails to

return to parts of its environment that are likely on a frontier—likely to be close to

new parts of the environment. This problem of detachment makes intrinsic reward

approaches to seeking never-before-seen states quite brittle and unable to achieve

this desired benefit in some situations.

By being specific, curiosity has different goals than the methods that suffer

from detachment. Specific curiosity does not attempt to cover an entire frontier

and doesn’t regret losing track of a state that is likely to be near novel states.

Specific curiosity may be best-suited for huge environments where there is so much

possible novelty that the learner needs to be choosy about which new information

they seek. Intrinsic reward methods are generally not so choosy about the novelty

they seek.

Reactivity: If the goal of including a mechanism is to encourage the agent to

experience something new, intrinsic reward offers an inelegant approach, as it can

only drive that goal indirectly. A reward can only be provided for observing a

state once it has been observed—at which point it is no longer new. As Shyam

et al. (2019, p. 1) put it, intrinsic reward methods are reactive and cannot direct a

learner towards novel observations. The reward becomes associated with something

already observed, not with novelty itself. To best achieve this goal, the agent should

be directed towards the new part of the world, rather than pushed to dither near it.

Of course, this is easier said than done, and so methods like Go-Explore (Ecoffet

et al., 2021) that return to frontier states then focus on actions that may lead to

novel states, instead of focusing on staying in such states, offer a useful interim

measure.

A core aspect of specific curiosity is planning to go retrieve a particular piece of

information to build the right knowledge when the learner is ready for it. Curiosity
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could seem reactive in that a learner does indeed seem to react to curiosity-inducing

situations—quite suddenly, the learner is directed towards attempting to satisfy its

curiosity, in reaction to what it just observed! But the type of reaction associated

with curiosity is forward looking. Rather than “Oh, that was novel, I’d better

experience it again!” (backward-looking) it is more like, “Oh, I have a question,

I’d better go make an observation that will answer it—and by it’s nature of its

contents being unknown to me, that observation will be novel.” Furthermore, the

property of voluntary exposure means that even curiosity-inducing situations are

not always accidentally stumbled upon, but often actively sought.

Lack of motivation in non-stationary environments Another limitation

relates to the second benefit we described: offering a way to check for consistency.

Many types of intrinsic reward—decay-based intrinsic rewards in particular—only

offer a way to check for consistency if we assume the environment is stationary.

By stationary, we mean that patterns and distributions in the environment never

change, so once you have collected enough samples to be confident in a pattern

or distribution, you never have to return to collect more. If the environment is

non-stationary, the pattern could change completely while you’re not looking, so

you must regularly return to check if you want to be sure of your estimates.

Decay-based rewards, in particular, are generally not designed to encourage an

agent to return to parts of the environment that it has already visited a sufficient

number of times. However, there are intrinsic rewards designed to account for this

concern: one of the earliest intrinsic rewards, used as part of Sutton’s (1990b)

Dyna-Q+ agent, was an additive intrinsic reward (‘exploration bonus’) that, for a

given state, grew with the amount of time since the agent’s last visit. Note that

this exploration bonus was not a reward bonus, however; rather than being added

to the reward observed by the learner, the exploration bonus was added directly

to the value of the state. The longer it has been since the agent’s last visit to that

state, the more the value for the state would grow, motivating the agent to return.
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Of course, Dyna-Q+ relies on a model of the environment. In reinforcement

learning, a model of the environment, sometimes transition model, is tradition-

ally refers to a function that takes a state and an action to take from that state

and returns a next state and reward, mimicking the environment (Sutton, 1990b,

pp. 217–218). Models of the environment are notoriously challenging to formulate

for real-world applications where environments are so large and complex that build-

ing full models would extend beyond real memory and computational limitations.

However, the benefits of Dyna-Q+ point to a need to address these challenges to

achieve effective curiosity or exploration: without being able to “think about” or

simulate experiences far from your current position in the world, it will likely be

impossible to develop specific intentions to observe parts of the world containing

the information that an agent needs or wants most. For this reason, our view of

specific curiosity is that it does require a model or related method of simulation.

Returning our attention to lack of motivation in non-stationary environments,

we note that specific curiosity is unlike the exploration methods that hope to

maintain a complete collection of consistent value estimates for every state in the

environment. Specific curiosity is similarly susceptible to never returning to a

prior part of the environment again in a learner’s lifetime. However, where specific

curiosity differs is that it can drive a learner back to revisit a specific part of the

environment, when driven by an inostensible concept.

A mechanism of inostensible concepts should be flexible. Ideally, it should

equally be able to ask “Does the bookstore floor still make the same peculiar noise

it made when I visited last week?” (a question about a previous experience) as

“If I pried up the offending floorboard, would I find something underneath?” (a

question about part of the environment never previously experienced).

Reliance on repetition of state: Our final limitation of interest connects to

the second key benefit—that intrinsic-reward approaches are useful for checking

if an action results in a consistent reaction. This benefit may not align with our
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goals for designing computational curiosity. Curiosity may be misaligned with an

underlying assumption about state that is typical in computational reinforcement

learning. We mentioned state in Section 4.3.1, describing it as a term used in the

reinforcement learning framework to describe the situation that the agent finds

themself in.

State repetition is central to reinforcement learning, as reinforcement learning is

designed to evaluate how well an action went previously so the learner can adjust

their behaviour next time they are in the same situation. If I didn’t much like

bumping my nose on the door last time, I might choose a different action when

I’m next faced with a closed door.

State is usually thought of as essentially separate from the learner, and more

importantly, as repeatable, meaning a learner can experience the same state mul-

tiple times. Of course, in large complex worlds, the exact same situation isn’t

likely to repeat multiple times, but with some generalization, this assumption is

very helpful. Important features of the state can repeat multiple times and be

useful for predicting reward. For example, imagine you’re a rat in a box with a

lever. Let’s say that when a light in the box is turned on, pulling the lever results

in the appearance of chocolate for you to eat, but when the light is off, nothing

happens when the lever is pulled. In this case, thinking of light on and light off

as repeatable features of state can prove very useful in optimizing your chocolate

intake.

However, this assumption that state repeats should be complicated in the case

of curiosity. Why? With curiosity, a learner’s goal is to change their situation by

making changes to their own knowledge state. By knowledge state, we mean the

state of what the learner knows—what the agent has learned from its observations

of the world. While reading your novel, you may find yourself curious, wanting to

change your knowledge state from not knowing who the killer is to include knowing

who the killer is. While wandering through the bookstore, you found yourself

wanting to get into a knowledge state where you know if it was your own action
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that generated peculiar noises from the floorboard. In comparison to traditional

reinforcement learning state, which we can call environment state, knowledge state

is similar in that the learner can take actions to change it, but it is different in

that it isn’t helpful to think about returning to previous knowledge states.

A learner’s knowledge state is continually changing and does not have the same

repeatability as environment state: it is much more useful to think of the agent’s

knowledge growing and adapting with each new observation of the world. Sure,

an agent might forget things, but that doesn’t mean it ever returns to a prior

knowledge state.

For example, when checking if an action results in a consistent reaction, the

knowledge state of the agent actually changes after each trial. The inostensible

concept of interest is not the result of a single trial, but actually some statistic

about the distribution of possible results. For the agent trying to learn the value

of a state, the inostensible concept might be the mean value, and for the scientist,

the inostensible concept is more likely to be some underlying pattern or truth

about the world. Appropriate directed behaviour, in this case, is to experience

the same environmental state features multiple times, but each visit provides new

information and leads to achieving a different knowledge state.

Of course, specific curiosity still needs to use repeatable features of environment

state. In fact, we believe that an agent learning what features of the environment

tend to repeatably lead to curiosity-inducing situations might be critical to the

property of voluntary exposure, (e.g. sections of bookstores labelled ‘Mysteries’

could be a good feature). And without learning about repeating features of en-

vironment state, how could we plan directed action to satisfy our curiosity? (c.f.

Berlyne, 1954, p. 183).

***
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4.3.3.3 Specific Curiosity in Relation to the Limitations
of Intrinsic Reward Approaches

We believe that specific curiosity can address some of the limitations of intrinsic

reward approaches. However, we also recognize that specific curiosity appears to

function for a different purpose than intrinsic reward methods and compare the

functions and goals of each type of method in this discussion.

Detachment: By being specific, curiosity has different goals than the methods

that suffer from detachment. Specific curiosity does not attempt to cover an entire

frontier and doesn’t regret losing track of a state that is likely to be near novel

states. Specific curiosity may be best-suited for huge environments where there

is so much possible novelty that the learner needs to be choosy about which new

information they seek. Intrinsic reward methods are generally not so choosy about

the novelty they seek.

Reactivity: Specific curiosity is less defined by reactivity and is a forward-

thinking method. The core piece of specific curiosity is the planning to go retrieve

a particular piece of information to create the right knowledge at the right time.

A curiosity-inducing situation seems to stem from an update to the learner’s

knowledge state that results in the agent recognizing an inostensible concept, or

specific piece of knowledge that they don’t have. In large, complex worlds where

a learner can’t expect to do everything it is possible to do, specific curiosity helps

the agent to go get the right observations for the agent’s knowledge state at the

right time.

In summary, while it may sometimes be reasonable to think of learners return-

ing to the same environment state and action, this is not a return to the same

knowledge state.
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4.3.3.4 Approaching the Five Properties in the Computational
Literature

Computational reinforcement learning researchers have shown strong interest in

aspects of the properties of directedness towards inostensible referents, cessation

when satisfied, voluntary exposure, and transience. Their exploration has not

always been done in the name of curiosity, however. For example, the idea of

directedness (though not necessarily towards inostensible referents) parallels work

done on options (as early as Sutton et al., 1999) and planning. The study of options,

a mathematical abstraction of short-term policies, has resulted in a growing body

of research. Part of the appeal of options is their potential to get an agent from

point A to point B (which could be thought of as a goal) without emphasis on the

path to get there. Purposeful exploration using options and related ideas has been

actively pursued by researchers such as Machado (2019). The options framework,

in particular, further reflects cessation when satisfied and aspects of transience via

termination conditions for each option. Some termination conditions are naturally

defined by goal states, so the directed behaviour ceases upon reaching a goal state,

much like cessation when satisfied; other termination conditions can be based

on when the option hasn’t succeeded in reaching its goal state in a reasonable

amount of time, one of the aspects of transience (Stolle and Precup, 2002, p. 212).

However, as Colas et al. (2022) have pointed out, most work with options to

date has largely only considered goals within the distribution of goals previously

encountered (p. 1177). One notable exception is the Intrinsic Motivations And

Goal INvention for Exploration (IMAGINE) architecture, in the design of which

Colas et al. (2020) leveraged the compositionality of language to generate goals—

which could be seen as a step towards leveraging the compositionality of concepts

to generate inostensible concepts.

Prior work has further aimed to address the lack of directedness that is a

characteristic of intrinsic-reward methods. For example, the Model-Based Active

eXploration algorithm presented by Shyam et al. (2019) uses planning to allow
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the agent “to observe novel events” (p. 1). They care about unknowns and about

creating paths to them. The Go-Explore family of algorithms also centres on the

idea of taking a direct sequence of actions to move to a specific state for the purpose

of exploring from it, as per Ecoffet et al. (2021). In these examples and others, it

is clear that recent work has begun to seek ways to avoid the reactive approach to

designing machine curiosity.

Murayama et al. (2019) developed a model rooted in reinforcement learning to

describe the reward process involved in knowledge acquisition, designed to help

explain curiosity and interest. Yasui (2020) “also found that methods which add a

bonus to their value function tended to explore much more effectively than methods

which add a bonus to their rewards” (p. ii). This is part of a growing body

of evidence in the literature that additive reward bonuses do not in many cases

reflect or lead to the same results as human curiosity. As stated by Gruber and

Ranganath (2019, p. 1016), “the effects of reward and curiosity are not additive,

and reward has been shown to undermine curiosity and its effect on memory” (in

reference to Murayama et al., 2010; Murayama and Kuhbandner, 2011). Finally,

active perception is a field of computing science concerned with building systems

that take action to change what the system perceives towards specific goals. The

needs that arise when considering how to design algorithms for specific curiosity

overlap substantially with the concerns of active perception.

In summary, it is encouraging to see a wide body of literature begin to move

toward effecting what could be well considered properties of specific curiosity. In

the section that follows, we expand on some of the benefits that each of the prop-

erties of specific curiosity can bring to curious reinforcement learning agents by

way of a concrete implementation and empirical study that highlight how multiple

properties work together as a unified whole to generate curious behaviour in a

learning machine.

***

This section discussed very generally the kind of machine learning context we
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think specific curiosity makes sense in and what we might expect these properties

to look like in such a context. In particular, the reinforcement learning frame-

work includes useful infrastructure for algorithmic decision making, planning, and

preference. The potential of this framework for computational curiosity is well-

regarded, but has primarily been explored via intrinsic-reward approaches. We

discussed some important benefits and limitations of intrinsic-reward approaches

and alluded to some of the differences between the behaviour generated by intrinsic

rewards and that which we should aim for when designing specific curiosity. In

the next chapter, we showcase our prototype computational agent with three of

our five properties of specific curiosity, aiming to build further intuition about the

possibilities of such a system.
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Chapter 5

Fundamental Study: A Prototype of

Specific Machine Curiosity

We now present a case study that illustrates one possible way that three of the

key properties of specific curiosity might be implemented to shape the behaviour

of a reinforcement learning agent. Our intent is for this example to help the reader

more deeply understand the properties of specific curiosity identified above, and

how the computational principles they represent might be translated to algorithms

and implementation. To support this understanding, the case study is designed to

model our running bookstore example, so the agent, like you, has the opportunity

to discover its own analogue of your corner bookstore.

We specifically hope to show that, even in a simple and focused setting, using

the properties of specific curiosity we’ve highlighted as guidelines allows us to see

machine behaviour emerge that approximates specific curiosity from the animal

learning domain. Further, we aim to depict how these properties are modular and

amenable to extension as future, more insoluble aspects of specific curiosity become

computationally clear and tractable. This example is not, however, to be inter-

preted as a recommendation for a final or definitive computational implementation

of specific curiosity. We diverge from the more common practice of fully tackling a

problem without domain knowledge, instead implementing hand-designed rules of

thumb or expert knowledge as solutions for some of the more challenging, unsolved
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aspects of computational specific curiosity, such as the process for recognizing in-

ostensible concepts. The intended purpose of this section is for the reader to gain

insight and motivation to further investigate the way the properties of specific cu-

riosity might be integrated into different machine learning frameworks and problem

settings.

To this end, we offer three sets of experiments. Sections 5.1 and 5.2 describe

the base agent and base domain, respectively, that will be used throughout—agent

interactions with the base domain are directly explored in the first set of experi-

ments (Sections 5.3.1 and 5.3.2). In our second set of experiments, we investigate

agent behaviour when the domain is perturbed in terms of domain geometry and

span (Sections 5.4.1 and 5.4.2). In our third and final set of experiments (Sec-

tions 5.5.1 and 5.5.2), we examine the ablation of individual properties of specific

curiosity within the agent and the impact this has on agent behaviour.

5.1 Agent Implementation

In this section, we provide the specification for an agent that, if truly exhibiting

the behaviour expected from the biological literature on specific curiosity, would

be expected to:

1. take a largely direct route to a curiosity-satisfying situation, which we term

a target (directedness),

2. not repeatedly return to situations that had satisfied curiosity (cessation

when satisfied), and

3. develop a preference for (increased estimated value for) parts of the world

that repeatedly offer curiosity-inducing observations (voluntary exposure).

The full algorithm followed by our curious agent is described in Algorithm

2. Sections 5.1.3–5.1.5 provide detail on how each property is included in the

algorithm. The agent parameters used for our experiments are shown in Table 5.1.
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Algorithm 2 A specific example of prototyping specific curiosity
1: Initialize ↵, ✏, �, �curious, V , x
2: Initialize Vcurious, Rcurious to zeros
3: while alive do
4: if agent observation x induces curiosity then
5: generate a new curiosity target

6: generate Rcurious =

⇢
0, if transitioning to target
�1, otherwise . Aversive

Quality
7: Vcurious  V alueIteration(Rcurious, �curious)

8: if there is currently a curiosity target (i.e. the agent is curious) then
9: x0, R move greedily w.r.t. Vcurious(x) . Directed Behaviour

10: else
11: x0, R move ✏-greedily w.r.t. V (x) . Ties broken uniform randomly
12: �  R + � · V (x0)� [V (x) + Vcurious(x)] . Voluntary Exposure
13: V (x) V (x) + ↵�
14: if agent observation x0 is the target then
15: destroy the current target
16: reinitialize Vcurious to zeros . Cessation when Satisfied
17: x x0

As a note on the scoping of our empirical work: In the design of the agent used

in this case study, we aim to demonstrate interactions between the first three of

the five key properties of specific curiosity we contributed in the sections above

(directedness, cessation when satisfied, and voluntary exposure). This scope is

deliberate: we place our initial focus on foundational properties of specific curiosity

that for clarity of investigation can be well studied and perturbed in isolation

from the experimental variability of long-term information search and the shifting

focus (transience) related to life-long learning. We address these remaining two

properties and their conceptual connection to our observed results in the discussion

sections below, and explicitly in Section 5.6.

We further contain the scope of these initial experiments by limiting the com-

parison of secondary computational operations that are involved in specific curios-

ity but that might have a variety of possible algorithms and implementations—in

such cases we chose the clearest, simplest implementation of the many possible
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alternatives. Specifically, in Section 4.2.2.2, we noted the importance of separat-

ing curiosity-inducing observations from curiosity-satisfying situations. However,

recognizing appropriate curiosity-inducing observations and estimating where in

the world the appropriate satisfying observations can be found are complex is-

sues. In this initial case study we chose to isolate the key properties from these

complexities so as to better see the impact of the properties themselves on agent

behaviour. We achieved this isolation by assuming the existence of an oracle-like

mechanism that indicates that curiosity has been induced and indicates the loca-

tion of an observation that would satisfy it. In what follows, we often refer to this

particular location in the domain as the target of curiosity, in reference to the idea

that, while there may be many possible ways of making the inostensible concept of

focus ostensible, the agent selects one potential curiosity-satisfying situation and

then aims its behaviour towards experiencing that situation. We refer in what fol-

lows to the mechanism for recognizing curiosity-inducing situations and suggesting

appropriate targets as a curiosity-recognizer module.

5.1.1 Base Algorithm

Since we are conceptualizing specific curiosity as resulting in a binary state of

curiosity—at a given moment, the agent is either curious or not—we can start with

a base algorithm in our experiments that determines the baseline agent behaviour

when the agent is not curious. For simplicity, since the intent of this work is to

explore behavioural change and not task optimality, we chose TD(0) (Sutton and

Barto, 2018, pp. 120-121) as our base algorithm,1 with an ✏-greedy policy2 with
1We herein do not rely on eligibility traces to prevent confounding their impact during analysis

with the way a system might present its developed preference for curiosity-inducing situations; we
expect the practical impact of accumulating or replacing eligibility traces to be one of speeding
up the acquisition of preference for curiosity inducing situations, but this is a detailed comparison
intended for future work.

2Epsilon-greedy (✏-greedy) behaviour refers to choosing the action that has the highest esti-
mated value (being greedy) nearly all of the time, but a small percentage of the time, choosing
randomly from the available actions. The ‘epsilon,’ ✏, in ✏-greedy is a parameter that sets how
likely it is that a given action will be random rather than greedy. For more information on
epsilon-greedy behaviour, see Sutton and Barto (2018, pp. 27-28).
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respect to its estimated value function V , with ties broken by equiprobable choice.

This behaviour is defined in Line 11 of Algorithm 2. Further, while the agent is

not in a state of curiosity, its learning follows the standard TD(0) learning update:

V (x) V (x) + ↵� where � = Rt+1 + �V (St+1)� V (St) (5.1)

Note that, in Line 12 of Algorithm 2, when the agent isn’t curious, our Vcurious is

zero everywhere, so the learning update simplifies to the standard TD(0) update.

5.1.2 Recognizing Curiosity-Inducing Observations

To enter a state of curiosity, the algorithm relies on a curiosity-recognizer mod-

ule, which, upon a curiosity-inducing observation, generates an associated target

location (Line 4). In our bookstore analogue, looking around the bookstore offers

a curiosity-inducing observation, like an intriguing back-of-book blurb, and upon

this observation, the reader/agent automatically has a target observation or set of

target observations in mind. The target might be observing the first page of the

book, and based on the target, the agent can guess how best to act to achieve the

target (open the book) and proceed.

As we mentioned earlier in Section 5.1, recognizing when an observation should

induce curiosity and estimating where an appropriate satisfier might be found are

complex issues with solutions beyond the scope of this paper. For this case study,

we instantiated a specific location in the domain to induce curiosity and a set

of locations of possible satisfiers. Each time curiosity is induced by visiting the

curiosity-inducing location, one location for a satisfier is chosen randomly from the

set; we refer to this location as the target. This simple target generator acts as the

curiosity-recognizer module in our experiments. The exact locations used for our

experiments will be described with the domains in Sections 5.2 and 5.4.1. We use

this simplified curiosity-recognizer module to recognize when curiosity is induced.
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5.1.3 Directedness Towards Inostensible Referents

Once curiosity is induced, the agent changes its behaviour. To achieve the property

of directedness towards inostensible referents, the agent is no longer ✏-greedy with

respect to V and is instead fully greedy with respect to Vcurious, a temporary value

function. As mentioned earlier in Section 5.1, the key property of Vcurious is that

it is a gradient leading the agent towards the target provided by the curiosity

recognizer: if one location is fewer actions away from curiosity’s satisfier than

another, the former location has higher value. An agent acting greedily with

respect to the temporary value function will travel directly to curiosity’s satisfier.

In our implementation, the function Vcurious is generated via value iteration

(Sutton and Barto, 2018) in Line 7. Value iteration generates appropriate gra-

dations in the value function, even taking into account any known obstacles or

required detours between the agent’s current location—or any given location—and

the location of the target. See Figure 5.4(a, Vcurious) for a visualization of a gradient

generated by value iteration. Value iteration is performed using the agent’s transi-

tion model of the space, but uses a special reward model, Rcurious : S⇥A⇥S ! R,

which maps a transition from any location other than the target to �1, but maps

a transition from the target to 0. Equivalently:

Rcurious(s, a, s
0) =

⇢
0 if s is the target
�1 otherwise (5.2)

This choice was inspired by the characteristic aversive quality of curiosity men-

tioned in Section 4.2.5.

Note that in this simplified agent, we provided the agent a perfect transition

model of the world, so that its value iteration produces an exactly direct gradient

to the target. The agent could instead learn this model from experience. Future

work will need to consider the implications of not giving the agent a perfect model,

as using a perfect model is a simplification rarely possible in real-world settings.
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5.1.4 Cessation When Satisfied

The property of cessation when satisfied refers to the agent’s behaviour no longer

being affected by curiosity once the agent has observed the target of its curiosity.

Once the agent has visited the target (Line 14), the agent is no longer curious

and returns to its base behaviour. In the algorithm, this return to base behaviour

is achieved by removing the target (Line 15) and zeroing out Vcurious (Line 16).

The agent will only become curious again when it has another curiosity-inducing

observation as recognized by the curiosity-recognizer module.

5.1.5 Voluntary Exposure

After several cycles of curiosity being induced, followed, and satisfied, if a particular

part of the world repeatedly induces curiosity, the agent can learn a preference for

returning to that part of the world. This learning process exemplifies voluntary

exposure. In our running example, if you visited your corner bookstore by largely

random choice during a few strolls around your neighbourhood and each time you

found your curiosity sparked by excellent reads, you might find yourself heading

to the bookstore directly to shortcut the process.

While we designed directedness and cessation when satisfied as simple be-

haviours, voluntary exposure was more interesting because we wanted our design

to let the agent learn where in the world it might repeatedly become curious, and

therefore voluntarily expose itself to those parts of the world—in reference to our

running example, returning to the bookstore. We made a simple change to the TD

update that would let the temporary value function, Vcurious, influence the enduring

value function, V . This change can be found in Line 12 of Algorithm 2:

�  R + � · V (x0)� [V (x) + Vcurious(x)]

This change means that when the agent is curious, the temporary value function,

Vcurious, affects the learning update to its estimated value function, V . Since Vcurious
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↵ 0.01
✏ 0.2
� 0.9

�curious 0.9
initial V : S ! R V (s) = 0 8s 2 S

Table 5.1: Parameters used at initialization in our experiments.

is negative everywhere, the enduring value for any locations the agent visits while

curious will increase.

This design choice came from intuition more than a strong theoretical under-

pinning. Our intuition was that the experience of curiosity should affect internal

value estimates more enduringly, but the result should not be an enduring push

towards curiosity’s satisfiers, as we might see if visiting a satisfier were intrinsically

rewarding. Instead, we hoped to see an enduring effect of increased preference for

curiosity-inducing situations, or, algorithmically, increased value. Our initial ex-

periments were designed to uncover whether this algorithmic choice would offer

behaviour and value function estimates characterized by the property of voluntary

exposure, which we would observe as a learned preference (increased value) for

locations where the agent repeatedly makes curiosity-inducing observations.

***

In summary, the agent implemented in this section was designed to incorporate

three of the five key properties highlighted in this paper: directedness, cessation

when satisfied, and voluntary exposure. As a reminder, this design represents only

an initial example of how these properties might be simply achieved, and meant to

inspire other approaches to agents exhibiting specific curiosity. In the remainder

of this experimental section, we describe experiments designed to help us better

understand the effects of our algorithmic choices for the agent.
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5.2 Primary Domain

With the goal that our experiments should use a simple and focused setting to high-

light machine behaviour approximating biological specific curiosity, we designed a

primary domain mirroring our running example of the corner bookstore. The do-

main is a simple gridworld, meaning that the agent occupies a single square in a

grid. Our primary domain is an 11 by 11 grid, depicted in Figure 5.1. In this

paper, our references to locations on the grid are 0-indexed using (row, column)

notation.

Actions can move the agent one space per step either up, on either upward

diagonal, left, or right—but never down or on a downward diagonal. The agent

also has a stay-here action that allows it to stay on the same location. These actions

are shown visually in Figure 5.1(b). Directly left or right actions that would take

an agent beyond the left or right boundary of the grid instead return the agent to

the square where it attempted the action. Similarly, diagonal actions that would

take an agent beyond the left or right boundary of the grid instead simply move

the agent up. Any action that would take the agent beyond the upper boundary of

the grid teleports the agent to the midpoint of the lowest row of the grid, (10, 5),

which we will refer to as the junction location.3

A location in the centre of the grid at position (5, 5) is considered a permanent

curiosity-inducing location, analogous to the bookstore in our example. This choice

makes the curiosity-recognizer module mentioned in Section 5.1 very simple. When

the agent enters the curiosity-inducing location, the module generates a target.
3The choices to have no downward actions and to teleport off the top of the grid to the

midpoint of the bottom of the grid may seem unexpected. This choice was made to allow greater
clarity in the visual presentation of the outcomes of the case study. By removing backtracking,
the visit counts for each state more clearly show where the agent chooses to move. There are
other choices, such as standard cardinal direction actions. The choice to teleport to the junction
location rather than treating the grid like a simple cylinder simplifies the learning problem by
making it more likely that the agent will return to a state it has already learned about, speeding
up the learning process. We evaluated a range of alternatives without some of these constraints
on the domain and movement, but they have been omitted from this manuscript for what brevity
we can hope to preserve; key observations in settings with backward motion, cardinal motion,
cylindrical wrapping, and others are well captured by the presented results.
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(a) Domain Mechanics (c) Agent Target
Generation Mechanics

(b) Agent
Actions

Figure 5.1: This image visualizes the mechanics of the primary domain described
in Section 5.2. The junction location is shown at the bottom with a grey dashed
outline in (10, 5). The arrows in (a) from the top row back to the start location
represent teleportation back to the junction location when the agent takes an
upward action off the top of the grid. The grey rectangle shown in (b) will represent
the agent in later figures, and (b) also visually shows the six actions available to
the agent from any location. For clarity, the target generation mechanics needed
for the curiosity-recognizing module (not considered inherent to the domain) are
shown separately in (c). The curiosity-generating location has a thick solid grey
outline. The possible locations for curiosity targets to be generated, across the
second row from the top, are highlighted in purple.

Much like your corner bookstore, the curiosity-inducing location reliably induces

curiosity in the agent when visited. Every target is generated in row 1 of the grid

(the second row from the top) with equal probability of being placed in any of

the 9 grid columns besides those directly neighbouring the left or right boundary,

i.e., a target chosen from the locations in the row between and including (1, 1) and

(1, 9). Different stories have different endings and different narratives to take the

reader to them, so the targets generated at your corner bookstore vary.

While a reward function is usually included as part of an experimental domain
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for reinforcement learning, we did not include a reward function as part of the do-

main for the experiments described in this paper.4 For a standard reinforcement

learning agent that expects a reward for its learning algorithm, we could equiva-

lently define Rt to be 0 at every time t. We leave exploring how best to balance

Vcurious with the value generated by a nonzero reward function to future work.

In the experiments showcased in this paper, we initialized each trial with the

agent located at the curiosity-inducing location, as the random behaviour to find

the curiosity-inducing location is not especially relevant to the mechanics central

to this paper. We did run experiments with the agent starting at other locations:

the results are not meaningfully affected, but the learning time is extended.

The primary domain described in this section acted as the environment that

the agent interacts with in our first and third sets of experiments and as a start-

ing point for domain modifications in the second set of experiments. By using a

clear analogue of the bookstore throughout, our intention was to make behaviours

characterizing specific curiosity obvious.

5.3 First Set of Experiments: Primary Domain

and Base Agent

5.3.1 Experimental Setup: Visit Count and Value Study in
the Primary Domain with the Base Agent

As we noted early in Section 4.3.3.4, we wanted to design experiments to seek

out machine behaviour approximating biological specific curiosity. To achieve this,

we observed visit counts (where an agent goes) and the agent’s estimated value

function (what locations an agent learns to prefer).
4As a reminder from Section 4.3.1, typically the goal pursued by reinforcement learning agents

is to maximize their accumulation of extrinsic reward—the reward provided by the environment,
usually defined as part of the domain. This goal is not directly relevant to the core of this paper,
which is more focused on isolated mechanics of curiosity.
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To measure what the agent does or how the agent acts, we use visit counts.

We use the term visit counts to refer to an array of integers, one integer for each

location on the grid equal to the number of times the agent has visited that location.

At any given time step, the values in the visit count array will be identical to the

values in the preceding time step, except at the location that the agent visits,

which will be larger by 1. At the end of a trial, the visit counts help us see where

the agent spent more time and where it spent less time. Graphical examples of

visit counts can be found in the right column of Figure 5.2.

To gain insight into what the agent learns and how its persistent value function

changes over time, we can represent the persistent value function as an array with

the value equal to the estimated value of that location. Graphical examples of

the persistent value function can be found in the left column of Figure 5.2. The

agent’s curiosity value function can be represented similarly, and, in the context of

Algorithm 2, a record of the curiosity value function at each time step can provide

insight as to why the agent acted in a particular way or learned a particular change

in the persistent value function. Graphical examples of the curiosity value function

can be found in the second row of Figure 5.4.

As our initial experiment, we recorded the estimated value function V , the

curiosity value function Vcurious, and the visit counts of the agent described by

Algorithm 2 in the primary domain in 30 trials of 5000 time steps each (with

each time step referring to an iteration over the loop in Lines 3-17 of Algorithm

2). For each trial, we recorded the value functions at each time step. Recording

these values allowed us to create frame-by-frame animations for each trial showing

the agent’s movement through the grid over time along with the changing value

functions. An example of agent motion and value learning in video format is

provided as supplementary material: https://youtu.be/TDUpB7OefFc.

To account for stochasticity in the agent’s behaviour, we also aggregated the

final estimated value functions and visit counts (after 5000 time steps) over all

30 trials. Similarly, we aggregated the estimated value of the curiosity-inducing

171

https://youtu.be/TDUpB7OefFc


location and potential target locations at each time step over all 30 trials. Observ-

ing the changes in the estimated value function, in particular, allowed us to test

our hypothesis of voluntary exposure: that the curiosity-inducing location would

strongly accumulate value, while the locations of the targets would accumulate

relatively little value.

Overall, this initial experiment in the primary domain allowed us to look for

patterns in the agent’s behaviour and learning and then compare those patterns

to the expectations we developed through conceptual analysis of the properties of

curiosity in Section 4.2.

5.3.2 Results and Discussion: Visit Count and Value
Study in the Primary Domain with the Base Agent

One question that motivated these experiments was: Does the agent learn to value

the curiosity-inducing location, emulating the property of voluntary exposure? In

particular, an agent demonstrating specific curiosity would learn a preference to

return to the curiosity-inducing situation (think the bookstore) and not learn a

preference to return to the curiosity-satisfying targets (think the specific pages of

each book). Figure 5.2(c) shows that the final value function, aggregated over all

trials, had this property, with the curiosity-inducing location having the highest

persistent value of all locations in the grid. We can also see a gradient leading from

the bottom row of the grid up to the curiosity-inducing location, showing that,

after 5000 steps, the agent had a persistent preference to move to the curiosity-

inducing location. Figure 5.2(d) shows that this preference was reflected in the

agent’s behaviour: visits were concentrated between the junction location (where

the agent starts each upward traversal of the grid) and at the curiosity-inducing

location.

While it is promising to see this indication of voluntary exposure at the end

of learning, we also would hope to see the difference in preference between the

curiosity-inducing location and potentially curiosity-satisfying targets learned smoothly
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(a) (b)

(c) (d)

Figure 5.2: This figure shows the persistent value function and visit counts in the
primary domain for a simple reinforcement learning agent demonstrating properties
of specific curiosity. From this figure, we can see that the agent learned to value
the curiosity-inducing location and therefore follow a direct path to that location,
but it does not learn to value the targets of its curiosity. Shown here are (a,c) the
persistent value function V and (b,d) the total visits the agent made to each state
in the 11 x 11 grid domain. Totals plotted for trials of 5000 steps, with (a) and
(b) showing value and visit counts for one representative trial, while (c) and (d)
are averaged over 30 independent trials.
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Figure 5.3: This figure shows the mean (line) and standard deviation (shaded area)
of the persistent value of the curiosity-inducing location (in blue) and of all the
possible target locations (in orange) over time, considering 30 trials. The estimated
value of the curiosity-inducing location grows sublinearly while the learned values
of the targets hover around 0 throughout with little variation or growth.

over time. Indeed, this desired pattern can be seen in the learning curves in Figure

5.3.

To understand how the agent learned to travel directly to the curiosity-inducing

location, it can be helpful to follow the agent through a cycle of curiosity being

induced, followed, and satisfied. The first such cycle in one trial is followed in

Figure 5.4. The agent started at the curiosity-inducing location at t = 0, where

curiosity is triggered. The leftmost column of Figure 5.4 shows the temporary

reward function (Rcurious), the temporary value function (Vcurious), the persistent

value function (V ), and the visit counts at time t = 0. For the agent, the induction

of curiosity meant generating a curiosity-satisfying target (in the figure, the target

has a dashed line border and is located near the top right of the grid). An associated
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temporary reward function, Rcurious, was generated, shown in panel (a), which was

used to compute an appropriate temporary value function, Vcurious, shown in panel

(b).

Acting according to the property of directedness, the agent moved directly to

the target and reached that target at t = 3, as shown in panel (h). At each step,

the agent’s persistent value function was updated according to Line 12, so we see

the gradient we saw in Vcurious, panel (b), reflected in the learned value in panel

(g). The further from the target, which is where Vcurious is more negative, the more

positive value was accumulated into the persistent value function.

When the agent observed the target at time t = 3, its curiosity was satisfied,

and in accordance with the property of ceases when satisfied, the target-driven

behaviour ended. This means that Rcurious and Vcurious were zeroed out for all

locations, as shown in panels (e) and (f), respectively. In this initial cycle, the

agent’s behaviour was wandering and largely random (as can be observed via its

visits in panels (l) and (p)) until the agent reached a location adjacent to a location

that has accumulated some persistent value—in this case, the agent reaches a

location adjacent to the curiosity-inducing location, where a greedy action would

be to move to the curiosity-inducing location. At time t = 16, the agent visited

the curiosity-inducing location where the cycle restarted with a new target.

We have seen the agent exhibit the properties of directedness, cessation when

satisfied, and voluntary exposure, which was the desired result. However, this

experiment was performed in a very small domain, so a next obvious question is

whether these properties would still be exhibited in larger domains. Is the agent

still able to learn a persistent preference for the curiosity-inducing location when

the domain is larger, or when there are many possible targets? These questions

motivated our second set of experiments, described in the next section.
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Rcurious

(a) (e) (i) (m)

Vcurious

(b) (f) (j) (n)

V

(c) (g) (k) (o)

Visit Counts

(d) (h) (l) (p)

t = 0 t = 3 t = 7 t = 16

Figure 5.4: This figure is meant to offer intuition into the agent’s learning behaviour
by showing the agent’s persistent value function V , curiosity value function Vcurious,
the curiosity reward function Rcurious used to generate Vcurious, and the visit counts
at the initialization of an example trial (t = 0), the first visit to an induced target
(t = 3), after it has crossed off the top of the grid back to the bottom centre
(t = 7) and the second visit to the curiosity-inducing location (t = 16). Note the
difference in scale between V and Vcurious. While it is not visually obvious, location
(6, 4) has a value V of approximately 0.0003 at t = 16—the first step in learning
a path to the curiosity-inducing location.
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5.4 Second Set of Experiments: Domain

Geometry Manipulations

5.4.1 Experimental Setup: Domain Geometry
Manipulations

While the patterns we observed through the experiments described in Sections

5.3.1 and 5.3.2 are promising reflections of specific curiosity, we were curious about

whether we would observe the same patterns in a larger domain. In a larger

domain, there is more space for the agent to get ‘lost,’ and not pick up the patterns

of behaviour demonstrating learned voluntary exposure and repeated cycles of

curiosity. For this reason, in our second set of experiments, we manipulated the

geometry, or shape, of our original 11⇥11 domain to make similar wide (11⇥101)

and tall (101⇥ 11) domains. In these domains, we ran four experiments:

1. 30 trials of 5000 steps in wide (11⇥ 101) domain

2. 30 trials of 5000 steps in wide (11⇥ 101) domain without a junction location

3. 30 trials of 5000 steps in tall (101 ⇥ 11) domain with curiosity-inducing

location near the bottom of the grid

4. 30 trials of 5000 steps in tall (101 ⇥ 11) domain with curiosity-inducing

location in the centre of the grid

We explain these experiments in more detail in this section. In each of these

domains with manipulated geometry, each key aspect of the primary domain has

an analogue. The agent had the same six actions available (left, left-up diagonal,

up, right-up diagonal, right, and stay-here). The targets were uniformly selected

from the second row from the top of the grid: from (1, 1) to (1, 99) in the wide

domain and from (1, 1) to (1, 9) in the tall domain.

In three of the four experiments, the junction location has an analogue: when

the agent moves off the top of the grid, it is returned to the centre of the bottom
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row of the grid, which is (10, 50) in the wide domain and (100, 5) in the tall domain.

In the second experiment, however, we removed the junction location, making the

domain a true cylinder. When the agent moves off the top of the grid, it arrives at

the bottom of the grid in the column it attempted to move into (e.g., if the agent

moved on a left-up diagonal, it would arrive one column to the left of where it was

along the top, unless it was against the left edge, in which case it would arrive in

the bottom row in the same column).

Removing the junction location allowed us to explore how important it is for a

curiosity-inducing location to be near the agent when the agent isn’t curious. If the

agent fails to find a distant curiosity-inducing location, it might not demonstrate

the key properties of specific curiosity. Understanding this effect has important

implications for the design of an appropriate curiosity-recognizing module. For

example, we may need to ensure the module has a sufficiently low threshold for

the induction of curiosity to obtain useful behaviour.

We further explored this concern by manipulating the location of the curiosity-

inducing location in the tall domain. It was not obvious where to put the curiosity-

inducing location in the tall domain: five rows up from the bottom, or in the

vertical centre of the grid? As the third and fourth experiments of this set, we

tried both natural possibilities for the curiosity-inducing location, with the third

experiment performed with the curiosity-inducing location at (95, 5) and the fourth

with it at (50, 5).

By manipulating the geometry of our original domain, we hoped to find out

whether the initial patterns we observed in the first set of experiments generalized

to larger domains. Further, larger domains might illuminate other patterns of be-

haviour that might improve our choices in the design of future, more sophisticated

algorithms for machine curiosity.
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(a) Learned Value Function V

(b) Visit Count

Figure 5.5: This figure shows the learned value function and visit counts in the
wide domain for our simple reinforcement learning agent demonstrating properties
of specific curiosity. This figure shows how any locations that are visited repeatedly
while curious will accumulate value. Shown here are (a) the learned value function
V and (b) the total visits the agent made to each location. Totals plotted for trials
of 5000 steps and averaged over 30 independent trials. Note that the scale of the
visit counts plot differs from that in Figure 5.2.

5.4.2 Results and Discussion: Domain Geometry
Manipulations

Through these experiments with larger geometry-manipulated domains, we learned

three key lessons:

1. Even in expanded domains, following Algorithm 2 still results in

properties of directedness, cessation when satisfied, and voluntary

exposure. Of these properties, we were least certain that we would observe

voluntary exposure, but by the end of every trial of these experiments, the

persistent value is highest at the curiosity-inducing location, which reflects

this property. For an aggregate view, see Figures 5.5a and 5.6a,b.

Directedness and cessation when satisfied are determined directly by the al-

gorithm and do not rely on any learning, so it is unsurprising to see these
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(a) (b) (c) (d)

Figure 5.6: This figure shows the learned value function and visit counts in the tall
domain for our simple reinforcement learning agent demonstrating properties of
specific curiosity. This figure shows that learning is slowed when time to complete
a cycle of curiosity is increased, and slowed even more when the curiosity-inducing
location isn’t near any repeatedly visited location. Shown here are the learned
value function, V , with (a) the curiosity-inducing location at (95, 5) and (b) the
curiosity-inducing location at (50, 5), and the total visits the agent made to each
location. Totals averaged over 30 independent trials of 5000 steps each.
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properties reflected in videos of the agent’s behaviour. The directed be-

haviour of the agent is also reflected in the visit counts for the wide and tall

domains shown in Figures 5.5b and 5.6c,d, primarily in the upward-opening

funnel shape from the curiosity-inducing location, which occurs because once

the agent is in state curiosity, it only takes upward (or upward diagonal) ac-

tions to reach the targets at the top of the grid.

2. Any part of the world that is repeatedly visited while the agent

is in state curiosity acquires persistent value. We already saw this

phenomenon in the primary domain (Figure 5.2a,c), as persistent value ac-

cumulated in the funnel shape of locations leading from the curiosity-inducing

location towards the targets. However, this phenomenon is more pronounced

in the wide and tall domains: in Figures 5.5a and 5.6a,b, while a direct path

from from the junction location to the curiosity-inducing location has ac-

cumulated some value, the magnitude of that value is imperceptible on the

scale used for those figures, while the upward funnels are clear.

In the wide domain, this upward funnel includes some of the potential target

locations (see the distinctive ‘bird-wing’ shape in Figure 5.5a and the spread

of orange lines in Figure 5.7), which might raise concern if you remember

that we were aiming for targets not to accumulate value—remember, once

you’ve satisfied your curiosity, you don’t read the same page over and over

again. However, this is a special case, where these locations accumulate value

when they are visited for a different purpose: passing through them on the

way to a curiosity-satisfying target. Depending on the context, there may

be benefits to learning to value processes that have helped satisfy curiosity

in the past, or this may be an undesirable side effect.

From this phenomenon, note that while potential target locations do not

accumulate persistent value by virtue of being targeted, they still may accu-

mulate value if they are on direct paths to other targets. In the wide domain,
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Figure 5.7: This figure shows the persistent value of the curiosity-inducing location
(blue) and target locations (orange) in the wide domain over time for three trials.
While the growth pattern for the curiosity-inducing location is similar to that seen
for the primary domain (Figure 5.3), some of the target locations in the wide
domain grow in value over time. There are three blue lines, with each showing
the value of the curiosity-inducing location for a single trial. In orange, the value
for each target is shown as a separate line (meaning there are 297 separate orange
lines, 99 for each trial).

several of the potential target locations are on direct paths to other target

locations, so they too accumulate value, as observed in the distinctive ‘bird-

wing’ shape in Figure 5.5. While we pointed out that it is undesirable for

targets to accumulate value (remember, once you’ve satisfied your curiosity,

you don’t read the same page over and over again),

Further, locations that are repeatedly visited between the curiosity-inducing

location and induced targets (the funnel-shape above the curiosity-inducing

location in the grid) accumulate more value than any path leading to the
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Visit Count (Single Trial in Wide Domain, No Junction Location)

16 40 65

Figure 5.8: This figure shows the visit counts in a single trial in the wide domain
with the junction location removed. While the agent’s persistent value function is
greatest at the curiosity-inducing location, as desired for voluntary exposure, the
agent still does not find its way back to the curiosity-inducing location because it
gets stuck re-visiting an area of the grid that accumulated value while the agent
travelled from the curiosity-inducing location to a target. In this trial, the agent
only visited the curiosity-inducing location twice (the first visit resulting in a target
to the right of the curiosity-inducing location, and the second resulting in a target
to the left of the curiosity-inducing location.

curiosity-inducing location from the junction location. While this difference

was visible in the primary domain (Figure 5.2a,c) the difference in magnitude

is much more apparent in the larger domains, especially the tall domain

(Figure 5.6a,b).

The accumulation of value in any area visited by the agent while curious is

important in the context of our exploration of whether an agent might ‘get

lost’ if the curiosity-inducing location is too far away: the agent can get stuck

in these areas of accumulated value and not find its way back to the curiosity-

inducing location. We observed this exact problem when we removed the

junction location from the wide world: the agent spends the majority of the

trial example trial used to generate Figure 5.8 in an area to the left of the

curiosity-inducing location, where it had previously accumulated value on

the way to a target.

Thinking this scenario out beyond the 5000 steps of one trial, the agent should
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gradually learn that this ‘sticky’ area is not valuable. While the agent is not

curious, the value of the locations it visits slowly return toward zero. In

Figure 5.9, we see that the potential target locations visited repeatedly in

this trial gradually decrease in value over time. Because the agent rapidly

learned a persistent value function where the curiosity-inducing location has

the highest persistent value, after many time steps, it should theoretically

return to the curiosity-inducing location once the value of these areas had

decreased sufficiently. However, we can see from the shape of those curves in

Figure 5.9 that this decrease will be ineffectually slow.

In many cases, we suspect that this limitation would not pose a problem. For

example, the existence of a junction location is typical to biological learners:

where the curiosity-inducing location is like a bookstore, the junction location

is much like a home—a place the agent returns to regularly. Once you’ve

learned a path from your home to the bookstore, you are readily able to

follow your desire to expose yourself to curiosity. If you didn’t return home,

however, you might not figure out how to get back to the bookstore, as we

observed in our experiments. This observation of our agent getting stuck is

the most extreme example of our third and following lesson.

3. Learning voluntary exposure requires multiple visits, and the less

likely the agent is to return to a curiosity-inducing location, the

slower this learning process will be. In the wide world with the junc-

tion location removed, the agent rarely followed any repetitive path to the

curiosity-inducing location. In many trials, the agent visited the curiosity-

inducing location more than once, but did not have the opportunity to learn a

habitual path. In these grid worlds, a single visit to the curiosity-inducing lo-

cation extends the learned path by only one location. For readers unfamiliar

with the learning behaviour of model-free reinforcement learning algorithms,

you can think that, every time the agent stumbles upon a path it has al-

ready noted, it notes where it was before entering the path, then follows
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Persistent Value over Time (Single Trial in Wide Domain, No Junction
Location)

Figure 5.9: This figure shows the persistent value of the curiosity-inducing location
(blue) and target locations (orange) over time for one trial in the wide domain with
no junction location. While the curiosity-inducing location accumulates the most
value, the agent gets stuck re-visiting a region of the grid that was on the way to
a previous target. Some of the potential target locations are in this region, and
so we can see their value grow when the agent visits them while curious, When
the agent returns to these locations after curiosity has been satisfied, their value
slowly declines. This decline is so slow that the agent will not unlearn its preference
for them in a timeframe that we would consider reasonable. The value for each
potential target location is shown in orange as a separate line (meaning there are
99 separate orange lines).
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the path the rest of the way. This new note adds one more location to the

path. Algorithmically, these ‘notes’ are made as increased persistent value.

This procedure means that while developing increased value for the curiosity-

inducing location occurs with even a single visit, developing behaviour that

reflects voluntary exposure takes multiple visits.

The two experiments in the tall domain reflect our third lesson with more

gradation. When the curiosity-inducing location is near the junction location,

the agent learns a direct path between the two relatively quickly. When the

curiosity-inducing location is placed further away, the agent skips by the

curiosity-inducing location more often and spends more time wandering in

the part of the domain above the curiosity-inducing location—slowed down

by the ‘sticky’ parts of that region that have accumulated value by being

visited when the agent is in a state of curiosity. As a result, the curiosity-

inducing location accumulates more value and visits overall when it is placed

close to the junction location (Figure 5.6a,c) than when it is placed further

away (Figure 5.6b,d).

These lessons are valuable because, as described in Section 4.2.5, assuming cu-

riosity can be used to direct agents towards fruitful learning opportunities, it is

desirable for our agents to effectively and efficiently learn voluntary exposure to

curiosity-inducing situations. Using Algorithm 2 or an adaptation of it will re-

quire recognizing the effect of domains on whether the agent will visit a curiosity-

inducing location enough times while following its non-curious policy to learn ha-

bitual paths. With these lessons in mind, our next set of experiments probes the

interplay of the properties within Algorithm 2.
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5.5 Third Set of Experiments: Ablation of

Properties

5.5.1 Experimental Setup: Ablation Study

The third and final set of experiments is an ablation study. The term ablation

comes from neuroscience, where one way to experimentally learn about the function

of part of the brain is to destroy that part and see how the behaviour of the learner

changes. In our case, particular design elements were included in the algorithm

to account for each of three key properties of specific curiosity and in this set of

experiments, we ablated (i.e., removed) each of these design elements in turn—

directedness, cessation when satisfied, and voluntary exposure—running the same

experiment as described in Section 5.3.1 and observe what has changed from the

results we observed in Section 5.3.2. For each property, a reminder from Sections

5.1.3-5.1.5 of how the property is incorporated into Algorithm 2 and a description

of how the algorithm proceeds with the property removed is included in the latter

part of this subsection.

Beyond using ablations to study the design elements for each key property, in

this section we also include an experiment with an ablation of the design element

included to account for the aversive quality of specific curiosity. While we pointed

out that there is some controversy in whether specific curiosity should be charac-

terized as aversive in Footnote 15 and did not argue for aversive quality to be a

key property for the implementation of machine specific curiosity, we did include

aversive quality in designing Algorithm 2, as described in Section 5.1.5. An aver-

sive quality may not be necessary for specific curiosity generally, but removing it

should have a notable effect on the results of using Algorithm 2, as the aversive

quality both guides the agent to the target and determines the value that is learned

in the persistent value function, so we tested its importance via an ablation of the

associated algorithmic elements, detailed below.

However, since aversive quality defines the curiosity value function, Rcurious, we
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expected that removing it completely for an ablation should result in uninterest-

ing, random behaviour: the agent will neither have a guide to the target to use

for directedness nor learn to value the curiosity-inducing location for voluntary

exposure. For this reason, asking what happens when aversive quality is ablated

entirely is less interesting than asking what happens if it is replaced with positive

quality. How does the agent’s learning and behaviour change if Rcurious, rather

than being negative everywhere except the target, is positive everywhere, most

positive at the target? To answer this question, we additionally ran an experiment

where we modified the curiosity reward function in this manner, as detailed below.

Running this series of ablations should allow us to better understand Algorithm

2 by demonstrating how each property contributes to the agent’s learning and

behaviour. Each of these experiments is described in more detail in the following

subsections.

Ablation of Directedness To ablate directedness, we removed Line 9 and the

if statement structure around it.

8: if there is currently a curiosity target (i.e. the agent is curious) then
9: x0, R move greedily w.r.t. Vcurious(x) . Directed Behaviour

10: else

In Algorithm 2, the agent follows the gradient value function Vcurious greedily

to the target, but in the ablation, the agent instead follows an ✏-greedy policy with

respect to V , whether or not a target exists. Equivalently, Line 11,

x0, R move epsilon-greedily w.r.t. V (x) . Ties broken uniform randomly,

always determines the agent’s next action and get the next state, x0, and reward,

R.

Ablation of Cessation When Satisfied To ablate cessation when satisfied,

we removed Lines 15 and 16 of Algorithm 2 and the if statement structure around

them.
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14: if agent observation x0 is the target then
15: destroy the current target
16: reinitialize Vcurious to zeros . Cessation when Satisfied

With these lines removed, if the agent visits the target, the target remains and

the agent continues to greedily follow the gradient value function Vcurious.

Ablation of Voluntary Exposure To ablate voluntary exposure, we removed

the edit we made to the learning update in Line 12. As a reminder, Line 12 in the

original algorithm was as follows:

�  R + � · V (x0)� [V (x) + Vcurious(x)] . Voluntary Exposure

The ablation reverts that line to the standard TD error, as follows:

�  R + �V (x0)� V (x).

With the Vcurious(x) term removed, the temporary value function does not affect

updates to the persistent value function.

Ablation of Aversive Quality To ablate aversive quality, we removed Line 6,

generate Rcurious =

⇢
0, if transitioning into target state
�1, otherwise . Aversive Quality

which accounts for the aversive quality of specific curiosity in Algorithm 2. Without

Line 6, Rcurious remains zero for all state transitions, as Rcurious was initialized to

zero in Line 2.

Replacing Aversive Quality with Positive Quality In addition to ablating

aversive quality, we also tested replacing it with positive quality. To achieve this

replacement, we modified Rcurious. In the original algorithm, the special reward

function, Rcurious, is negative everywhere except at the target, inspired by the

aversive quality of curiosity. A different, but still appropriate gradient (temporary

189



value function) could be formulated using an alternative, positive reward model,

R̃curious, that would similarly direct the agent towards the target. While there are

many possible definitions, we used the following definition:

R̃curious(s, a, s
0) =

⇢
1 if s is the target
0 otherwise (5.3)

When Ṽcurious is generated via value iteration from R̃curious, it should guide the

agent to the target much like the original Vcurious does. However, in the original

learning update in Line 12, subtracting the non-positive Vcurious(x) meant that

the agent learned a positive value. To get the same effect with the with the newly

defined, non-negative R̃curious, Ṽcurious(x) must be added ; consequently, we modified

Line 12 to the following.

�  R + � · V (x0)� V (x) + Ṽcurious(x) . Voluntary Exposure.

5.5.2 Results and Discussion: Ablation Study

Our primary result from our ablation study was that ablating any algorithmic

element that supports a key property or that supports the aversive quality results

in behaviour that no longer reflects specific curiosity. In particular, the agent no

longer exhibits the cycles of curiosity we observed in the primary domain or the

wide and tall domains (with junction location). In this section, we will examine

the resultant behaviour for each experiment in this set and their implications.

Ablation of Directedness When directedness is ablated, arbitrary paths through

the domain accumulate value. This learning behaviour contrasts with what hap-

pens when using the original Algorithm 2, where direct paths from the curiosity-

inducing location to the appropriate satisfier accumulate value (Figure 5.2a,c).

Because the agent with the ablation chooses randomly when faced with equally-

valuable maximally-valued alternatives, exactly which path accumulates value varies

from trial to trial. This randomness results in the visual difference between the

value function for a single trial (top panel of Figure 5.10a) and the aggregated
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Persistent Value, V (Single Trial)

(a) (e) (i) (m)

Visits (Single Trial)

(b) (f) (j) (n)

Persistent Value, V (Mean over 30 trials)

(c) (g) (k) (o)

Visit Counts (Mean over 30 trials)

(d) (h) (l) (p)
Directedness

Ablation
Cessation

When
Satisfied
Ablation

Voluntary
Exposure
Ablation

Aversive
Quality
Ablation

Figure 5.10: This figure shows the persistent value function and visit counts in
the primary domain for each ablation. From this figure, we can see that all of
the properties are used together to achieve behaviour that learns to value the
curiosity-inducing location, but not the targets. A single ablation is shown in each
column. The top and third rows show the learned value function V with zero-
valued locations in white, while the second and bottom rows show the visit counts
with zero-valued locations in black, each after 5000 time steps. The first two rows
show a single representative trial for each ablation, while the bottom two rows are
averaged over 30 trials. All subfigures are on logarithmic scales.
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Figure 5.11: This figure shows a histogram of the number of visits to targets in
each trial when directedness is ablated. The histogram is right-skewed. The height
of a bar for a given number of target visits is the number of trials with exactly
that number of visits. The experiment included 30 trials total.

value function across trials (third panel from the top of Figure 5.10a). Further,

the persistent values for the curiosity-inducing location and the potential targets

vary substantially from trial to trial, depending on which path through the domain

the agent gets stuck on (Figure 5.12a).
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Learned Value vs. Time

Directedness Ablation(a) Cessation When
Satisfied Ablation

(b) Voluntary Exposure
Ablation

(c)

Aversive Quality
Ablation

(d) Positive Replacing
Aversive Quality(e) Original

Algorithm 2(f)

Figure 5.12: This figure shows the persistent value of the curiosity-inducing lo-
cation (blue) and target locations (orange) over time for all thirty trials for each
ablation and for the original Algorithm 2. Panel (f) shows the same data as Figure
5.3. In the directedness ablation (a), both the curiosity-inducing locations and
targets grow over time, with large variation. When cessation when satisfied is ab-
lated (b), the values of both the curiosity-inducing location and the targets remain
constant over time, with the value of the curiosity-inducing location reaching 0.315
during the agent’s first and only visit to the curiosity-inducing location at time
t = 0 and the value of the targets remaining 0 throughout. The learned value for
the ablations of voluntary exposure (c) and aversive quality (d) remains zero ev-
erywhere. When aversive quality is replaced with positive quality (e), the learned
values for the curiosity-inducing location and the targets are similar to those in the
original algorithm, but the value of the curiosity-inducing location grows slightly
more quickly over time.
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Directedness
Ablation

Cessation
When

Satisfied
Ablation

Voluntary
Exposure
Ablation

Aversive
Quality
Ablation

Positive
Replacing
Aversive
Quality

Original

Algorithm 2

1.2 1.0

4996.0

54.2
22.3

368.3 362.9

First
visits

Figure 5.13: This figure allows for comparing the number of times the agent visits
a target (specified by the curiosity recognizer, not just possible target locations) for
each ablation in Section 5.5.1 with the original algorithm. The ablation of cessation
when satisfied has two stacked bars: dark orange showing the number of “first
visits” to a target (counting only one visit after the target has been generated) and
light orange showing the number of subsequent visits. The upper right inset graph
is zoomed out to show the full bar. The original algorithm and the modification
replacing aversive quality with positive quality have similar target visit counts
while the other ablations result in substantially fewer first visits. Error bars show
the standard deviation across 30 trials.
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On average, ablating directedness results in the fewest number of visits to gen-

erated targets as compared to the original algorithm and the other ablations (mean

of 1.2, comparison shown in Figure 5.13). While the agent sometimes chooses a

path that visits the target, that target is removed once it is visited (cessation when

satisfied). Because the agent has already accumulated so much value on its mean-

dering path, it tends to remain on that path. If the next target is not generated

on or near that path, then the agent is unlikely to visit it. The result is that the

distribution of the number of target visits across trials is right skewed, with the

agent failing to visit any targets at all in nearly half of the trials (Figure 5.11).

With directedness ablated, the agent’s behaviour is characterized not by cycles

of curiosity, but by randomly chosen cycles which continually accumulate more

value. The agent does not seek out a satisfier, so unless it stumbles on a satisfier

by chance, it can stay in a state of ‘curiosity,’5 continually accumulating value in

a randomly chosen region of the domain with no off switch.

Ablation of Cessation When Satisfied When cessation when satisfied is ab-

lated, the agent takes a direct path from the curiosity-inducing location to the

target and remains at that target for the remainder of the trial. In each trial, the

agent has one first visit to a target, and 4996 subsequent visits (Figure 5.13). As

an example, the visit counts and persistent value at the end of a single trial are

shown in the top two panels of Figure 5.10, showing how the agent accumulated

persistent value on its path to its first target much like the agent following Algo-

rithm 2 shown in Figure 5.4g. Since this ablation agent’s target is not removed,

the agent does not move on from this location. The agent therefore only visits

one target in every trial and does not benefit from curiosity motivating it towards

multiple new experiences.

Of the ablation experiments, the ablation of cessation when satisfied is the only

experiment where the agent consistently learns a persistent value function that is
5Of course, this state no longer reflects curiosity in any way, and is more reflective of wire-

heading (for one description of the term wireheading, see Yampolskiy, 2014).
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maximal at the curiosity-inducing location. Such a value function would reflect

voluntary exposure, but since the agent remains fixated on a target, it never has

the opportunity to reflect the behaviour component of voluntarily visiting curiosity-

inducing situations. Neither the value of the curiosity-inducing location nor the

targets changes over time, with the value of the curiosity-inducing location reaching

0.315 during the agent’s first and only visit to the curiosity-inducing location at

time t = 0 and the value of the targets remaining 0 throughout (Figure 5.12).

Because the agent remains fixated on a single target, the agent spends little time

visiting areas with accumulated persistent value, instead spending the rest of its

time at the target (Figure 5.10e–h).

The removal of cessation when satisfied might remind some readers of the re-

active behaviour of intrinsic-reward learners, who are driven to visit a novel state

repeatedly. Despite this parallel, the ablation of cessation when satisfied is not di-

rectly comparable to intrinsic reward methods. As we discussed in Section 4.3.3.1,

multiple computational intrinsic rewards are designed to decay as the agent visits

its target over and over. In our ablation, the level of motivation remains static

throughout each trial. We experimented with a decaying motivation level, but do

not include the (rather uninteresting) results here because the conceptual purpose

of intrinsic rewards is so unlike that of specific curiosity that the comparison is

inappropriate in our test domain. Again, two primary benefits of this decaying

property of intrinsic rewards are promoting multiple visits to check for consistency

(for example of a stochastic reward) or staying on an exploration frontier. In

our simple, rewardless domain, there is no benefit to repeated visits, nor are the

curiosity targets generated on an exploration frontier.

Ablation of Voluntary Exposure When voluntary exposure is ablated, no

persistent value accumulates in any part of the domain (Figure 5.10c and the line

plot in Figure 5.12 are zero everywhere). This occurs because the learning update

step that flips value from the curiosity value function into the persistent value
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function has been removed. However, the agent does still demonstrate directed

behaviour between the curiosity-inducing location and the targets. As a result,

there is a faint but visible funnel shape above the curiosity-inducing location in

the bottom panel of Figure 5.10c (compare with the bottom panel of Figure 5.10d,

which reflects a true random walk through the domain). This directed behaviour

helps the agent make more (first) target visits than any of the other ablations

(mean of 54.2, see Figure 5.13), though still far fewer than an agent following the

original Algorithm 2.

Ablation of Aversive Quality When the aversive quality of curiosity is ablated,

Vcurious is not generated, so the agent experiences no difference in value or reward

throughout the domain. For this reason, the agent acts randomly throughout

each trial. The resulting estimated value function and visit counts are shown in

Figure 5.10(d). No value is accumulated anywhere in the grid, as emphasized by

Figure 5.12(d), which shows that the estimated value for all of the targets and the

curiosity-inducing location remain zero throughout each trial.

Replacing Aversive Quality with Positive Quality More interesting than

ablating aversive quality is replacing it with positive quality. In this experiment,

the agent’s behaviour is very similar to that of of the agent following original Al-

gorithm 2 as described in Section 5.3.2. The number of visits to generated targets

for the agent with this replacement are within error of that of the original algo-

rithm, shown in Figure 5.13. Both agents’ final persistent value functions and visit

counts are similar (Figure 5.14). The main difference between the persistent value

functions is a matter of scale, in that the estimated values for the experiment using

positive quality are generally higher. This difference is also visible in the associated

lineplot in Figure 5.12, where the value of the curiosity-inducing locations grows

more quickly when aversive quality is replaced with positive quality. However,

the difference is not only in scale; for example, note that squares (7, 0) and (4, 1)

have different mean values between in Figure 5.14a (positive quality) and 5.14b
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Value (single trial)

(a) (b)

Value mean

(a) (b)

Visits (single trial)

(a) (b)

Visits (mean)

(a) (b)

Figure 5.14: This figure shows the persistent value functions and visit counts
for the experiment where (a) aversive quality is replaced with positive quality
alongside the same for (b) the original algorithm (same data as Figure 5.2, but on
a logarithmic scale) for visual comparison. The behaviour and value learned with
positive quality (a) is very similar to that of the original algorithm (b)—indeed,
given the same random seed, the behaviour is identical for 1071 steps—but value
accumulates at different rates in each case, so the value functions do differ by more
than just scale. All subfigures are on logarithmic scales.

(aversive quality).

The agent using positive quality should and does behave differently than the

agent following the original Algorithm 2, because the value functions generated

by Rcurious and R̃curious have different shapes. For this reason, the persistent value

function accumulates value at different rates in each case. However, a takeaway

from this experiment is that using a negative value function, or what we call the

aversive quality of Algorithm 2, is not necessary for creating cycles of behaviour

reflecting specific curiosity.

In humans, it may be true that the information seeking associated with specific

curiosity “is motivated by the aversiveness of not possessing the information more

than it is by the anticipation of pleasure from obtaining it” (Loewenstein, 1994,
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p. 92), but from the perspective of our simplistic computational RL agent, our

choice of implementation for each did not result in appreciably different behaviour.

***

Taken together, the experiments in our ablation study show us that, in the

context of Algorithm 2, the properties of directedness, cessation when satisfied,

and voluntary exposure work together, and that curious behaviour is noticeably

impaired when any one property is missing.

5.6 General Discussion: Benefits of the

Properties of Specific Curiosity

Our ablation study provides initial evidence for the interconnected nature of the

properties of specific curiosity—effective learning behaviour isn’t achieved via one

or two properties; the properties work together. Indeed, the benefits of each prop-

erty are so interwoven that they are best understood via their combined influence

on the whole of specific curiosity.

Flexible specialization to a learner’s context: In Section 4.2.7, we noted

that the property of coherent long term-learning, the last of our five properties,

closes the loop of how curiosity can guide a learner over a lifetime. Curious bio-

logical learners, including humans, live long lives, but certainly not long enough to

experience every possible situation that the world could throw at them. Further,

humans have found ways to survive in a diverse set of possible climates, cultures,

and contexts. We believe specific curiosity supports that ability.

Some of what we learn is passive—we learn just by ‘being there.’ Our brains

persistently and automatically take the observations from our senses and work to

integrate them into our knowledge of the world (Chater, 2018, p. 138). This passive

learning helps build up a foundation of knowledge that is somewhat local to the

learner’s particular context. Then, specific curiosity insists that we learn actively,
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almost any time we aren’t attending to obvious needs to keeping our bodies going

and species alive. And in particular, the property of coherent long-term learning

biases our active learning towards specific concepts that we are ready to build

onto our existing knowledge (Wade and Kidd, 2019), often towards new informa-

tion defines a connection across a gap in our existing knowledge (Loewenstein,

1994), much of which may have been passively learned. The better connected our

knowledge is, the more useful it is.

Very importantly, curiosity supports us when our context changes. By being

biased to direct the learner towards information to support connections to the

learners’ existing knowledge, specific curiosity may direct us to learn new infor-

mation that will help us transfer our existing skills and knowledge into a novel

context. How many of our curiosity questions start by orienting on “Wait, that

wasn’t what I was expecting”? In those kinds of situations, whether we observed

a toy performing an unexpected function or a suspect in our mystery performing

a suspicious action, there is a waiting connection to be made. The jack-in-the-box

doesn’t appear except when ...? People don’t dump heavy body-sized bags into

the lake in the dead of night except when ...? Dark fluid doesn’t end up on white-

paper walls except when ...? In these situations, making our inostensible referent

ostensible repairs the broken understanding created by our prior generalizations

failing to hold in a new context, giving us a more accurate foundation of knowledge

on which to act.

Specialization as contribution to societal knowledge: Looking at our favourite

biological model of curiosity, the human, another key feature of humans is that they

are social. Humans in particular seem to get an incredible benefit from individ-

uals having different specialties (Hauser, 2018, p. 7). If each individual instead

developed unspecialized, broad knowledge, then the overlap—the knowledge held

by our entire society—would be similarly broad, but unfortunately shallow. We

would know very little about many things, as a group. Instead, the overlap of
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all these narrow, deep specializations developed over time lends itself to providing

not only broad, but deep knowledge for our larger society, networked together by

humanity’s social nature.

When a piece of specialized knowledge turns out to be generally applicable, it

can be transferred via social contact across a connected network of learners, a more

general societal benefit. While we noted that humans are our favourite model of

curiosity, the societal transmission of new, specialized behaviours—innovations—

appears to benefit social non-human animals too. One example involves birds,

British blue tits, who famously discovered how to pierce the foil caps on milk

bottles to access the cream on top. The behaviour was first observed in 1921, but

by the end of the 1940s, the behaviour was widespread across the U.K. (Aplin et al.,

2013, p. 1226, Yong, 2014). Experiments by Aplin et al. (2013) involving teaching

new foraging behaviours to blue tits have provided further evidence that blue tits

socially transmit new, useful behaviours across their communities (p. 1230).

As another example, researchers on the isolated Japanese islet of Koshima ob-

served a macaque (a variety of monkey) washing the sand off of a potato—a new

behaviour that they had never observed before (Kawai, 1965, pp. 2–3). In the

years thereafter, the researchers observed a wave of social learning until nearly the

whole colony seemed to clean their potatoes before eating (p. 4). Interestingly,

the same macaque who seems to have come up with the potato-cleaning behaviour

appeared to later be the first macaque to demonstrate a behaviour of ‘wheat wash-

ing’ (p. 13). Initially, when humans scattered wheat across the sand, the monkeys

would painstakingly pick up each grain one by one. ‘Wheat washing,’ on the other

hand, involves gathering up the sand with the grains and tossing them into water,

which allows the sand to drift to the bottom while the wheat floats on top (p. 12).

This behaviour also spread throughout the colony, though not quite as pervasively

(p. 12). In analogy with the specialized human chef who might design new recipes

and share them, the originator of these behaviours might have a specialized interest

in food preparation, to the benefit of their community.
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The need for directedness towards inostensible referents: Coherent long-

term learning requires directedness towards inostensible referents. An inostensible

concept, supported by the properties that the learner already knows will be true

of the inostensible referent, is the form taken by the next—metacognitively most

appropriate (Wade and Kidd, 2019)—learning opportunity to coherently build on

existing knowledge. The only sensible activity to experience curiosity-satisfying

observations is to take a systematic sequence of actions to obtain the specific

information that will make their inostensible concept ostensible. Given that the

learner will never have a perfect model of the world including the inostensible

referent (it wouldn’t be inostensible, in that case!), the learner must make a best

guess and adapt their plan as they proceed.

The usefulness of cessation when satisfied: Cessation when satisfied creates

efficiency by taking advantage of the following idea: what makes an appropriate

answer depends on the question. For some inostensible referents, repetitive be-

haviour might be appropriate: just think back to the example with the peculiar-

sounding floorboard. A reasonable way to acquire sufficient evidence to decide if

your weight transfer caused the noise is indeed to try repeating that weight transfer

several times—once might be a fluke, but three or four times seems sufficient to

suggest you’re causing the noise.

Our formulation of cessation when satisfied was directly inspired by the be-

haviour generated by intrinsic-reward methods and how it contrasts with spe-

cific curiosity. The reactive nature of intrinsic rewards motivate a learner to re-

experience a state multiple times. Specific curiosity, on the other hand, doesn’t

require this kind of repetition for all inostensible concepts. For many questions,

only single experiences of each curiosity-satisfying observation is required. After

all, you don’t need to re-read ‘whodunnit’ out of curiosity—once you’ve read that

part once, your curiosity for that particular inostensible referent can end.

In most cases, there are multiple possible forms of evidence that we would ac-
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cept as curiosity-satisfying. One of the seemingly most important for humans is

testimony from others (Harris, 2012). This kind of evidence rarely requires repeti-

tive behaviour (unless the person you’re asking isn’t listening). If anything, it may

require probes into how reliable the source of information is, or seeking a second

opinion via a different mode of behaviour. Not only does the kind of evidence

required vary depending on the inostensible referent, the reliability required of an

the answer varies even further. How important is it that we have the right answer,

versus just a working theory?

In this way, humans demonstrate extreme flexibility when it comes to specifying

what makes an acceptable curiosity-satisfying situation. While our next prototypes

of curious machines may not have such beautifully tailored recognition systems for

sufficient evidence for their curiosity to be satisfied, it is time to move away from

simple repetition as a proxy for the satisfaction of curiosity.

The importance of transience: A close relative of cessation when satisfied,

transience is necessary for functional curiosity in biological learners. After all,

humans and animals can only (physically) be in one place at one time, and their

attention is thought to be a similarly limited resource (Lloyd and Dayan, 2018,

p. 2). Constantly reorienting those limited bodily and attentional resources is

impractical, and so committing to a single goal for a period of time benefits the

learner (Lloyd and Dayan, 2018, p. 2). Specific curiosity is one example of this kind

of goal-directed behaviour. As detailed by Lloyd and Dayan (2018), goal-directed

behaviour will be more effective in an uncertain environment if the behaviour of

the agent can be interrupted by time-sensitive demands, like attending to a loud

noise that might indicate danger, pangs of hunger (Simon, 1967, p. 35), or even the

recognition that, in the past, you regretted a decision made in a similar situation

(Hoch and Loewenstein, 1991, p. 498).

In this sense, transience also has a strong relationship with stay-switch deci-

sions observed in animal decision making, wherein an animal constantly balances
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its near-term reward with its expectations of long-term average reward, thereby

governing the persistence of its current behaviour (c.f., human patch foraging and

the marginal value theorem; Constantino and Daw, 2015).

Even more critically, transience resolves some of the trouble that ‘un-realizable’

inostensible concepts could cause. When we say that some inostensible concepts

are un-realizable, we are noting that the very nature of inostensible concepts is

that, in some cases, they can’t be made ostensible. Not everything that could be

dreamt up by a learner is necessarily a thing that the learner could find, especially

if the lifetime of the learner is limited. While I could find myself curious about the

location of the nearest Earth-orbiting teapot, I would struggle to find out whether

such a teapot exists, never mind its location. When asking about unknowns, it is

necessary that a learner might sometimes ask the wrong questions, and so needs

to be able to stop chasing curiosity-satisfying situations that don’t exist.

The condition of specific curiosity is a concerted effort to make an inosten-

sible concept ostensible. It requires adaptive planning, which is likely resource-

heavy, and, in biological learners, active movement of the body towards perceiving

curiosity-satisfying observations. Transience helps the learner manage an all-or-

nothing effort to satisfy their curiosity, because it means that behaviour and use

of attentional resources can be fully reallocated to other matters as needed.

Voluntary exposure over curiosity by chance: Accepting the premise that

curiosity will be valuable to our machine agents, we certainly don’t want our agents

to avoid curiosity. But do we really want voluntary exposure, or would it be

sufficient for the agent to stumble across curiosity-inducing observations without

increased preference for them?

Before we provide our answer to that question, we would like to note some sub-

tlety to the voluntary exposure that humans exhibit. Humans have been observed

to voluntarily expose themselves to some observations that they are aware will be

curiosity-inducing (Loewenstein, 1994, pp. 75-76), like a puzzle or the latest binge-
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able TV show, but there are other curiosity-inducing observations that humans

will not choose to expose themselves to.

Ruan et al. (2018) presented the results of some experiments where humans

exhibited specific curiosity, but not voluntary exposure. Their experiments centred

on what they called an “uncertainty creation–resolution process” (p. 556). In their

experiments, this process consisted of the learner being “first teased with some

missing information” (e.g. presented with a trivia question) “and then given that

information” (p. 556). In four experiments (see the discussions of Choice for Studies

1 through 4, pp. 561–565), they found that, given a choice between experiencing an

‘uncertainty creation–resolution process’ or not, most of their participants chose

not, suggesting that they did not exhibit voluntary exposure.

The authors offered two hypotheses about why their participants failed to ex-

hibit voluntary exposure. One hypothesis was that seeking uncertainty, or choosing

to be exposed to curiosity-inducing observations, might be a trait exhibited by a

minority of people (Ruan et al., 2018, p. 560). The very healthy industries produc-

ing puzzles, mysteries, and cliff-hanger-laden television series that we mentioned in

Section 4.2.5 bring this hypothesis into doubt. Their other hypothesis was that, in

cases where people voluntarily expose themselves to curiosity-inducing situations,

they “have control over when they receive the missing information” (Ruan et al.,

2018, p. 560), which merits further study.

Based on our computational case study, we suggest a novel hypothesis that

voluntary exposure might be learned via multiple experiences of curiosity being

induced in similar situations. It is possible that while these people have learned to

predict the positive experience associated with their favourite forms of curiosity-

inducing situations, be they crossword puzzles, mystery novels, or mathematical

problems, the experimental setup might be too unfamiliar to lead to voluntary

exposure. In this way, considering the value of voluntary exposure brings us back

to coherent long-term learning. Tying voluntary exposure to individual interest

enhances learner specialization, a key benefit of coherent long-term learning as we
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argued above.

Whatever domains we specialize our voluntary exposure towards, specific cu-

riosity tends to drive us into a solving process. Whether racking our brains for the

right word for a crossword or picking out the right clues to solve a murder mystery,

curiosity helps us build and solidify our knowledge. In particular, human learning

benefits from retrieval practice, and curiosity helps us when we’re in danger of

forgetting something we have already been exposed to, and if that something is

coming up again, it is likely a somewhat consistent part of the context we interact

in day-to-day. Learners have to practice to develop skills, so if we don’t have to

attend to a more pressing matter like food or sleep or whatever, practicing these

kinds of solving processes, especially within an area of individual interest, so as to

build up knowledge in a specialized, individual way, is a really good idea.

Most learners are thought to juggle many competing interests. Which of an

learner’s needs should be prioritized over another is probably situational and dif-

ficult to answer, but we argue that all else being equal, intelligent agents imbued

with curiosity should choose to expose themselves to curiosity-inducing situations.

With the right implementation, artificial curiosity should direct the agent towards

fruitful learning opportunities, much as biological curiosity is thought to (Wade

and Kidd, 2019, p. 1382). Assuming that our design of machine curiosity manages

to do the same, we want our machine agents to seek curiosity, which starts with a

preference for curiosity-inducing situations—that is, voluntary exposure.

5.7 Conclusion

Curiosity is central to biological intelligence, and machine curiosity is an area of

emerging activity for machine intelligence researchers in their pursuit of learning

agents that can engage in complex, information-rich environments like the natural

world. Throughout this chapter and the preceding one, we have directly connected

insight and empirical evidence from the study of human and animal curiosity to
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advances in machine intelligence. In particular, we have for the first time trans-

lated the idea of specific curiosity to the domain of machine intelligence and shown

how it can lead a reinforcement learning machine to exhibit key behaviours asso-

ciated with curiosity. As a first major contribution of this work, we presented a

comprehensive, multidisciplinary survey of animal and machine curiosity. We then

used that body of evidence to synthesize and define what we consider to be five of

the most important properties of specific curiosity:

1. directedness towards inostensible referents;

2. cessation when satisfied;

3. voluntary exposure;

4. transience;

5. coherent long-term learning.

As a second main contribution of this work, we constructed a proof-of-concept

reinforcement learning agent interleaving the most salient and immediate proper-

ties of specific curiosity. We then conducted empirical sweeps and ablations to

probe the role that these integrated properties have on the agent’s curious be-

haviour (and how the removal of individual properties substantially impacts this

behaviour). Our computational specific curiosity agent was found to exhibit short-

term directed behaviour, update its long-term preferences, and adaptively seek out

curiosity-inducing situations. One major insight we draw from this work is that

the separation of curiosity-inducing situations from curiosity-satisfying situations

is critical to understanding curious behaviour.

We consider this study a landmark synthesis and translation of specific curiosity

to the domain of machine learning and reinforcement learning. It is our hope that

this exploration of computational specific curiosity will inspire a new frontier of

interdisciplinary work by machine intelligence researchers, and that it will further
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provide new computational mechanisms to model and study the phenomenon of

curiosity in the natural world.
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Chapter 6

Discussions and Future Work

Throughout this dissertation, we focused on machine learning algorithms de-

signed with the purpose of generating properties of curiosity. In the first chapter,

I centred this document on the following argument:

We must experiment and think beyond the most commonly used frame-

works being used for machine curiosity if we want to secure the benefits

of human-like curiosity for our machine learners.

In this final chapter, I will summarize the contributions that have been presented

in this dissertation to support this argument and discuss potential future research

directions that would build upon these contributions.

6.1 Summary of Contributions

From the beginning of this document, I emphasized two separable reasons that al-

gorithms inspired by curiosity merit further research. The first reason was that it

can be expected to benefit machine learning systems. The inspiration of curiosity

as a concept has already inspired impressive breakthroughs in AI, particularly in

improving performance in domains where exploration is known to be difficult and
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also in generating learning trajectories that more closely resemble those exhibited

by young animals and humans. As human activities become more closely coupled

with AI activities, humans can be expected to benefit from AI systems that exem-

plify great teammates, companions, and members of society—and arguably, that

means AI systems that are curious (Gino, 2018; Kashdan et al., 2013, p. 150; Zurn,

2020, pp. 227–228). The second, then, is to contribute to our understanding of

curiosity as a whole, allowing the processes that AI researchers use to create new

systems develop precision in the language we use to describe curiosity and develop

new theories of curiosity (cf. Newell, 1970).

Given these exciting motivators, it should come as no surprise that a number of

RL-based approaches to machine curiosity have been proposed where the reward is

specifically crafted or the RL algorithm is modified to generate curious behaviour,

many examples of which have been discussed throughout this dissertation. While

these existing methods have shown promise in a number of real-world and sim-

ulated targeted domains, there are few suggestions of unified ways to compare

these different approaches. For us to be able to build on the growing number of

curiosity-inspired algorithms, we need to work to develop ways to understand the

landscape of such methods.

The first contributions of this thesis were in response to this gap, aiming

to develop uncomplicated approaches allowing for comparison of many different

curiosity-inspired RL algorithms, controlling for other variables where possible. In

particular, the result was a new family of experimental domains, Curiosity Bandits

(Chapter 3), which allow for comparison across computational intrinsic motivation

methods—which encompass many of the curiosity-inspired approaches published

to date. The introduction of this family of domains led to the first comprehensive

empirical comparison of different intrinsic reward mechanisms (Chapter 3). The

initial results using the Curiosity Bandit showed that different machine curiosity

methods can result in very diverse behaviour (Chapter 3) and even a single curiosity

method may result in widely varying behaviour dependent on how its various pa-
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rameters are set (Appendix B). Furthermore, one cannot just set these parameters

to maximize some objective measure of success. Unlike in traditional reinforcement

learning, where the goal is to maximize return, the metric of a learner’s success “at

curiosity” is not obvious. To make progress possible, we need principles directing

what we want to achieve through curiosity.

One potential line on this open-ended problem of understanding what we want

to achieve through machine curiosity incorporates a better understanding of the

beneficial properties of human curiosity. Along this line, this dissertation includes

the novel integration of ideas from multiple disciplines on specific curiosity to lay

out five key properties of specific curiosity (Chapter 4). The practice of delineat-

ing a concept by posing a series of design issues to be met, as shown with our

five properties of specific curiosity, is an important practice in AI, historically un-

dertaken by other scholars like Moore and Newell (1974, p. 1). Moving beyond

this initial delineation, we further deepen our understanding of these properties

as they might manifest in computational systems by including a proof-of-concept

reinforcement learning agent and a careful ablation study demonstrating how the

properties interact to result in behaviour characteristic of curiosity (Chapter 5).

Turning towards the central goal of this document, the proof-of-concept agent

described in Chapter 5 does not engage the standard computational framework

leveraged by the majority of curiosity-inspired computational RL agents: intrinsically-

motivated reinforcement learning. Indeed, the chapter that sets the foundations for

that demonstration, Chapter 4, emphasizes that, while intrinsic reward approaches

offer a number of valuable benefits, they still have a number of limitations which

make them unsuitable for achieving the proposed key properties. Recognizing this

disjuncture between machine curiosity and biological curiosity was made possi-

ble by viewing the behaviour of multiple methods in aggregate, via the methods

described in Chapter 3. Taken as a whole, the contributions described in this doc-

ument support the central argument, that we must experiment and think beyond

the most commonly used frameworks being used for machine curiosity if we want to
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secure the benefits of human-like curiosity for our machine learners. At the same

time, this document represents a novel view into machine curiosity and, in partic-

ular, offers a robust and detailed characterization of specific machine curiosity.

6.2 Discussion, Reflection, and Future Directions

This section is is both backward- and forward-thinking. It represents a collection

of reflections on the work in this dissertation. Some of these reflections speak

to historical influences on aspects of this work, the inclusion of which may offer

methodological value to readers and, additionally, provide a record to accompany

these ideas as they go forward to have potential influence on our “constantly re-

negotiated” (IEEE TechXplore, 2023, p. 6) understanding of a concept like curios-

ity (Ady and Rice, 2023). The remainder—the forward-thinking parts—speak to

research directions that arose from the work presented in this dissertation.

6.2.1 Challenges for Machine Curiosity Research

Through my work thus far, I have developed an understanding of both existing

approaches to computational curiosity and key properties of curiosity recognized

by non-computational perspectives. Given this understanding, I have identified

several fundamental problems that existing methods for machine curiosity have in

common.

These problems stem from structure that nearly all existing methods share.

The majority of approaches use a standard IMRL approach: they develop a reward

structure and use standard reinforcement learning methods to maximize the return.

I wish to highlight the following three challenges:

1. Existing curiosity approaches have many parameters to set, but the objec-

tive is typically unclear and the effects of changes to these parameters are

unknown.
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2. The majority of proposed approaches to machine curiosity require the use of

a separate exploration method. Both within computing science and beyond,

curiosity and exploration are considered closely related. Indeed, the study of

machine curiosity is often offered as a solution to the exploration-exploitation

dilemma. The problem is not necessarily the separation of exploration and

curiosity; in some sense, the choice of exploration method is simply another

parameter whose effects we do not understand. However, I contend that

we must consider that choice to be a critical implementation decision and

share it as such, especially since many of the curiosity performance metrics

we have used thus far are partially judging how effectively a curious learner

explores, which is highly affected by how the exploration method behaves in

conjunction with the curiosity approach.

3. The majority of existing methods require multiple visits to such interesting

parts of the world before such a reward is considered more than a fluke, and

behaviour is changed to motivate the learner to return to that part of the

world. They do not motivate the agent to visit parts of the world that it has

never visited before, which is a hallmark of curiosity.

These are important challenges, not only for the study of computational cu-

riosity and exploration, but for the future of machine intelligence as a whole.

6.2.2 Unifying the Field of Machine Curiosity

The word ‘curiosity’ does not mean the same thing to all people. It has been

related to a host of other concepts, like exploration (Fowler, 1965; Berlyne, 1966),

information-seeking (Gottlieb et al., 2013), novelty-seeking (Kashdan et al., 2009),

surprise (Charlesworth, 1964), learning progress (Gottlieb et al., 2013), boredom

(Schmidhuber, 1991b), play (Ngo et al., 2012), virtuosity (Kubovy, 1999), confi-

dence (Schmidhuber, 1991a), competence (Moulin-Frier and Oudeyer, 2012), flow

(Malone, 1981, cited by Webster et al., 1993), and intrinsic motivation (Oudeyer
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et al., 2007).

It may seem that the most appropriate response is to choose an objective for

curiosity, and design approaches to achieve it. However, I am making a specific

philosophical choice in my development of a foundation for machine curiosity re-

search: we are not ready to choose a single objective for curiosity. As already

stated, one important takeaway from my preliminary work is that the different

existing approaches to machine curiosity produce different behaviour. This is per-

haps unsurprising, since if you ask any sample of people what curiosity is, you

typically receive many different answers. Because of the many different intuitions

about curiosity, a designer of an intelligent ‘curious’ system may have in mind any

of multiple different objectives for curiosity. Having this choice not only empowers

the creators of curious systems, but also allows researchers to benefit from the

many advantages of a broad definition of curiosity, such as those argued by Kidd

and Hayden (2015, p. 456).

Kidd and Hayden (2015, p. 456) further argue that there has been premature

emphasis on “divide-and-conquer approaches” to the taxonomy of curiosity; in

agreement, I propose that our understanding of curiosity will be improved by a

system that does not try to label some definitions as not being curiosity and instead

tries to recognize both similarities and differences between phenomena captured

by a broad definition.

The future of the field of machine curiosity requires unification of the existing

knowledge. Currently, the commonalities and differences between approaches are

obscured; sometimes superficial differences hide deeper similarities, and vice versa.

Even though the techniques appear disparate, they often make the same mistakes in

different guises. Failing to unify existing approaches is detrimental to the progress

of the field, as effort is put into ‘new’ approaches that are plagued by old problems.

214



6.2.3 Other Potential Properties

While the five properties described and explored in Chapters 4 and 5 are the best

recommendations we can make with the given current state of curiosity research,

we recognize that human curiosity is an active area of study, and there may be

other properties that turn out to be critical for specific curious agents.

For example, Zurn (2019) has carefully recorded a number of recognizable prop-

erties, observing that curiosity “works at the limits of what we know,” “deploys

meticulous attention in its investigations,” “allows new questions to develop out

of old ones,” “facilitates a network of collective inquiry,” has elements of “childlike

playfulness,” shows “interest in what is uselessly strange,” and results in “rabbit

trails of distracted interest” (pp. 26-27). Zurn’s components of works at the limits

of what we know and deploys meticulous attention in its investigations parallel the

specificity of our property of directedness towards inostensible referents. Similarly,

allows new questions to develop out of old ones, together with results in rabbit

trails of distracted interest and perhaps even interest in what is uselessly strange

may stem from mechanisms for coherent long-term learning. It is, however, un-

certain whether childlike playfulness is likely to arise from the five properties as

given. This property may indeed be a salient feature of human curiosity to con-

sider, as the “child-like nature” of curiosity also arose as a higher-level code in

the qualitative study performed by Aslan et al. (2021, pp. 8, 9) focused on beliefs

about curiosity and interest. The five properties as presented here represent an

important characterization, but only a snapshot of our knowledge in time. As re-

searchers, we should challenge ourselves to incorporate new understandings about

what is important for machine curiosity as they develop, not only in our subfield

communities, but across disciplines (Ady and Rice, 2023).
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6.3 Ethical Commentary

At the beginning of this chapter, I made reference not only to the myriad of benefits

that curiosity brings to humans but also to how machines imbued with curiosity

might equally benefit humans. And yet, while the academic obligation to motivate

this work compels an emphasis on curiosity as it is often commodified and made

capitalisitically desirable, I want to echo Shankar’s (2020) warning that the rhetoric

of curiosity purely for its instrumental benefits dangerously constrains curiosity,

delimiting and inhibiting our ability to explore our own curiosities (p. 114–115).

The warning holds with respect to the second reason for researching algorithms

inspired by curiosity: helping us better understand curiosity as a whole. We walk

a line as we strive to ethically build AI. If our work as AI scientists contributes

to how a concept like curiosity is understood, do we have any ethical obligation

to build curiosity as it is, rather than as we want it to be? Conversely, if we have

an ethical obligation to build curiosity as it ought to be—for example, this could

describe ‘safe’ curiosity, miraculously excluding those aspects that would kill the

cat—then, who will decide what curiosity ought to be? Importantly, will our work

as artificial intelligence scientists change what curiosity means?

6.4 The Title of this Thesis

Specific Machine Curiosity—what’s that? Edward L. Walker, who edited Berlyne’s

posthumously published book fragment Curiosity and Learning, wrote in his 1978

introduction to the publication:

Curiosity is defined as an internal state occasioned when subjective

uncertainty generates a tendency to engage in exploratory behavior

aimed at resolving or partially mitigating the uncertainty. Curiosity

is always curiosity about something specific and it is pertinent only to

specific exploration and not at all to diversive exploration.
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In alignment with Berlyne’s view, to me, specific curiosity is the one true curiosity.
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Appendix A

Thesis-Adjacent Contributions

In this section, each of my adjacent contributions is listed with its bibliographic

details, followed by a summary of its contents and context.

Günther, J., Ady, N. M., Kearney, A., Dawson, M. R., and Pilarski,

P. M. (2020). Examining the use of Temporal-Difference Incremen-

tal Delta-Bar-Delta for real-world predictive knowledge architectures.

Frontiers in Robotics and AI

With Günther et al. (2020), I performed an empirical investigation of Temporal-

Difference Incremental Delta-Bar-Delta (TIDBD), a meta-learning method appro-

priate for general value function (GVF) learning algorithms. Both GVFs and

meta-learning will be described in Chapter 2, along with some of their connec-

tions to computational curiosity. This investigation demonstrated that TIDBD

is a practical alternative for classic temporal-difference (TD) learning, even on a

complex, sensor-rich system like a state of the art prosthetic limb. In particular,

TIDBD eliminates the need for an extensive parameter search for appropriate step

sizes.

Ady, N. M. (2017b). Curious actor-critic reinforcement learning with

the dynamixel-bot. https://doi.org/10.7939/R3B853Z7S. Depart-
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ment of Computing Science, University of Alberta Education & Re-

search Archive

In 2017b, I adapted and implemented Gordon and Ahissar’s (2012) model of

hierarchical curiosity loops for a simple robot. I explored an alternative formula-

tion of their architecture, replacing a neural-network-based predictive learner with

a TD(�) GVF learner—in both Gordon and Ahissar’s case and mine, the purpose

of the ‘learner’ was to make predictions about the future state of the environment.

In the hierarchical curiosity loops model, the control system is an example of a

prediction-error-based intrinsically-motivated reinforcement learning (IMRL) sys-

tem, a category of approaches to machine curiosity that will be described in more

detail in Section 2.3.3. My adaptation offered a demonstration of how Gordon

and Ahissar’s original ideas could be adapted into a lightweight architecture using

GVFs and selective Kanerva coding.1

Ventura, J., Ady, N. M., and Pilarski, P. M. (2017). An exploration

of machine curiosity and reinforcement learning using a simple robot.

https://doi.org/10.7939/R36W96Q00. WISEST Summer Research Pro-

gram Posters, University of Alberta Education & Research Archive

In 2017, I supervised and structured a project, led by high school research

intern Justine Ventura, which centred on the implementation of Information Gain

Motivation (IGM) on a simple robot. IGM was named and defined by Oudeyer

and Kaplan (2007, p. 6) with reference to earlier work by Fedorov (1972) and Roy

and McCallum (2001). IGM is an example of an information-based IMRL system,

another category of approaches to machine curiosity explored in more detail in

Section 2.3.4. While a number of observations were recorded, one of the most

interesting was a limitation of a naive implementation of IGM: the learner tended
1Selective Kanerva coding is a representation method that supports particularly computation-

ally efficient representation of high-dimensional sensor observations (Travnik and Pilarski, 2017,
p. 1443).
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to learn to stay put in states where they were not ‘gaining’ information, but instead

simply avoiding ‘losing’ it—leading to a ‘stuck’ behaviour. This ‘stuck’ behaviour

is comparable to that observed in some challenging benchmark domains like Pitfall

and Tennis in the Arcade Learning Environment (Machado et al., 2018, p. 543),

or that observed in domains with misleading rewards, like Antishaping (p. 15) in

Yasui’s (2020) exploration suite. In all of these cases, many learning algorithms

choose not to move so as to avoid negative rewards.

Ady, N. M. and Rice, F. (2023). Interdisciplinary methods in com-

putational creativity: How human variables shape human-inspired AI

research. In Proceedings of the 14th International Conference on Com-

putational Creativity (ICCC’23)

In our June 2023, I co-presented preliminary results from a new collaboration:

Humanness in artificial intelligence (AI). Personally, a foundational component

of my own work is translating curiosity, a concept from human psychology, into

machine algorithms. Similar translation processes are undertaken by numerous

researchers around the globe for a variety of psychological concepts, including

not only curiosity, but creativity, forgetting, depression, emotion, imagination,

and more. Some authors, like Lake et al. (2017, p. 3), have articulated why they

value drawing inspiration from natural intelligence, while others, like Newell (1970,

p. 363), have reflected on the relationship between AI and psychology, discussing

what the relationship could and should be. However, the decisions and thought

processes made by humans while designing new human-inspired artificial intelli-

gence systems have been little investigated. Indeed, coalitions like the Future of

Life Institute (2017) have called for greater attention to design decision-making in

AI. Therefore, there is a need to understand how AI researchers and technologists

approach understanding psychological literature, their decisions in translating it,

and then who their decisions influence (e.g., how their work influences the scholarly

understanding of these concepts in their original context—in humans).
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In our June 2023 paper, we presented the initial thematic analysis of our pre-

liminary interview data with researchers and technologists performing this trans-

lational work at the interface of natural and artificial intelligence. We articulated

some emergent methodological practices: common themes in AI researchers’ pro-

cesses (e.g., strategies for engaging with literature from other disciplines, strate-

gies for rendering psychological theory into a software program), which may offer

inspiration and novel approaches for readers, both in human and machine intelli-

gence. Our presentation at ICCC’23 represents the initial findings from a long-term

project engaging grounded theory to offer an important contribution at the inter-

face of natural and artificial intelligence, providing researchers with a birds-eye

view of the ethical and social implications of such work and a map of potential

approaches.
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Appendix B

Parameter Screening for Curious

Reinforcement Learning Motivated by

Unexpected Error

Humans seem to maintain knowledge of their environment and utilize this

knowledge to make decisions. One perspective on curiosity is that it should moti-

vate behaviour that helps an agent improve its environment knowledge. In com-

putational systems, one method of maintaining environment knowledge is through

estimates or predictions of what the system expects to observe in the near future

(Modayil et al., 2014).

In 2014, White et al. suggested a measure of ‘unexpected error’ for the pur-

pose of generating curious behaviour in a robot. Intuitively, exploring situations

that the agent can already predict well (leading to low error) will not improve

its environment knowledge. Neither will exploring situations that have already

been explored, but have such high variance that we cannot expect predictions to

improve. Motivating a system to maximize cumulative unexpected error observed

over time should ideally benefit the system by leading to improved knowledge of

its environment.

Reinforcement learning (RL) is a well-studied way for biological systems and

machines to learn about the value of situations and choices through trial and

246



error and then utilize those learned values to make decisions (Sutton and Barto,

2018). Given a reward signal provided to the system, there are standard RL

algorithms to learn to predict and/or maximize cumulative reward over time. Using

RL algorithms to predict observations, White’s ‘unexpected error’ as the intrinsic

reward signal, and another RL algorithm to choose actions, we can create a ‘curious

system.’

However, RL algorithms use multiple parameters, and it is unknown how vary-

ing those parameters changes the behaviour of the curious system. While there is

no clear measure of the ‘curiousness’ of observed behaviour, we may simply hope

to recognize when it is different. One partial measure of the behaviour in a finite-

length run of the system is the cumulative sum of the observation signal, called

return, G, which may call for maximization or minimization.

G =
1X

t=1

r(p)t (B.1)

where r(p)t is the observation or reward received from the environment.

The agent in our design is modifying its behaviour to maximize its cumulative

unexpected error, but at this stage of the study we have little interest in the

total accrued; varying its parameters may impact the magnitude of error observed,

and therefore it is unreasonable to compare accrued unexpected error for different

parameters.

The objective of this study is to determine which parameters, and which inter-

actions of parameters, impact the return.

B.1 Materials and Methods

B.1.1 Hardware and Software

All experiments were implemented in Python without parallelism and performed

on a Lenovo Flex 3 laptop with four Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz

processors running Ubuntu 16.04.1 LTS.
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B.1.2 Experimental Setup

The experimental setup can be considered in three parts: domain (environment),

curious system, and test. We describe each in detail in the following sections, and

the Python code is included in Appendix B.7. We typically refer to an RL system

as an ‘agent’, referencing the agency exhibited by making choices. The curious

system will hereafter be called the agent.

Test Design Each test (also called a run) was composed of an initialization and

20,000 iterative discrete time steps. To initialize the test, the domain’s initial state

signal is recorded, and the agent takes its initial action. In each time step, the

domain reward and new state are observed. The agent takes another action based

on the observed state, then updates. The interaction between the agent and the

domain in each time step is depicted in Figure 3.2. Our implementation of a test

can be found in Appendix B.7 as Test.run().

Within each test, we also maintain a count of how many times each action was

taken and a running sum of the domain reward, and use both to compute our

response variables.

Domain Design We devised the curiosity bandit, depicted in Figure 3.2, to

showcase the behaviour elicited by variations in domain-delivered reward. The

curiosity bandit has a single state (S = {s0}), but provides the learning agent

with three actions (A = {a1, a2, a3}), each of which results in a different domain

reward signal.

If the agent takes a1, its reward is drawn uniformly randomly from [�1, 1]. If

the agent takes a2, it always receives a reward of 0. If the agent takes a3, then

it receives a reward of sin(c1 · t), where c1 is a small constant, held-constant at

c1 = 0.001 in our experiment, and t is the current time step (starting at t = 0).

The algorithm followed to determine the output state signal and domain reward

is controlled throughout the experiment. The pseudo-random generation of the
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reward received after taking action a1 is allowed to vary, because it theoretically

simulates noise in the reward signal.

Agent Design The agent has two components: a prediction learner and a control

learner. In this section, we describe the algorithm followed and introduce the

parameters varied as design factors.

For the set of all available actions A and the set of all observable state signals S,

the prediction learner uses the TD(�) algorithm (Sutton and Barto, 2018, p. 174)

to estimate the value function Q⇡ : S ⇥ A ! R, where, for each state s 2 S and

each action a 2 A, the value of a, given it is taken from s, is defined by

Q⇡(s, a) = E
( 1X

k=0

�k

p
r(p)
t+k+1

�����st = s, at = a

)
(B.2)

where E denotes the expected value, st, at, and r(p)
t+1 are, respectively, the state

observed and the action taken at time step t, and the resulting domain reward,

and 0  �p  1 is a constant parameter often called the discount rate.

For the TD(�) algorithm, the agent starts with some initial estimation Q of

Q⇡. The initial Q is chosen by the agent designer and while it does typically affect

behaviour, the effects are short-term and tend to be small in domains where S⇥A
is small. Therefore, in our experiment it is a held-constant factor initialized with

Q(s, a) 0 for all s, a 2 S⇥A.

The algorithm also makes use of an eligibility trace, e : S⇥A! R. It is always

initialized with e(s, a) 0 for all s, a 2 S⇥A.

At each time step, the agent observes some state s and takes some action a.

At the beginning of the next time step, the agent observes a domain reward r(p)

and a new state s0 and takes a next action a0. The agent can then use the sum of

the observed domain reward and Q⇡(s0, a0) to update Q(s, a).

To update, the prediction learner uses two components: the eligibility trace,

e, and the temporal difference error (TD error), �. Eligibility is assigned to the
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action taken, via

e(s, a) min {e(s, a) + 1, 1} (B.3)

and the TD error is computed as

�  r(p) + �p Q(s0, a0)�Q(s, a) (B.4)

Because there may be an element of randomness to the domain’s rule for de-

termining the next state and reward given the current state and action, we do not

necessarily want to change our new estimated value to the sample value—we only

move it towards that value, so the estimated value for action a from state s is then

updated as follows:

Q(s, a) Q(s, a) + ↵p�e(s, a) (B.5)

where ↵p is a learning rate parameter. To complete the prediction learner’s update,

the eligibility trace then decays as follows:

e(s, a) �pe(s, a) 8s, a 2 S⇥A (B.6)

The intrinsic reward is computed using the predictor’s TD-error. Essentially,

we maintain a smoothly averaged estimate, ⇠, of recent TD-error and divide by

the root sample variance to obtain the intrinsic reward (unexpected error). This

method was provided by White (2015, p. 121).

The algorithm to maintain ⇠ utilizes a single parameter, �0, and a holding

variable ⌧ . Holding variable ⌧ and estimate ⇠ are initialized to ⌧  0 and ⇠  0.

To update ⇠ during each time step, we perform the following two steps:

⌧  (1� �0)⌧ + �0 (B.7)

⇠  
✓
1� �0

⌧

◆
⇠ +

�0

⌧
� (B.8)

and we provide the estimate incorporating the most recent TD-error divided by the

sample variance to the control learner as the intrinsic reward. Using one parameter
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�0, the estimate ⇠ is maintained using a holding variable, ⌧ . The sample variance,

var(�), is maintained using a standard incremental algorithm (see Appendix B.7

for the implementation) and the final intrinsic reward for the time step is

RI

t
=

⇠p
var(�) + c2

(B.9)

where c2 is held constant at c2 = 0.001 in our experiment.

For control, we used "-greedy Watkins’s Q(�) (Sutton and Barto, 2018, p. 312-

313). Q(�)-learning maintains estimates of the optimal curiosity value Q⇤, assum-

ing the agent will choose the action with the highest curiosity value in the next

step.

Watkins’s Q(�) uses updates analogous to those shown in equations (B.3)-(B.5),

so our control component also uses analogous parameters ↵c, �c, and �c.

To select an action, a random number between 0 and 1 is drawn. If the random

number is less than ", the agent will choose an action randomly (so all actions have

equal probability), but otherwise, it chooses the action with the greatest curiosity

value (hence the name, "-greedy).

Like the domain, the described algorithms used to make predictions and se-

lect actions are controlled throughout the experiment, while the pseudo-random

generation is allowed to vary because it represents the metaphorical ‘coin-flip’

used to decide in a slightly-random policy. However, the parameters ↵p, �p,

�p, �0,↵c, �c,�c, and " are our manipulated variables.

B.1.3 Parameter Factor Ranges

Learning rates within the interval [0, 2) are generally stable. However, the purpose

of the learning rate is to minimize error. For this reason, the learning rates,

↵p,↵c, are defined on (0, 1] which are theoretically sound with regards to this

purpose (Sutton and Barto, 2018). Also, the learning rate is known to typically

have a non-linear effect on prediction error and return (Sutton and Barto, 2018,

pp. 155, 43).
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Responding Variable
Return, G
Manipulated Variable Coding Function
Learning rate ↵p = 0.51 + 0.49x↵p

Discount rate �p = 0.49 + 0.49x�p

Trace decay parameter �p = 0.49 + 0.49x�p

Unexpected error parameter �0 = 0.5 + 0.49x�0

Learning rate ↵c = 0.51 + 0.49x↵c

Discount rate �c = 0.49 + 0.49x�c

Trace decay parameter �c = 0.49 + 0.49x�c

Probability of random action " = 0.5 + 0.49x"

Table B.1: Summary of full-factorial design and coding for factor levels.

The discount rates chosen for continuing tasks like our domain fall in the inter-

val [0, 1) (Sutton and Barto, 2018, p. 53). Setting �p, �c < 1 ensures the the value

functions Q⇡ and Q⇤ are bounded. Prior work has shown that �p has an important

effect on behaviour (Ady and Pilarski, 2016).

The trace decay parameters �p,�c are used to assign most credit for an obser-

vation to the most recent choice, and decreasing amounts of credit to historical

choices. The amount of credit decays by a factor of � in each step. Like �p, �c, the

parameter is set within the interval [0, 1) for continuing tasks. The trace decay

parameter has

The parameter " represents a probability, so is bounded to [0, 1]. However, if

" = 0, the agent will get stuck taking the action whose curiosity value estimate

first exceeds the estimates for the other actions. Similarly, if " = 1, the agent will

never utilize its learning; it will act randomly at every time step. Therefore, we

bound " to the range (0, 1).

B.1.4 Experimental Design

For a design summary, see Table B.1.

Since many of the parameters of interest are already expected to affect the

response variables, and in many cases to have non-linear effects, we were interested
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in a response surface method (RSM) design to help capture this information in a

simplified model.

A full-factorial design capturing non-linear effects of even five of the eight fac-

tors would take nearly 2000 tests for a single replication. Further, we hoped to run

twenty replications to account for the randomness impacting each run. While this

is a feasible number of tests, given that a single test takes less than a second to

complete, the analysis of the resulting data requires a great deal of computation,

and a quadratic model can be realized much more efficiently using an RSM.

We chose to utilize an inscribed central composite (CCI) design. CCI designs

are suitable RSM designs when the extrema of the included factors represent hard

limits. As described in section B.1.3, the ranges of interest represent the reasonable

limits for each parameter, so a CCI design was a reasonable choice. The test order

was fully randomized.

B.2 Results

The linear models were created using STATISTICA 13.

B.2.4 Results for Return

An analysis of variance (ANOVA) was performed to determine the significant fac-

tors and interactions. Our initial model including all linear effects and quadratic

interactions was validated using a run sequence plot of the residuals (B.4), a normal

probability plot of the residuals (B.5), and a scatter plot of the predicted values

against the residuals (B.6), shown in Appendix B. We defer discussion of the val-

idation plots to section B.2.5. From the Effect Estimates (Table B.2), ANOVA

(Table B.3), and Pareto chart of standardized effects (Figure B.1), we determined

that the linear effects for ", �0,↵c, and �p were significant, along with the quadratic

interactions between " and �0, " and �p, �0 and �p, and ↵p and �p.
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Pareto Chart of Standardized Effects; Variable: Return
8 factors, 1 Blocks, 5600 Runs; MS Residual=6808.682

DV: Return
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Figure B.1: A Pareto chart showing the standardized effects on return for the
initial model with all linear and quadratic effects.
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Pareto Chart of Standardized Effects; Variable: Return
8 factors, 1 Blocks, 5600 Runs; MS Residual=6802.296

DV: Return
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(5)Gamma_p(L)

Figure B.2: In this Pareto chart, the effects with bars surpassing the red line (that
is, those effects which have a component to the right of the red line) are significant
in the reduced model.
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We reduced our model by removing all insignificant effects, up to fulfilling the

hierarchy principle (we keep the linear effect of ↵p, despite its relatively high p-

value). We then performed the same statistical analysis for our new model. Again,

the model was visually validated (Figures B.5 and B.7, and B.8 in Appendix B.6)

and the Effect Estimates (Table B.4) and ANOVA (Table B.5) computed. As is

shown by the Pareto chart in Figure B.2, the effects listed in the previous paragraph

remained significant.

With our reduced model, the return G can be written as a function of coded

parameters as follows:

G = 139.5106 + 10.9775x" � 11.9960x�0 + 1.6765x↵p + 7.2528x↵c + 15.4490x�p

+ 4.5799x"x�0 � 5.2546x"x�p � 2.5570x�0x�p + 2.9253x↵px�p

(B.10)

B.2.5 Model Validation

The assumptions of the ANOVA procedure require that the residuals of the linear

model are normal.
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Normal Prob. Plot; Raw Residuals
8 factors, 1 Blocks, 5600 Runs; MS Residual=6802.296

DV: Return
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Figure B.3: This plot shows the normal probability plot for the residuals, given
our reduced model.

Unfortunately, we can see in Figure B.3, that there are outliers. Interestingly,

those outliers are runs where x" = �1, and all other coded variables are set to 0.

This suggests that our model may fail in nearby cases.

On the other hand, neither the run-sequence plot of residuals in Figure B.7 nor

the plot of residuals as a function of value in Figure B.8 appear to show any trend

suggesting further invalidity of the model.

B.2.6 Optimization

A system designer may be interested in maximizing return while still using this

curiosity method. We used sqp in Octave, and found that the following coded
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values maximized return according to our model, with a predicted expected return

of 182.51.

x" = 1 (B.11)

x�0 = �1 (B.12)

x↵p = 1 (B.13)

x↵c = 1 (B.14)

x�p = 1 (B.15)

B.3 Discussion

The initial objectives of this work were to find parameters that significantly affect

the behaviour of a reinforcement learning agent controlled using White’s unex-

pected error as a intrinsic reward.

To the best of the author’s knowledge, there have been no prior attempts to

determine which parameters in a curious agent impact its behaviour.

Using return as the response variable provided limited insight into this issue.

Parameters which result in significantly different final return must have resulted

in significantly different behaviour to do so. However, this experiment does not

exhaust the possibility that some parameters which cause significantly different

behaviour could still result in similar return.

Despite its limitations, return is an interesting response variable, as there could

be situations where the system designer would like to maximize return while still

requiring the learning system to utilize this kind of intrinsic reward.

In future work it will be crucial to utilize more descriptive measures of behaviour

than the return. Such measures could include the average probability of each action

or other measures of the agent’s predictive error.

One response variable that was not tested in these experiments was the dif-

ference between the agent’s prediction and the observed truth: the experimenter
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can compute, after the trial’s completion, the actual value for a given time step

and compare it to the prediction made by the agent. While this response variable

measures how well the agent is predicting what it observes, it fails to measure the

agent’s knowledge of all possible situations. For example agent which always selects

the constant action a2 and never updates its predictions from Q(s0, a2) = 0 would

always predict every situation it sees perfectly, but would be a poor predictor of

its accessible environment.

B.4 Conclusions

We found that the significant factors were the linear effects for ", �0,↵c, and �p,

along with the quadratic interactions between " and �0, " and �p, �0 and �p, and

↵p and �p.

To maximize return, we found that the best values in our utilized ranges for

the significant parameters were as follows:

" = 0.99 (B.16)

�0 = 0.01 (B.17)

↵p = 1 (B.18)

↵c = 1 (B.19)

�p = 0.98 (B.20)

B.5 Raw Data

The raw data is available at https://drive.google.com/a/ualberta.ca/file/d/

0B5rsyN1Hdb1qd1B4OGQ3dGxVc0U/view?usp=sharing
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B.6 Additional Tables and Plots (Return)

Effect Std.Err. t(5555) p -95.% 
(Cnf.Limt)

+95.% 
(Cnf.Limt)

Coeff. Std.Err. 
(Coeff.)

-95.% 
(Cnf.Limt)

+95.% 
(Cnf.Limt)

Mean/Interc. 131.0435 6.227438 21.0429 0.000000 118.8352 143.2517 131.0435 6.227438 118.8352 143.2517
(1)Epsilon (L) 21.9551 2.222461 9.8787 0.000000 17.5982 26.3120 10.9775 1.111231 8.7991 13.1560
Epsilon (Q) 5.0775 2.926942 1.7347 0.082843 -0.6605 10.8154 2.5387 1.463471 -0.3302 5.4077
(2)Beta_Naught(L) -23.9921 2.222461 -10.7953 0.000000 -28.3490 -19.6352 -11.9960 1.111231 -14.1745 -9.8176
Beta_Naught(Q) 5.4259 2.926942 1.8538 0.063822 -0.3120 11.1639 2.7130 1.463471 -0.1560 5.5819
(3)Alpha_p(L) 3.3530 2.222461 1.5087 0.131438 -1.0039 7.7099 1.6765 1.111231 -0.5020 3.8549
Alpha_p(Q) 4.6990 2.926942 1.6054 0.108455 -1.0389 10.4370 2.3495 1.463471 -0.5195 5.2185
(4)Alpha_c(L) 14.5056 2.222461 6.5268 0.000000 10.1487 18.8625 7.2528 1.111231 5.0743 9.4312
Alpha_c(Q) 0.8038 2.926942 0.2746 0.783626 -4.9342 6.5417 0.4019 1.463471 -2.4671 3.2709
(5)Gamma_p(L) 30.8980 2.222461 13.9026 0.000000 26.5411 35.2549 15.4490 1.111231 13.2705 17.6274
Gamma_p(Q) 3.3688 2.926942 1.1510 0.249795 -2.3691 9.1068 1.6844 1.463471 -1.1846 4.5534
(6)Gamma_c(L) 3.2353 2.222461 1.4557 0.145527 -1.1216 7.5922 1.6176 1.111231 -0.5608 3.7961
Gamma_c(Q) -0.9275 2.926942 -0.3169 0.751344 -6.6655 4.8105 -0.4637 1.463471 -3.3327 2.4052
(7)Lambda_p(L) -0.2981 2.222461 -0.1341 0.893320 -4.6549 4.0588 -0.1490 1.111231 -2.3275 2.0294
Lambda_p(Q) -0.7013 2.926942 -0.2396 0.810647 -6.4393 5.0366 -0.3507 1.463471 -3.2196 2.5183
(8)Lambda_c(L) 0.2675 2.222461 0.1204 0.904183 -4.0893 4.6244 0.1338 1.111231 -2.0447 2.3122
Lambda_c(Q) -0.5473 2.926942 -0.1870 0.851675 -6.2853 5.1906 -0.2737 1.463471 -3.1426 2.5953
1L by 2L 9.1599 2.306357 3.9716 0.000072 4.6385 13.6812 4.5799 1.153179 2.3193 6.8406
1L by 3L -4.0135 2.306357 -1.7402 0.081882 -8.5349 0.5079 -2.0067 1.153179 -4.2674 0.2539
1L by 4L -3.4940 2.306357 -1.5150 0.129842 -8.0154 1.0273 -1.7470 1.153179 -4.0077 0.5137
1L by 5L -10.5093 2.306357 -4.5567 0.000005 -15.0307 -5.9879 -5.2546 1.153179 -7.5153 -2.9940
1L by 6L 0.8524 2.306357 0.3696 0.711702 -3.6690 5.3738 0.4262 1.153179 -1.8345 2.6869
1L by 7L -0.6379 2.306357 -0.2766 0.782117 -5.1592 3.8835 -0.3189 1.153179 -2.5796 1.9417
1L by 8L 1.1834 2.306357 0.5131 0.607884 -3.3379 5.7048 0.5917 1.153179 -1.6690 2.8524
2L by 3L 1.6539 2.306357 0.7171 0.473338 -2.8675 6.1753 0.8270 1.153179 -1.4337 3.0876
2L by 4L -3.8737 2.306357 -1.6796 0.093092 -8.3951 0.6476 -1.9369 1.153179 -4.1976 0.3238
2L by 5L -5.1141 2.306357 -2.2174 0.026638 -9.6354 -0.5927 -2.5570 1.153179 -4.8177 -0.2964
2L by 6L 1.1494 2.306357 0.4983 0.618258 -3.3720 5.6707 0.5747 1.153179 -1.6860 2.8354
2L by 7L 2.5102 2.306357 1.0884 0.276471 -2.0111 7.0316 1.2551 1.153179 -1.0056 3.5158
2L by 8L -1.4766 2.306357 -0.6402 0.522043 -5.9980 3.0447 -0.7383 1.153179 -2.9990 1.5224
3L by 4L -0.6207 2.306357 -0.2691 0.787852 -5.1420 3.9007 -0.3103 1.153179 -2.5710 1.9503
3L by 5L 5.8506 2.306357 2.5367 0.011217 1.3292 10.3719 2.9253 1.153179 0.6646 5.1860
3L by 6L 1.2650 2.306357 0.5485 0.583389 -3.2564 5.7863 0.6325 1.153179 -1.6282 2.8932
3L by 7L -1.6404 2.306357 -0.7113 0.476946 -6.1618 2.8809 -0.8202 1.153179 -3.0809 1.4405
3L by 8L 3.6473 2.306357 1.5814 0.113845 -0.8741 8.1686 1.8236 1.153179 -0.4371 4.0843
4L by 5L -1.0914 2.306357 -0.4732 0.636064 -5.6128 3.4299 -0.5457 1.153179 -2.8064 1.7150
4L by 6L -0.9540 2.306357 -0.4136 0.679150 -5.4754 3.5673 -0.4770 1.153179 -2.7377 1.7837
4L by 7L 1.1532 2.306357 0.5000 0.617100 -3.3682 5.6745 0.5766 1.153179 -1.6841 2.8373
4L by 8L -0.3283 2.306357 -0.1424 0.886798 -4.8497 4.1930 -0.1642 1.153179 -2.4249 2.0965
5L by 6L -2.7672 2.306357 -1.1998 0.230257 -7.2886 1.7541 -1.3836 1.153179 -3.6443 0.8771
5L by 7L -0.9303 2.306357 -0.4034 0.686698 -5.4517 3.5911 -0.4651 1.153179 -2.7258 1.7955
5L by 8L -1.4497 2.306357 -0.6285 0.529671 -5.9710 3.0717 -0.7248 1.153179 -2.9855 1.5359
6L by 7L -0.8107 2.306357 -0.3515 0.725224 -5.3321 3.7107 -0.4053 1.153179 -2.6660 1.8553
6L by 8L 1.6681 2.306357 0.7233 0.469552 -2.8533 6.1895 0.8340 1.153179 -1.4266 3.0947
7L by 8L 1.3541 2.306357 0.5871 0.557160 -3.1673 5.8754 0.6770 1.153179 -1.5836 2.9377

 Factor

  Effect Estimates; Var.:Return; R-sqr=.08709; Adj:.07986 (stats_cci)8 factors, 1 Blocks, 5600 Runs; MS Residual=6808.682DV: Return

Table B.2: Given our initial model, this table shows all linear effects and quadratic
interactions.
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SS df MS F p
(1)Epsilon (L) 664454 1 664454 97.5893 0.000000
Epsilon (Q) 20489 1 20489 3.0093 0.082843
(2)Beta_Naught(L) 793468 1 793468 116.5378 0.000000
Beta_Naught(Q) 23398 1 23398 3.4365 0.063822
(3)Alpha_p(L) 15497 1 15497 2.2761 0.131438
Alpha_p(Q) 17549 1 17549 2.5774 0.108455
(4)Alpha_c(L) 290045 1 290045 42.5992 0.000000
Alpha_c(Q) 513 1 513 0.0754 0.783626
(5)Gamma_p(L) 1315998 1 1315998 193.2823 0.000000
Gamma_p(Q) 9020 1 9020 1.3247 0.249795
(6)Gamma_c(L) 14428 1 14428 2.1191 0.145527
Gamma_c(Q) 684 1 684 0.1004 0.751344
(7)Lambda_p(L) 122 1 122 0.0180 0.893320
Lambda_p(Q) 391 1 391 0.0574 0.810647
(8)Lambda_c(L) 99 1 99 0.0145 0.904183
Lambda_c(Q) 238 1 238 0.0350 0.851675
1L by 2L 107396 1 107396 15.7734 0.000072
1L by 3L 20618 1 20618 3.0282 0.081882
1L by 4L 15626 1 15626 2.2951 0.129842
1L by 5L 141370 1 141370 20.7632 0.000005
1L by 6L 930 1 930 0.1366 0.711702
1L by 7L 521 1 521 0.0765 0.782117
1L by 8L 1793 1 1793 0.2633 0.607884
2L by 3L 3501 1 3501 0.5142 0.473338
2L by 4L 19208 1 19208 2.8210 0.093092
2L by 5L 33477 1 33477 4.9168 0.026638
2L by 6L 1691 1 1691 0.2484 0.618258
2L by 7L 8065 1 8065 1.1846 0.276471
2L by 8L 2791 1 2791 0.4099 0.522043
3L by 4L 493 1 493 0.0724 0.787852
3L by 5L 43813 1 43813 6.4349 0.011217
3L by 6L 2048 1 2048 0.3008 0.583389
3L by 7L 3445 1 3445 0.5059 0.476946
3L by 8L 17027 1 17027 2.5008 0.113845
4L by 5L 1525 1 1525 0.2240 0.636064
4L by 6L 1165 1 1165 0.1711 0.679150
4L by 7L 1702 1 1702 0.2500 0.617100
4L by 8L 138 1 138 0.0203 0.886798
5L by 6L 9802 1 9802 1.4396 0.230257
5L by 7L 1108 1 1108 0.1627 0.686698
5L by 8L 2690 1 2690 0.3951 0.529671
6L by 7L 841 1 841 0.1236 0.725224
6L by 8L 3562 1 3562 0.5231 0.469552
7L by 8L 2347 1 2347 0.3447 0.557160
Error 37822229 5555 6809
Total SS 41430353 5599

 Factor

ANOVA; Var.:Return; R-sqr=.08709; Adj:.07986 (stats_cci)
8 factors, 1 Blocks, 5600 Runs; MS Residual=6808.682
DV: Return

Table B.3: Given our initial model for all linear effects and quadratic interactions,
this table provides ANOVA data.
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Residuals vs. Case Numbers
8 factors, 1 Blocks, 5600 Runs; MS Residual=6801.417

DV: Return
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Figure B.4: This plot shows the raw residuals for the initial model including all
linear and quadratic effects as a function of case number (equivalently, the raw
residuals are shown in the run sequence order).

Normal Prob. Plot; Raw Residuals
8 factors, 1 Blocks, 5600 Runs; MS Residual=6808.682
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-400 -300 -200 -100 0 100 200 300 400 500
Residual

-5

-4

-3

-2

-1

0

1

2

3

4

5

Ex
pe

ct
ed

 N
or

m
al

 V
al

ue

.01

.15

.35

.55

.75

.95

Figure B.5: This plot shows the normal probability plot for the residuals, given
our initial model including all linear and quadratic effects.
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Predicted vs. Residual Values
8 factors, 1 Blocks, 5600 Runs; MS Residual=6808.682

DV: Return
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Figure B.6: This plot shows the raw residuals as a function of the predicted values
for the initial model including all linear and quadratic effects.

Effect Std.Err. t(5590) p -95.% 
(Cnf.Limt)

+95.% 
(Cnf.Limt)

Coeff. Std.Err. 
(Coeff.)

-95.% 
(Cnf.Limt)

+95.% 
(Cnf.Limt)

Mean/Interc. 139.5106 1.102132 126.5824 0.000000 137.3500 141.6712 139.5106 1.102132 137.3500 141.6712
(1)Epsilon (L) 21.9551 2.221419 9.8834 0.000000 17.6002 26.3099 10.9775 1.110709 8.8001 13.1550
(2)Beta_Naught(L) -23.9921 2.221419 -10.8003 0.000000 -28.3469 -19.6372 -11.9960 1.110709 -14.1735 -9.8186
(3)Alpha_p(L) 3.3530 2.221419 1.5094 0.131257 -1.0019 7.7078 1.6765 1.110709 -0.5009 3.8539
(4)Alpha_c(L) 14.5056 2.221419 6.5299 0.000000 10.1507 18.8604 7.2528 1.110709 5.0754 9.4302
(5)Gamma_p(L) 30.8980 2.221419 13.9091 0.000000 26.5431 35.2528 15.4490 1.110709 13.2716 17.6264
1L by 2L 9.1599 2.305275 3.9734 0.000072 4.6406 13.6791 4.5799 1.152638 2.3203 6.8396
1L by 5L -10.5093 2.305275 -4.5588 0.000005 -15.0285 -5.9901 -5.2546 1.152638 -7.5143 -2.9950
2L by 5L -5.1141 2.305275 -2.2184 0.026566 -9.6333 -0.5948 -2.5570 1.152638 -4.8167 -0.2974
3L by 5L 5.8506 2.305275 2.5379 0.011179 1.3313 10.3698 2.9253 1.152638 0.6657 5.1849

 Factor

  Effect Estimates; Var.:Return; R-sqr=.0822; Adj:.08072 (stats_cci)8 factors, 1 Blocks, 5600 Runs; MS Residual=6802.296DV: Return

Table B.4: This table provides the main effects and model coefficients for our
reduced model.
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SS df MS F p
(1)Epsilon (L) 664454 1 664454 97.6809 0.000000
(2)Beta_Naught(L) 793468 1 793468 116.6472 0.000000
(3)Alpha_p(L) 15497 1 15497 2.2782 0.131257
(4)Alpha_c(L) 290045 1 290045 42.6392 0.000000
(5)Gamma_p(L) 1315998 1 1315998 193.4637 0.000000
1L by 2L 107396 1 107396 15.7882 0.000072
1L by 5L 141370 1 141370 20.7827 0.000005
2L by 5L 33477 1 33477 4.9214 0.026566
3L by 5L 43813 1 43813 6.4410 0.011179
Error 38024835 5590 6802
Total SS 41430353 5599

 Factor

ANOVA; Var.:Return; R-sqr=.0822; Adj:.08072 (stats_cci)
8 factors, 1 Blocks, 5600 Runs; MS Residual=6802.296
DV: Return

Table B.5: This table provides ANOVA data for our reduced model for which all
insignificant effects have been removed.

Residuals vs. Case Numbers
8 factors, 1 Blocks, 5600 Runs; MS Residual=6802.296
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Figure B.7: This plot shows the raw residuals for the reduced model as a function
of case number (equivalently, the raw residuals are shown in the run sequence
order).
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Predicted vs. Residual Values
8 factors, 1 Blocks, 5600 Runs; MS Residual=6802.296
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Figure B.8: This plot shows the raw residuals as a function of the predicted values
for the reduced model.

Observed vs. Predicted Values
8 factors, 1 Blocks, 5600 Runs; MS Residual=6808.682
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Figure B.9: This plot shows values predicted by the reduced model vs observed
values.
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B.7 Code for Parameter Screening Experiments

The following code runs all of the experiments and produces a csv (comma-separated-values)
file containing the raw experimental data.
# parameter_screening.py
# Copyright (C) 2017 Nadia Ady
#
# This module is part of the curiosity project.
# To run , type: python parameter_screening.py

import numpy # used for random functions

class Test(object ):

def __init__(self , domain , num_steps ):

self.domain = domain

self.num_steps = num_steps

self.return_sum = 0.0

# tracks counts for each state -action pair
self.count = {}

for state in domain.get_state_set ():

self.count[state] = {}

for action in domain.get_action_set ():

self.count[state][ action] = 0

def run(self , agent , initial_state ):

self.return_sum = 0.0 # reset before starting a new test
state = initial_state

action = agent.get_action(state)

for step_num in range(self.num_steps ):

self.count[state][ action] += 1

domain_reward , new_state = self.domain.sample(state ,

action)

new_action = agent.get_action(new_state)

agent.update(state , action , domain_reward ,

new_state , new_action)

state = new_state

action = new_action
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self.return_sum += domain_reward

class CuriosityBandit(object ):

def __init__(self , offset =0.001 , start_time =0,

update_sin_every_step=True , random_seed=None):

# constant to affect the frequency of the sinusoidal action
self.offset = offset

# sin_argument holds self.offset * timestep
self.sin_argument = start_time

# if False , sinusoid action only shifts when action is taken
self.update_sin_every_step = update_sin_every_step

if random_seed is None:

numpy.random.seed()

else:

numpy.random.seed(random_seed)

def sample(self , state , action ):

if self.update_sin_every_step or action == 1:

self.sin_argument += self.offset

reward = self.get_reward(action)

return reward , state

def get_reward(self , action ):

if action == 0: # random
return 2 * numpy.random.random_sample () - 1

elif action == 1: # sinusoidal
return numpy.sin(self.sin_argument)

elif action == 2: # constant
return 0

def get_state_set(self):

"""The returned list of states is a singleton."""
return [0]

def get_action_set(self):

return [1, 0, 2]

def get_initial_state(self):

return 0

class ActionValuedAgent(object ):

def __init__(self , domain , params , random_seed=None):

self.params = params

self.domain = domain
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if random_seed is not None:

numpy.random.seed(random_seed)

self.gamma = self.params[’gamma’] if ’gamma’ in \

self.params else 0.9

self.alpha = self.params[’alpha’] if ’alpha’ in \

self.params else 0.1

self.epsilon = self.params[’epsilon ’] if \

’epsilon ’ in self.params else 0.1

self.initial_value = self.params[’initial_value ’] if \

’initialValue ’ in self.params else 0

self.decay = self.params[’lambda ’] if ’lambda ’ in \

self.params else 0

self.UDE_keeper = UDE(self.params[’beta_naught ’]) if \

’beta_naught ’ in self.params else UDE (0.1)

self.Q = {s: {a: self.initial_value for a in

domain.get_action_set ()} for s in

domain.get_state_set ()}

self.trace = {state: {action: 0 for action in

domain.get_action_set ()} for state in

domain.get_state_set ()}

self.delta = 0

def get_action(self , state):

if state not in self.Q:

self.Q[state] = {a: self.initial_value for a in

self.domain.get_action_set ()}

if numpy.random.random () < self.epsilon:

action_set = self.domain.get_action_set ()

action = numpy.random.choice(action_set)

else:

action = numpy.random.choice(

[k for k, v in self.Q[state]. iteritems () if

v == max(self.Q[state]. values ())])

self.last_action = action

return action

class WatkinsQLearningAgent(ActionValuedAgent ):

def __init__(self , domain , params ):

super(WatkinsQLearningAgent , self). __init__(domain , params)

def update(self , state , action , reward , state_new , action_new ):

astar = max(self.Q[state_new], key=self.Q[state_new ].get)

if self.Q[state_new ][ action_new] == self.Q[state_new ][astar]:
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astar = action_new

self.delta = reward + \

self.gamma * self.Q[state_new ][astar] - \

self.Q[state][ action]

self.trace[state][ action] += 1

self.trace[state][ action] = 1 if \

self.trace[state][ action] >= 1 else \

self.trace[state][ action]

for s in self.trace:

for a in self.trace[s]:

self.Q[s][a] += self.alpha * self.delta * \

self.trace[s][a]

if action_new == astar:

self.trace[s][a] *= self.gamma * self.decay

else:

self.trace[s][a] = 0

# update used to compute the intrinsic reward.
self.UDE_keeper.update(self.delta)

class TDLambdaAgent(ActionValuedAgent ):

def __init__(self , domain , params ):

super(TDLambdaAgent , self). __init__(domain , params)

def update(self , state , action , reward , state_new , action_new ):

self.delta = reward + \

self.gamma * self.Q[state_new ][ action_new] - \

self.Q[state][ action]

for s in self.trace:

for a in self.trace[s]:

self.trace[s][a] *= self.gamma * self.decay

self.trace[state][ action] += 1

self.trace[state][ action] = 1 if \

self.trace[state][ action] >= 1 else \

self.trace[state][ action]

for s in self.Q:

for a in self.Q[s]:

self.Q[s][a] += self.alpha * self.delta * \

self.trace[s][a]

self.UDE_keeper.update(self.delta)
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class MultiBrainedAgent(object ):

def __init__(self , domain , params ):

self.domain = domain

self.params = params

assert ’control ’ in self.params

self.control_agent = \

self.params[’control ’][’agent_type ’](domain ,

self.params[’control ’][’params ’])

assert ’predictor ’ in self.params

self.predictor_agent = \

self.params[’predictor ’][’agent_type ’](domain ,

self.params[’predictor ’][’params ’])

assert ’control_reward ’ in self.params

self.control_reward = self.params[’control_reward ’]

def get_action(self , state):

return self.control_agent.get_action(state)

def update(self , state , action , reward , state_new , action_new ):

self.predictor_agent.update(state , action , reward ,

state_new , action_new)

curiosity_reward = self.control_reward(self.predictor_agent)

self.control_agent.update(state , action , curiosity_reward ,

state_new , action_new)

class UDE(object ):

def __init__(self , beta_naught , small_constant =0.0001):

self.beta_naught = beta_naught

self.small_constant = small_constant

self.knower_of_variance = SampleHolder ()

self.tau = 0

self.learned_avg_delta = 0

self.beta = None

def update(self , delta ):

# tau_{t+1}
self.tau = (1-self.beta_naught )*self.tau + self.beta_naught

self.beta = self.beta_naught/self.tau

# learn variance of delta
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self.knower_of_variance.add_variable(delta)

v = self.knower_of_variance.get_variance ()

# learn exponentially weighted moving average of delta
self.learned_avg_delta = (1 - self.beta) * \

self.learned_avg_delta + \

self.beta * delta

def get_output(self):

return abs( float(self.learned_avg_delta) /

(self.knower_of_variance.get_variance () +

self.small_constant ))

# https ://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
class SampleHolder(object ):

def __init__(self):

self.K = 0

self.n = 0

self.ex = 0

self.ex2 = 0

def add_variable(self ,x):

if self.n == 0:

self.K = x

self.n += 1

self.ex += x - self.K

self.ex2 += (x - self.K) * (x - self.K)

def remove_variable(self ,x):

self.n -= 1

self.ex -= (x - self.K)

self.ex2 -= (x - self.K) * (x - self.K)

def get_mean(self):

return self.K + self.ex / self.n

def get_variance(self):

if self.n == 0:

return 0

if self.n == 1:

return (self.ex2 - (self.ex*self.ex) / self.n) / self.n

return (self.ex2 -(self.ex * self.ex)/self.n)/( self.n-1)

if __name__ == "__main__":
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init_random_seed = 2017

num_steps = 20000

num_replicates = 20

filename = ’stats.csv’

epsilons = {-1: 0.01, 0: 0.5, 1: 0.99}

beta_naughts = {-1: 0.01, 1: 0.99}

alpha_ps = {-1: 0.01, 0: 0.5, 1: 0.99}

alpha_cs = {-1: 0.01, 0: 0.5, 1: 0.99}

gamma_ps = {-1: 0, 0: 0.49, 1: 0.98}

gamma_cs = {-1: 0, 0: 0.49, 1: 0.98}

lambda_ps = {-1: 0, 0: 0.49, 1: 0.98}

lambda_cs = {-1: 0, 0: 0.49, 1: 0.98}

with open(filename , ’w’) as f:

f.write(’Epsilon ,Beta_Naught ,Alpha_p ,Alpha_c ,Gamma_p ,’ +

’Gamma_c ,Lambda_p ,Lambda_c ,Percent�Periodic ,’ +

’Percent�Random ,Percent�Constant ,Return\n’)

code_combos = [( epsiloncode , b0code , apcode , accode ,

gpcode , gccode , lpcode , lccode)

for epsiloncode in epsilons

for b0code in beta_naughts

for apcode in alpha_ps

for accode in alpha_cs

for gpcode in gamma_ps

for gccode in gamma_cs

for lpcode in lambda_ps

for lccode in lambda_cs ]* num_replicates

numpy.random.seed(init_random_seed)

numpy.random.shuffle(code_combos)

for code in code_combos:

epsilon = epsilons[code [0]]

beta_naught = beta_naughts[code [1]]

alpha_p = alpha_ps[code [2]]

alpha_c = alpha_cs[code [3]]

gamma_p = gamma_ps[code [4]]

gamma_c = gamma_cs[code [5]]

lambda_p = lambda_ps[code [6]]

lambda_c = lambda_cs[code [7]]

# make spreadsheet
with open(filename , ’a’) as f:

for c in code:

f.write(str(c) + ’,’)
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test_domain = CuriosityBandit(random_seed=init_random_seed)

test_system = \

MultiBrainedAgent(test_domain ,

{’predictor ’:

{’agent_type ’: TDLambdaAgent ,

’params ’: {’gamma ’: gamma_p ,

’alpha’: alpha_p ,

’lambda ’: lambda_p ,

’beta_naught ’:

beta_naught ,

’initial_value ’: 0}},

’control ’:

{’agent_type ’:

WatkinsQLearningAgent ,

’params ’: {’gamma’: gamma_c ,

’alpha’: alpha_c ,

’epsilon ’: epsilon ,

’lambda ’: lambda_c ,

’beta_naught ’:

beta_naught ,

’initial_value ’: 0}},

’control_reward ’: lambda agent:

agent.UDE_keeper.get_output ()})

test = Test(test_domain , num_steps)

test.run(test_system , test_domain.get_initial_state ())

with open(filename , ’a’) as f:

for action in test_domain.get_action_set ():

f.write(str(float(test.count [0][ action ])/ num_steps)

+ ’,’)

f.write(str(test.return_sum) + ’\n’)
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Appendix C

Curiosity Ring World

While the Curiosity Bandit problem is designed to showcase an agent’s ability to
differentiate the interestingness of different rewards, we would also like to showcase
an agent’s ability to differentiate the interestingness of changes in state, or state-
action trajectories. Because, as described in Section 2.3, different approaches use
different internal constructions, the types of changes in the world that they react
to will be different.

The second environment, shown in Figure C.1, is designed to showcase ap-
proaches that allow agents to differentiate the interestingness of changes in state,
or state-action trajectories.

The choice of five states is somewhat arbitrary. As long as there are at least
two states, the same notions of constant, random, and sinusoid can be included as
actions. Intuitively, the ‘sinusoidal’ pattern becomes more and more difficult for
an agent to see, if there are more states in the ring.

The number of states could vary as a parameter to the environment. If we look
to have an analogous parameter in the curiosity bandit, we could vary the period
of the function for the sinusoidal arm’s reward. We may later want to modularly
combine rings of different sizes to see what size of ring is most preferable to a
curious agent or if it developmentally prefers rings of increasing size.

Another possible variation to this decision process could be the addition of an
action which does not move the agent, that is, that takes the agent from si to si;
it is not necessarily clear whether this action would (should?) be more ‘boring’ to
a curious agent than the one we have defined as ‘boring.’

In the ring-world, not only do we want to know about which actions are taken,
but from where the agent seems to find them most valuable at any given time.

In Section 2.3.3.1, we described the Simple Simulated Robot Experiment by
Oudeyer et al. (2007). As demonstrated by Figure 2.3, the Learning Progress
agent implemented by Oudeyer et al. (2007) spent a non-negligible length of time
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Figure C.1: The states and actions of the Curiosity Ring World and their dy-
namics. The decision process shown has five states and the same
three actions can be taken from each state. We omit reward from
the specification, but we can also simply assume that every action
deterministically results in a reward of 0. For convenience, the
unpredictable action, though it can be taken from every state, is
only shown once, since the result of that action always has the
same probabilities. The ‘unpredictable’ action takes the agent to
any of the five states with equal probability. The ‘boring’ action
deterministically returns the agent to s0. The ‘sinusoidal’ action
progresses the agent around the ring, i.e., from state si it takes
the agent to si+1 mod 5.
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focused on the simplest tone frequency, possibly due to there still being substantial
exploration space along with the simplest tone frequency. In contrast, after taking
the constant action once, a learner faced with the Curiosity Bandit will learn
essentially nothing new. In the ring-world, on the other hand, the agent is offered
the complexity of multiple states from which to try the analogous constant action,
so we might observe a progression more similar to that observed with the Simple
Simulated Robot Experiment.

We also noted that neither empowerment, by Klyubin et al. (2005), nor Pre-
dictive Power, by Still and Precup (2012) have any mechanism to vary behaviour
based on reward, or any simple signal excluded from the state. In the ring-world,
on the other hand, we expect that both empowerment and Predictive Power will
differentiate the different states and actions.

The simple translation of the approach designed by White et al. (2014) that we
used for the Curiosity Bandit—simply computing the surprise regarding the reward
and using the surprise as the intrinsic reward—cannot be expected to result in
interesting behaviours in the ring-world. However, we could consider alternative
translations such as providing the state signal to the agent as a 5-dimensional
vector ~v with binary values

vi =

⇢
1 if the agent is in si
0 otherwise. (C.1)

The agent could predict these values for different policies, allowing us to compute
the surprise regarding these patterns. A variation on this would be to use the
reward value as a sixth dimension. We might expect to observe ‘projects,’ as we
called the behaviour observed by White et al. (2014) in Chapter 2, alluding to
Simpson’s terminology for behaviour exhibited by rhesus monkeys (1976, p. 385).
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